Применение инверсии к решению геометрических задач
Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.11.2018 |
Размер файла | 1013,7 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные положения теории инверсии. Определение инверсии-симметрии относительно окружности. Неподвижные точки и окружность инверсии. Образы прямых и окружностей при обобщенной инверсии. Свойства обобщенной инверсии.
дипломная работа [348,1 K], добавлен 08.08.2007Применение метода инверсии при решении задач на построение в геометрии. Решение задачи Аполлония, лемма об антипараллельных прямых. Инвариантные окружности и сохранение углов при инверсии. Недостатки применения инверсии и работа инверсора Гарта.
дипломная работа [790,0 K], добавлен 30.09.2009Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.
курсовая работа [6,4 M], добавлен 13.08.2011Истоки, понятие аналитической геометрии. Метод координат на плоскости. Аффинная и Декартова система координат на плоскости, прямая и окружность. Аналитическое задание геометрических фигур. Применение аналитического метода к решению планиметрических задач.
курсовая работа [1,2 M], добавлен 12.05.2009Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.
дипломная работа [359,1 K], добавлен 24.06.2011Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.
курсовая работа [115,2 K], добавлен 10.01.2010Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.
курсовая работа [612,2 K], добавлен 01.06.2014Жерар Дезарг как известный французский математик, краткий очерк его жизни и деятельности. Сущность и содержание теоремы данного ученого, исторические основы ее создания и развития, особенности применения к решению задач, на евклидовой плоскости.
курсовая работа [151,3 K], добавлен 28.04.2011Понятие и математическая сущность квадратного корня, его назначение и методика вычисления. Теоремы, отображающие свойства квадратного коря, их обоснование и доказательство. Применение характеристик квадратных корней в решении геометрических задач.
реферат [132,1 K], добавлен 05.01.2010Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.
курсовая работа [262,5 K], добавлен 05.12.2012История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.
реферат [323,3 K], добавлен 07.09.2009Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".
дипломная работа [461,7 K], добавлен 08.08.2007Понятия целой и дробной частей действительного числа. Основные свойства функции и ее график. Применение свойств функции y = [x] при решении уравнений и геометрических задач. Описание реальных процессов непрерывными функциями. Решение задач на делимость.
курсовая работа [487,7 K], добавлен 29.05.2016Понятие о геометрическом преобразовании. Роль движений в геометрии. Применение аффинных преобразований при решении задач. Свойства аффинного преобразования. Транзитивность, рефлексивность и симметричность. Свойство перспективно-аффинного соответствия.
курсовая работа [547,9 K], добавлен 08.05.2011Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.
презентация [67,8 K], добавлен 23.12.2012Центр инверсии: обозначение, пример отображения. Понятие о плоскости симметрии. Порядок оси симметрии, элементарный угол поворота. Физические причины отсутствия осей порядка более 6. Пространственные решетки, инверсионная ось, элементы континуума.
презентация [173,7 K], добавлен 23.09.2013Общая характеристика факультативных занятий по математике, основные формы и методы проведения. Составление календарно-тематического плана факультативного курса по теме: "Применение аппарата математического анализа при решении задач с параметрами".
курсовая работа [662,1 K], добавлен 27.09.2013Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа [2,9 M], добавлен 11.07.2012Понятие текстовой задачи, ее роль в процессе обучения математике. Изучение основных способов решения текстовых задач, видов их анализа. Применение метода моделирования в обучении решению данных заданий. Описание опыта работы учителя начальных классов.
дипломная работа [69,6 K], добавлен 13.01.2015Рассмотрение видов арифметических задач, используемых в работе с дошкольниками. Этапы обучения решению арифметических задач. Изучение структуры, модели записи математического действия. Алгоритм решения задач. Роль данных занятий в общем развитии ребенка.
презентация [379,7 K], добавлен 19.06.2015