Математические методы решения профессиональных задач

Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 17.04.2014
Размер файла 643,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.

    курсовая работа [508,1 K], добавлен 16.12.2015

  • Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.

    курс лекций [871,5 K], добавлен 11.02.2012

  • Формирование системы их пяти уравнений по заданным параметрам, ее решение методом Гаусса с выбором главного элемента. Интерполяционный многочлен Ньютона. Численное интегрирование. Решение нелинейных уравнений. Метод Рунге-Кутта четвертого порядка.

    контрольная работа [115,5 K], добавлен 27.05.2013

  • Решение систем линейных алгебраических уравнений методом исключения Гаусса. Табулирование и аппроксимация функций. Численное решение обыкновенных дифференциальных уравнений. Приближенное вычисление определенных интегралов. Решение оптимизационных задач.

    курсовая работа [1,6 M], добавлен 21.11.2013

  • Приближенные числа и действия над ними. Решение систем линейных алгебраических уравнений. Интерполирование и экстраполирование функций. Численное решение обыкновенных дифференциальных уравнений. Отделение корня уравнения. Поиск погрешности результата.

    контрольная работа [604,7 K], добавлен 18.10.2012

  • Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.

    лабораторная работа [380,9 K], добавлен 23.07.2012

  • Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.

    контрольная работа [92,7 K], добавлен 09.02.2012

  • Основные понятия теории погрешностей. Приближенное решение некоторых алгебраических трансцендентных уравнений. Приближенное решение систем линейных уравнений. Интерполирование функций и вычисление определенных интегралов, дифференциальных уравнений.

    методичка [899,4 K], добавлен 01.12.2009

  • Особенности решения алгебраических, нелинейных, трансцендентных уравнений. Метод половинного деления (дихотомия). Метод касательных (Ньютона), метод секущих. Численные методы вычисления определённых интегралов. Решение различными методами прямоугольников.

    курсовая работа [473,4 K], добавлен 15.02.2010

  • Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.

    курсовая работа [78,1 K], добавлен 12.06.2010

  • Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.

    курсовая работа [2,4 M], добавлен 14.04.2009

  • Методы численного интегрирования, основанные на том, что интеграл представляется в виде предела суммы площадей. Геометрическое представление метода Гаусса с двумя ординатами. Численные примеры и сравнение методов. Решение систем алгебраических уравнений.

    курсовая работа [413,4 K], добавлен 11.06.2014

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.

    курсовая работа [673,6 K], добавлен 27.04.2011

  • Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.

    курсовая работа [371,6 K], добавлен 14.01.2015

  • Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.

    контрольная работа [138,9 K], добавлен 08.01.2016

  • Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.

    учебное пособие [581,1 K], добавлен 08.02.2010

  • Модифицированный метод Ньютона. Общие замечания о сходимости процесса. Метод простой итерации. Приближенное решение систем нелинейных уравнений различными методами. Быстрота сходимости процесса. Существование корней системы и сходимость процесса Ньютона.

    дипломная работа [1,8 M], добавлен 14.09.2015

  • Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.

    реферат [1,6 M], добавлен 29.05.2009

  • Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.

    реферат [129,3 K], добавлен 15.08.2009

  • Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.

    презентация [185,0 K], добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.