Обыкновенные дифференциальные уравнения
Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 06.04.2018 |
Размер файла | 99,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.
лекция [744,1 K], добавлен 24.11.2010Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.
презентация [77,7 K], добавлен 17.09.2013Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.
реферат [165,4 K], добавлен 24.08.2015Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.
контрольная работа [332,6 K], добавлен 14.12.2012Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.
контрольная работа [65,3 K], добавлен 15.12.2010Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа [810,5 K], добавлен 24.11.2013Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.
курсовая работа [120,8 K], добавлен 27.01.2014Определение наименьшего и наибольшего значения функции в ограниченной области и ее градиента; общего интеграла и общего и частного решения дифференциального уравнения. Исследование ряда на абсолютную сходимость с применением признаков Коши и Даламбера.
контрольная работа [107,2 K], добавлен 25.11.2013Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.
презентация [206,3 K], добавлен 17.09.2013Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.
презентация [272,9 K], добавлен 17.09.2013Понятие дифференциального уравнения. Нахождение первообразной для заданной функции. Нахождение решения дифференциального уравнения. Выделение определенной интегральной кривой. Понятие произвольных независимых постоянных. Уравнение в частных производных.
презентация [42,8 K], добавлен 17.09.2013Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Решение дифференциального уравнения, удовлетворяющие условию Липшица. Доказательство теоремы о существовании и единственности липшицевого решения. Принцип неподвижной точки (Шаудера). Пример неединственности (Winston). Доказательство по теореме Арцела.
реферат [109,4 K], добавлен 14.01.2010Дифференциальное уравнение первого порядка. Формулировка теоремы существования и единственности. Линейные уравнения с постоянными коэффициентами. Доказательство теоремы существования и единственности для одного уравнения. Теория устойчивости Ляпунова.
дипломная работа [1,0 M], добавлен 11.04.2009Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.
курсовая работа [183,1 K], добавлен 25.11.2011Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.
реферат [286,2 K], добавлен 06.08.2013Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа [81,9 K], добавлен 29.08.2010Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.
курсовая работа [212,6 K], добавлен 11.12.2013