Числовые системы в начальном курсе математики и их дальнейшее развитие

Очерк зарождения и эволюции математических действий с числами, давших опору системе комплексных чисел и арифметике, как науке. Изучение особенностей геометрических выражений чисел. Обзор основных свойств дробей и операции над рациональными числами.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 05.10.2013
Размер файла 199,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

  • Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.

    контрольная работа [25,7 K], добавлен 29.05.2012

  • Систематичний виклад питання рішення задач із комплексними числами. Приклади рішення задач із комплексними числами в алгебраїчній формі, задач з геометричною інтерпретацією комплексних чисел. Дії над комплексними числами в тригонометричній формі.

    дипломная работа [1,1 M], добавлен 12.02.2011

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация [435,9 K], добавлен 16.12.2011

  • История комплексных чисел. Соглашение о комплексных числах. Геометрический смысл сложения и вычитания комплексных чисел. Геометрическая интерпретация комплексных чисел. Длина отрезка. Уравнение высших степеней, уравнение деления круга на пять частей.

    реферат [325,7 K], добавлен 25.10.2012

  • Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.

    презентация [2,2 M], добавлен 09.10.2011

  • Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.

    реферат [75,3 K], добавлен 22.02.2010

  • Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.

    курсовая работа [345,5 K], добавлен 22.06.2015

  • Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.

    лекция [464,6 K], добавлен 12.06.2011

  • Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.

    презентация [147,4 K], добавлен 17.09.2013

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Обозначение десятичной дроби в разное время. Использование десятичной системы мер в Древнем Китае. Запись дроби в одну строку числами в десятичной системе и правила действия с ними. Симон Стевин как фландрский учений, изобретатель десятичных дробей.

    презентация [169,0 K], добавлен 22.04.2010

  • Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа [892,8 K], добавлен 04.11.2013

  • Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.

    реферат [81,7 K], добавлен 13.01.2011

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Расчет значений комплексных чисел в алгебраической, тригонометрической и показательной формах. Определение расстояния между точками на комплексной плоскости. Решение уравнения на множестве комплексных чисел. Методы Крамера, обратной матрицы и Гаусса.

    контрольная работа [152,7 K], добавлен 12.11.2012

  • Вычисление комплексных чисел, модуля и аргумента, извлечение кубических корней. Нахождение синусов и косинусов в алгебраическом виде. Решение системы уравнений с помощью формул Крамера, вспомогательных определителей и средствами матричного исчисления.

    контрольная работа [444,2 K], добавлен 11.05.2013

  • Теоретические основы и предмет преподавания математики. Понятие и сущность индукции, дедукции и аналогии. Алгоритмы решения математических задач. Методика введения отрицательных, дробных и действительных чисел. Характеристика алгебраических выражений.

    курс лекций [728,4 K], добавлен 30.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.