Многочлены, ортогональные на конечной системе точек
Последовательность и вид многочленов на конечной степени точек в частных случаях. Сила нормированности. Определение коэффициентов Фурье. Применение метода наименьших квадратов. Ортогональные многочлены системы. Интерполяционный многочлен Лагранжа.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.05.2013 |
Размер файла | 84,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.
курсовая работа [2,5 M], добавлен 30.06.2011Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.
реферат [139,0 K], добавлен 26.07.2009Области применения латинских квадратов. Использование систем попарно ортогональных латинских квадратов при построении сеточных методов интегрирования в математике. Хроматические многочлены, подсчет решений судоку. Различные симметрии квадратов судоку.
реферат [147,3 K], добавлен 07.09.2009Понятие многочленов и их свойства. Сущность метода неопределённых коэффициентов. Разложения многочлена на множители. Максимальное число корней многочлена над областью целостности. Методические рекомендации по изучению темы "Многочлены" в школьном курсе.
дипломная работа [733,7 K], добавлен 20.07.2011Понятие многочлена и его степени. Многочлен, у которого все коэффициенты равны нулю. Многочлены от одной переменной. Равенство и значение многочленов. Операции над многочленами, основные понятия схемы Горнера. Кратные и рациональные корни многочлена.
курсовая работа [90,2 K], добавлен 15.06.2010Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.
курсовая работа [4,8 M], добавлен 23.05.2013Многочлены Чебышева. Многочлены равномерных приближений. Экономизация степенных рядов. Свойства многочлена Чебышева. Интерполяция по Чебышевским узлам. Многочлены равномерных приближений. Теорема Вейерштрасса. Кусочно-квадратичная аппроксимация.
курс лекций [175,3 K], добавлен 06.03.2009Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.
курсовая работа [391,8 K], добавлен 19.12.2012Реализация в пакете Mathcad альтернативных возможностей для получения ортогональных систем, с помощью которых можно получать аналитические выражения. Введение документа Mathcad, реализующего явные выражения для ортогональных систем Лежандра и Лагерра.
дипломная работа [641,5 K], добавлен 01.05.2014Общее определение коэффициентов по методу Эйлера-Фурье. Ортогональные системы функций. Интеграл Дирихле, принцип локализации. Случай непериодической функции, произвольного промежутка, четных и нечетных функций. Примеры разложения функций в ряд Фурье.
курсовая работа [296,3 K], добавлен 12.12.2010Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.
курсовая работа [141,5 K], добавлен 23.07.2011Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.
курсовая работа [1,2 M], добавлен 04.07.2015Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Построить интерполяционный многочлен Лагранжа. Выполнить интерполяцию сплайнами третьей степени.
лабораторная работа [70,8 K], добавлен 06.02.2004Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).
реферат [71,6 K], добавлен 06.03.2011Математический анализ и операционное исчисление. Обращение преобразования с помощью многочленов, ортогональных на промежутке. Интегральное преобразования Лапласа с помощью смещенных многочленов Лежандра и многочленов Чебышева первого рода.
реферат [503,6 K], добавлен 10.02.2011Многочлен как сумма или разность одночленов. Запись многочлена в стандартном виде. Операции при сложении и вычитании многочленов. Умножение многочлена на одночлен. Деление многочлена на одночлен. Разложение многочлена на множители, метод группировки.
презентация [53,2 K], добавлен 26.02.2010Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.
презентация [251,7 K], добавлен 29.10.2013Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа [147,4 K], добавлен 16.11.2015Определение и примеры симметрических многочленов от трех и нескольких переменных. Решение систем уравнений с тремя неизвестными. Освобождение от иррациональности в знаменателе. Разложение на множители. Основная теорема об антисимметрических многочленах.
курсовая работа [303,5 K], добавлен 12.04.2012Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат [383,7 K], добавлен 19.08.2015