Построение аналитических решений уравнений динамического и теплового пограничных слоев

Разработка методики получения приближенных аналитических решений исходных дифференциальных уравнений пограничных слоев, позволяющей получать решения практически с заданной степенью точности. Условия использования уравнений Прандтля и Польгаузена.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 31.08.2018
Размер файла 64,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.

    дипломная работа [1,2 M], добавлен 16.12.2008

  • Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

    дипломная работа [395,4 K], добавлен 10.06.2010

  • Существование и единственность решений дифференциальных уравнений. Геометрическая интерпретация решений. Линейные и нелинейные системы. Дифференциальные уравнения, моделирующие динамику популяций конкурирующих видов, их решения и фазовые портреты.

    дипломная работа [2,5 M], добавлен 27.06.2012

  • Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.

    контрольная работа [355,9 K], добавлен 28.02.2011

  • Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.

    курсовая работа [1,5 M], добавлен 15.06.2009

  • Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.

    курсовая работа [4,8 M], добавлен 29.04.2013

  • Система двух нелинейных обыкновенных дифференциальных уравнений, порождённая прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве. Аналитические свойства решения, наличие у системы четырёхпараметрических семейств решений.

    реферат [104,0 K], добавлен 28.06.2009

  • Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.

    контрольная работа [193,5 K], добавлен 28.03.2014

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа [810,5 K], добавлен 24.11.2013

  • Понятие и содержание равносильных уравнений, факторы их оценивания. Теорема о равносильности уравнений и ее доказательство. Причины и пути приобретения посторонних корней при разрешении данных уравнений. Нахождение и сравнение множества решений.

    презентация [16,0 K], добавлен 26.01.2011

  • Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.

    курсовая работа [791,0 K], добавлен 12.06.2010

  • Классификация гиперболических уравнений в общей классификации уравнений математической физики. Классификация уравнений: волновое, интегро-дифференциальные, уравнение теплопроводности. Методы решения в зависимости от видов гиперболических уравнений.

    контрольная работа [249,3 K], добавлен 19.01.2009

  • Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.

    дипломная работа [252,1 K], добавлен 15.12.2012

  • Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.

    дипломная работа [543,4 K], добавлен 29.01.2010

  • Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.

    курсовая работа [1,1 M], добавлен 10.04.2014

  • Рассмотрение теории дифференциальных уравнений. Выделение классов уравнений с систем, решения которых не имеют подвижных критических особых точек. Установление достаточности найденных условий путем сравнения с классическими системами типа Пенлеве.

    курсовая работа [137,0 K], добавлен 01.06.2015

  • Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.

    контрольная работа [92,7 K], добавлен 09.02.2012

  • Механическая интерпретация нормальной системы дифференциальных уравнений первого порядка. Свойства решений автономных систем. Предельное поведение траекторий, циклы. Функция последования и направления их исследования, оценка характерных параметров.

    курсовая работа [2,0 M], добавлен 24.09.2013

  • Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.

    курсовая работа [371,6 K], добавлен 14.01.2015

  • Описание жизни Италии и мира того времени, когда жил и творил Джироламо Кардано. Научная деятельность математика, обзор его математических трудов и поиск решения кубических уравнений в радикалах. Способы решений уравнений третьей и четвертой степеней.

    курсовая работа [419,7 K], добавлен 26.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.