Разрывные и непрерывные функции

Анализ функций, не имеющих производной: разрывные и непрерывные; понятия функций; непрерывные функции, не имеющие производной ни в одной точке (функции Ван-дер-Вардена); правая и левая производные и функции комплексного переменного (условие Коши-Римана).

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 27.05.2014
Размер файла 7,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.

    презентация [74,9 K], добавлен 17.09.2013

  • Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.

    контрольная работа [1,1 M], добавлен 12.11.2014

  • Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.

    презентация [696,5 K], добавлен 18.12.2014

  • Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.

    презентация [282,0 K], добавлен 14.11.2014

  • Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.

    контрольная работа [75,5 K], добавлен 07.09.2010

  • Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

    презентация [332,2 K], добавлен 21.09.2013

  • Определение функции Дирака. Задачи, приводящие к определению дельта-функции Дирака. Математическое определение дельта-функции. Применение функции Дирака. Разрывные функции и их производные. Нахождение производных разрывных функций.

    дипломная работа [231,6 K], добавлен 08.08.2007

  • Поиск производной сложной функции как равной производной функции по промежуточному аргументу, умноженной на его производную по независимой переменной. Теорема о связи бесконечно малых величин с пределами функций. Правило дифференцирования сложной функции.

    презентация [62,1 K], добавлен 21.09.2013

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья [122,0 K], добавлен 11.01.2004

  • Задача на нахождение модуля и аргумента заданных чисел, пример решения. Область дифференцируемости заданной функции, действительная часть производной. Правило для определения уравнения образа кривой. Нахождение действительной и мнимой части функции.

    методичка [693,0 K], добавлен 21.12.2011

  • Вычисление производной функции и ее критических точек. Определение знака производной на каждом из интервалов методом частных значений. Нахождение промежутков монотонности и экстремумов функции. Разложение подынтегральной функции на простейшие дроби.

    контрольная работа [134,7 K], добавлен 09.04.2015

  • Теорема о промежуточных значениях; точка отрезка, в которой функция обращается в ноль. Первая и вторая теоремы Вейерштрасса. Теорема Кантора, равномерно-непрерывная функция на промежутке. Функционалы непрерывные на компакте метрического пространства.

    задача [141,7 K], добавлен 28.12.2009

  • Схема полного исследования бесконечно больших и малых функций и построение их графика. Арифметические теоремы о пределе функции. Применение формулы Тейлора, Маклорена, Коши, Лопиталя-Бернулли. Теорема о производной вектор-функции постоянной длины.

    курс лекций [1,3 M], добавлен 14.12.2012

  • Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.

    презентация [246,0 K], добавлен 21.09.2013

  • Вычисление пределов гиперболических функций. Дифференцирование сложной функции. Разложение гиперболических функций по формуле Тейлора. Свойства неопределенного интеграла, интегрирование функций. Гиперболические функции комплексного переменного.

    дипломная работа [2,8 M], добавлен 11.01.2011

  • Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.

    курсовая работа [612,2 K], добавлен 01.06.2014

  • Рассмотрение понятия функции комплексного переменного; определение условий ее однозначности и многозначности. Установление функцией w=f(z) зависимости между точками плоскостей Z и W. Пример нахождения образа прямой при заданном отображении функции.

    презентация [64,9 K], добавлен 17.09.2013

  • Теоремы, позволяющие связать значение первой производной данной функции с характером ее монотонности. Понятие экстремума функции и его значение в исследовании поведения. Интервалы выпуклости и вогнутости функции, определение ее асимптот и схема изучения.

    реферат [255,0 K], добавлен 12.08.2009

  • Сущность конформного отображения 1 и 2 рода, аналитической функции в заданной области. Геометрический смысл аргумента и модуля производной функции. Величина коэффициента растяжения в точке. Сохранение функции отличной от нуля по величине и напряжению.

    презентация [83,3 K], добавлен 17.09.2013

  • Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.

    контрольная работа [233,2 K], добавлен 28.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.