Геометрические приложения интеграла
Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 03.04.2019 |
Размер файла | 363,9 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.
презентация [159,1 K], добавлен 18.09.2013Интегралы, у которых один или оба предела интегрирования бесконечны, и у которых функция не ограничена на отрезке интегрирования. Понятие несобственных интегралов с бесконечными пределами интегрирования. Геометрический смысл несобственного интеграла.
презентация [104,1 K], добавлен 18.09.2013Свойства и характеристика интегралов с бесконечными пределами, признаки их сходимости. Расчет несобственных интегралов с бесконечными пределами. Определение несобственного интеграла от разрывной функции с аналитической и геометрической точки зрения.
реферат [144,5 K], добавлен 23.08.2009Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.
курс лекций [514,0 K], добавлен 31.05.2010Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.
контрольная работа [459,6 K], добавлен 16.04.2010Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.
методичка [327,4 K], добавлен 01.07.2009Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.
контрольная работа [842,6 K], добавлен 10.02.2017Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.
контрольная работа [111,8 K], добавлен 28.03.2014Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа [392,3 K], добавлен 14.12.2012Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация [174,5 K], добавлен 18.09.2013Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.
контрольная работа [251,2 K], добавлен 28.03.2014Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа [257,4 K], добавлен 23.02.2011Несобственные интегралы первого рода. Понятие абсолютно и условно сходящегося интеграла. Несобственные интегралы второго рода. Определение непрерывности функции и равномерной сходимости. Свойства несобственных интегралов, зависящих от параметра.
курсовая работа [240,1 K], добавлен 23.03.2011Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа [617,2 K], добавлен 08.07.2011Понятие двойного и тройного интеграла. Кратные интегралы в криволинейных координатах. Геометрические и физические приложения кратных интегралов. Криволинейные и поверхностные интегралы: понятия и способы вычисления. Геометрические и физические приложения.
дипломная работа [237,7 K], добавлен 27.02.2009Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.
контрольная работа [298,1 K], добавлен 28.03.2014Определение двойного интеграла, его геометрический смысл, свойства, область интегрирования. Условия существования двойного интеграла, его сведения к повторному; формула преобразования при замене переменных, геометрические и физические приложения.
презентация [1,5 M], добавлен 18.03.2014Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.
курсовая работа [232,5 K], добавлен 21.10.2011Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.
контрольная работа [166,9 K], добавлен 28.03.2014Нахождение статических моментов и центра тяжести кривой. Нахождение статических моментов и центра тяжести плоской фигуры. Первая и вторая теоремы Гульдина. Нахождение объема тела вращения плоской фигуры. Использование интеграла вместо обыкновенной суммы.
курсовая работа [275,3 K], добавлен 30.12.2011