Анализ регрессионных моделей
Математическое моделирование облака рассеяния. Исследование нелинейной корреляции. Составление матрицы планирования для четырех факторов. Нахождение коэффициентов регрессионного уравнения для данной матрицы. Определение значимости коэффициентов регрессии.
Рубрика | Математика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 06.10.2016 |
Размер файла | 347,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение математической модели технологического процесса напыления резисторов методами полного и дробного факторного эксперимента. Составление матрицы планирования. Рандомизация и проверка воспроизводимости. Оценка коэффициентов уравнения регрессии.
курсовая работа [694,5 K], добавлен 27.12.2021Определения оптимизации схемы планирования эксперимента при работе со швейной машиной. Расчёт коэффициентов уравнения регрессии и выделение значимых коэффициентов прочности ткани и растяжения между лапкой и иглой. Проверка гипотезы адекватности модели.
курсовая работа [1,2 M], добавлен 30.12.2014Описание способов нахождения коэффициентов регрессии модели полнофакторного эксперимента. Проверка многофакторных статистических гипотез на однородность ряда дисперсий, значимость и устойчивость математических коэффициентов множественной корреляции.
контрольная работа [1,2 M], добавлен 05.08.2010Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа [380,9 K], добавлен 05.04.2015Установление корреляционных связей между признаками многомерной выборки. Статистические параметры регрессионного анализа линейных и нелинейных выборок. Нахождение функций регрессии и проверка гипотезы о значимости выборочного коэффициента корреляции.
курсовая работа [304,0 K], добавлен 02.03.2017Исследование и подбор матрицы, удовлетворяющей условиям заданного уравнения. Разложение функции по формуле Тейлора в окрестности точки, расчет коэффициентов. Формирование уравнения гиперболы, имеющего заданные координаты фокусов. Расчет корней уравнения.
контрольная работа [113,2 K], добавлен 16.04.2016Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.
курсовая работа [232,7 K], добавлен 21.05.2015Понятие равных матриц, их суммы и произведения. Нахождение элемента матрицы, свойства ее произведения. Расположение вне главной диагонали элементов квадратной матрицы. Понятие обратной матрицы, матричные уравнения. Теорема о базисном миноре, ранг матрицы.
реферат [105,3 K], добавлен 21.08.2009Преобразование матрицы: умножение, приведение коэффициентов на главной диагонали матрицы к 1. Решение системы уравнений методом Крамера. Определители дополнительных матриц. Определение вероятности события (теория вероятности), математическая статистика.
контрольная работа [73,5 K], добавлен 21.10.2010Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.
контрольная работа [138,7 K], добавлен 05.07.2015Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.
лабораторная работа [264,1 K], добавлен 24.09.2014Понятие обратной матрицы. Пошаговое определение обратной матрицы: проверка существования квадратной и обратной матрицы, расчет определителя и алгебраического дополнения, получение единичной матрицы. Пример расчета обратной матрицы согласно алгоритма.
презентация [54,8 K], добавлен 21.09.2013Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.
презентация [617,0 K], добавлен 15.09.2014Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.
контрольная работа [64,5 K], добавлен 12.06.2011Методы планирования многофакторных экспериментов и преимущества их использования. Математическое планирование эксперимента и его основные направления. Пример применения метода дробного факторного эксперимента. Расчет коэффициентов уравнения регрессии.
курсовая работа [26,7 K], добавлен 13.05.2014Аппроксимация функции y = f(x) линейной функцией y = a1 + a2x. Логарифмирование заданных значений. Расчет коэффициентов корреляции и детерминированности. Построение графика зависимости и линии тренда. Числовые характеристики коэффициентов уравнения.
курсовая работа [954,7 K], добавлен 10.01.2015Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.
контрольная работа [95,0 K], добавлен 23.02.2012Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.
реферат [60,2 K], добавлен 17.06.2014Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.
курсовая работа [128,4 K], добавлен 18.11.2010Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.
контрольная работа [97,3 K], добавлен 24.05.2009