Геометричне моделювання скалярних полів за методом усереднення адаптивних інваріантних шаблонів
Розробка напрямку методів геометричного моделювання та сканування в окремих точках скалярних полів. Шляхи усереднення результатів суперпозиції поверхонь, носіями яких є адаптивні інваріантні шаблони. Алгоритми реалізації методу для двовимірних задач.
Рубрика | Математика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 25.09.2015 |
Размер файла | 62,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Етапи розв'язування інженерних задач на ЕОМ. Цілі, засоби й методи моделювання. Створення математичної моделі. Побудова обчислювальної моделі. Реалізація методу обчислень. Розв’язання нелінійних рівнянь методом дихотомії. Алгоритм метода дихотомії.
контрольная работа [86,1 K], добавлен 06.08.2010Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.
реферат [244,3 K], добавлен 06.03.2011Аналіз математичних моделей технологічних параметрів та методів математичного моделювання. Задачі технологічної підготовки виробництва, що розв’язуються за допомогою математичного моделювання. Суть нечіткого методу групового врахування аргументів.
курсовая работа [638,9 K], добавлен 18.07.2010Загальні положення та визначення в теорії моделювання. Поняття і класифікація моделей, iмовірнісне моделювання. Статистичне моделювання, основні характеристики випадкових векторів. Описання програмного забезпечення для моделювання випадкових векторів.
дипломная работа [12,0 M], добавлен 25.08.2010Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.
курсовая работа [445,1 K], добавлен 03.04.2010Основна теорема про епіморфізм груп. Означення і властивості гомоморфного та ізоморфного відображення кілець, полів. Ізоморфізм циклічних груп. Поняття кільця, поля та їх основні властивості. Вправи на гомоморфізм та ізоморфізм груп, кілець і полів.
дипломная работа [859,1 K], добавлен 19.09.2012Історія розвитку математичної науки. Математичне моделювання і дослідження процесів і явищ за допомогою функцій, рівнянь та інших математичних об`єктів. Функції, їх основні властивості та графіки, множина раціональних чисел. Розв`язання типових задач.
книга [721,3 K], добавлен 01.03.2011Поняття математичного моделювання. Форми завдання моделей: інваріантна; алгоритмічна; графічна (схематична); аналітична. Метод ітерацій для розв’язку систем лінійних рівнянь, блок-схема. Інструкція до користування програмою, контрольні приклади.
курсовая работа [128,6 K], добавлен 24.04.2011Мережа Петрі як графічний і математичний засіб моделювання систем і процесів. Основні елементи мережі Петрі, правила спрацьовування переходу. Розмітка мережі Петрі із кратними дугами. Методика аналізу характеристик обслуговування запитів на послуги IМ.
контрольная работа [499,2 K], добавлен 06.03.2011Лінійні різницеві рівняння зі сталими коефіцієнтами. Теоретичне дослідження основних теорій інваріантних тороїдальних многовидів для зліченних систем лінійних і нелінійних різницевих рівнянь, що визначені на скінченновимірних та нескінченновимірних торах.
курсовая работа [1,3 M], добавлен 18.12.2013Поняття та методика визначення геометричного місця точки на площині. Правила та головні етапи процесу застосування даного математичного параметру до розв’язання задач на побудову. Вивчення прикладів задач на відшукання геометричного місця точки.
курсовая работа [1,4 M], добавлен 12.06.2011Метод Монте-Карло як метод моделювання випадкових величин з метою обчислення характеристик їхнього розподілу, оцінка похибки. Обчислення кратних інтегралів методом Монте-Карло, його принцип роботи. Приклади складання програми для роботи цим методом.
контрольная работа [41,6 K], добавлен 22.12.2010Використання методів розв’язування одновимірних оптимізаційних задач (метод дихотомії, золотого перерізу, Фібоначі) для визначення найменшого значення функції на відрізку. Задача мінімізації за допомогою методу Ньютона і методу найшвидшого спуску.
курсовая работа [739,5 K], добавлен 05.05.2011Важливість ролі власних векторів. Векторний простір і лінійний оператор в ортогональному проектуванні його на площину. Роль одновимірних інваріантних підпросторів. Вигляд матриці оператора в базисі, що складається з власних векторів цього оператора.
лекция [120,9 K], добавлен 19.06.2011Теореми про близькість розв'язку вихідної і усередненої системи на скінченому на нескінченому проміжках. Формулювання теорем про близькість розв'язків системи з повільними та швидкими змінними. Загальний прийом асимптотичного інтегрування системи.
курсовая работа [1005,3 K], добавлен 03.01.2014Огляд існуючих програмних комплексів. Особливості Finite Difference Time Domain Solution. Метод кінцевих різниць у часовій області. Граничні умови PEC симетрії і АВС. Проблема обчислення граничних полів. Прості умови поглинання. Вибір мови програмування.
курсовая работа [242,5 K], добавлен 19.05.2014Суть принципу Діріхле та найпростіші задачі, пов’язані з ним. Використання методів розв’язування математичних задач олімпіадного характеру при вивченні окремих тем шкільного курсу математики та на факультативних заняттях. Індукція в геометричних задачах.
дипломная работа [239,7 K], добавлен 15.03.2013Історія виникнення методу координат та його розвиток. Канонічні рівняння прямої. Основні векторні співвідношення і формули, які використовуються для розв'язування стереометричних задач. Розробка уроку з використанням координатно-векторного методу.
дипломная работа [2,5 M], добавлен 05.05.2011Ознайомлення із формулюваннями задач на побудову; застосування методів геометричного місця точок, центральної та осьової симетрії, паралельного переносу та повороту для їх розв'язання. Правила побудови шуканих фігур за допомогою циркуля і лінійки.
курсовая работа [361,7 K], добавлен 04.12.2011Методи зведення до канонічної форми задач лінійного програмування. Визначення шляхів знаходження екстремумів функцій графічним способом. Побудова початкового опорного плану методом "північно-західного" напрямку. Складання двоїстої системи матриць.
контрольная работа [262,0 K], добавлен 08.02.2010