Алгоритм Дэвидона–Флетчера–Пауэлла
Способы минимизации дифференцируемой функции нескольких переменных. Выработка сопряженных направлений и остановка после выполнения одной итерации. Результаты вычислений примеров методом Дэвидона–Флетчера–Пауэлла. Доказательство по индукции и дедукции.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.09.2013 |
Размер файла | 156,0 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сущность сопряженных направлений, знакомство с основными алгоритмами. Особенности поиска минимума функции методом Пауэлла. Разработка приложений с графическим интерфейсом. Исследование квадратичных функций, решение задач методом сопряженных направлений.
курсовая работа [2,8 M], добавлен 14.07.2012Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.
реферат [86,3 K], добавлен 30.10.2010Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.
презентация [104,8 K], добавлен 17.09.2013Теория математического программирования. Методы поиска глобального экстремума функции нескольких переменных. Угловые точки допустимых множеств. Постановка общей задачи нелинейного программирования. Решения уравнения f(x)=0 методом простой итерации.
контрольная работа [775,4 K], добавлен 05.01.2013Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа [1,4 M], добавлен 16.08.2010Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.
курсовая работа [95,1 K], добавлен 12.10.2009Определение точки экстремума для функции двух переменных. Аналог теоремы Ферма. Критические, стационарные точки. Теорема "Достаточное условие экстремума", доказательство. Схема исследования функции нескольких переменных на экстремум, практический пример.
презентация [126,2 K], добавлен 17.09.2013Понятие генетического алгоритма и механизм минимизации функции многих переменных. Построение графика функции и ее оптимизация. Исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков, анализ результатов.
контрольная работа [404,7 K], добавлен 04.05.2015Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
творческая работа [17,4 K], добавлен 25.06.2009Методы решения нелинейных уравнений: касательных и хорд, результаты их вычислений. Алгоритм и блок схема метода секущих. Исследование характерных примеров для практического сравнения эффективности рассмотренных методов разрешения нелинейных уравнений.
дипломная работа [793,2 K], добавлен 09.04.2015Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.
контрольная работа [148,6 K], добавлен 02.02.2014Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.
курсовая работа [259,9 K], добавлен 04.05.2011Математическая задача оптимизации. Минимум функции одной и многих переменных. Унимодальные и выпуклые функции. Прямые методы безусловной оптимизации и минимизации, их практическое применение. Методы деления отрезка пополам (дихотомия) и золотого сечения.
курсовая работа [2,0 M], добавлен 26.08.2009Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.
реферат [145,4 K], добавлен 03.08.2010Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.
курсовая работа [2,4 M], добавлен 14.04.2009Рассмотрение примеров задач и теорем, доказываемых при помощи контрпримера. Применение терминов "производная" и "дифференцируемая функция". Построение немецким математиком Вейерштрассом первого примера непрерывной нигде не дифференцируемой функции.
курсовая работа [400,6 K], добавлен 07.10.2013Доказательство существования или отсутствия алгоритма для решения поставленной задачи. Определение алгоритмической неразрешимости задачи. Понятия суперпозиции функций и рекурсивных функций. Анализ схемы примитивной рекурсии и операции минимизации.
курсовая работа [79,5 K], добавлен 12.07.2015Функции нескольких переменных. Локальные экстремумы функции двух переменных. Производная по направлению. Двойные и тройные интегралы. Вычисление объемов тел и площадей плоских фигур. Тройной интеграл, криволинейные интегралы первого и второго рода.
учебное пособие [511,2 K], добавлен 23.04.2012Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.
курсовая работа [1,1 M], добавлен 24.06.2015Алгоритм вычисления интегральной суммы для функции нескольких переменных f(x, y) по плоской кривой АВ. Ознакомление с понятием криволинейного интеграла первого рода. Представление формулы расчета криволинейного интеграла по пространственной кривой.
презентация [306,9 K], добавлен 17.09.2013