Principal Manifold Learning by Sparse Grids

The construction of lower-dimensional manifolds from high-dimensional data is an important task in data mining, machine learning and statistics. The authors consider principal manifolds as a regularized, non-linear empirical quantization error functional.

Рубрика Математика
Вид статья
Язык английский
Дата добавления 08.02.2013
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Characteristics of the main two-dimensional, three-dimensional and n-dimensional geometric shapes, their use in mathematics, physics and other. Properties of two-dimensional geometric shapes arranged on the plane: polygon, triangle, quadrilateral, circle.

    топик [251,8 K], добавлен 21.12.2013

  • Construction of the general algorithm for integration of the linear usual distinctive equation. Creation of the common decision of the differential equation. An example of the decision of linear systems. Definition of components of certain functions.

    учебное пособие [2,4 M], добавлен 03.10.2011

  • Подходы к оценке кредитного риска: недостатки методик Базеля II. Модели оценки: качество и прозрачность методик, структура данных. Скоринговые методики, кластерный и дискриминантный анализ, нейронные сети и дерево классификаций, data mining и регрессии.

    курсовая работа [3,3 M], добавлен 21.08.2008

  • Review of concepts, forms and different ways of representing the methods of mathematical induction, characterization of its ideas and principles. Features of a multimedia learning object students and teachers on the example of the University of Latvia.

    реферат [1,1 M], добавлен 11.02.2012

  • Investigation of the problem with non-local conditions on the characteristic and on the line of degeneracy . The solution of the modied Cauchy problem with initial data. The solution of singular integral equations. Calculation of the inner integral.

    статья [469,4 K], добавлен 15.06.2015

  • Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.

    доклад [25,3 K], добавлен 16.06.2012

  • Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа [208,4 K], добавлен 14.06.2013

  • Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.

    контрольная работа [565,6 K], добавлен 02.09.2010

  • Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа [728,4 K], добавлен 10.07.2017

  • Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.

    курсовая работа [3,2 M], добавлен 19.05.2011

  • Principles of learning and language learning. Components of communicative competence. Differences between children and adults in language learning. The Direct Method as an important method of teaching speaking. Giving motivation to learn a language.

    курсовая работа [66,2 K], добавлен 22.12.2011

  • A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.

    топик [19,0 K], добавлен 29.06.2009

  • Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.

    реферат [443,2 K], добавлен 13.02.2014

  • Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.

    презентация [3,9 M], добавлен 17.02.2016

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Роль информации в мире. Теоретические основы анализа Big Data. Задачи, решаемые методами Data Mining. Выбор способа кластеризации и деления объектов на группы. Выявление однородных по местоположению точек. Построение магического квадранта провайдеров.

    дипломная работа [2,5 M], добавлен 01.07.2017

  • The air transport system in Russia. Project on the development of regional air traffic. Data collection. Creation of the database. Designing a data warehouse. Mathematical Model description. Data analysis and forecasting. Applying mathematical tools.

    реферат [316,2 K], добавлен 20.03.2016

  • Управление электронным обучением. Технологии электронного обучения e-Learning. Программное обеспечение для создания e-Learning решений. Компоненты LMS на примере IBM Lotus Learning Management System и Moodle. Разработка учебных курсов в системе Moodle.

    курсовая работа [146,6 K], добавлен 11.06.2009

  • Non-reference image quality measures. Blur as an important factor in its perception. Determination of the intensity of each segment. Research design, data collecting, image markup. Linear regression with known target variable. Comparing feature weights.

    дипломная работа [934,5 K], добавлен 23.12.2015

  • The results of theoretical analysis and computer simulation of the amplitude and phase errors of the narrowband signal. Vector representation of input and output signals. Standard deviation of the phase. Probability distribution laws of the phase error.

    реферат [469,7 K], добавлен 06.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.