Изучение и сравнение методов определения площади фигур

Понятие и история развития геометрии как области научного знания, ее современные достижения и дальнейшие перспективы. Измерение площадей и используемые единицы измерения. Методы определения данного показателя: взвешивания, подсчета клеток, формула Пика.

Рубрика Математика
Вид научная работа
Язык русский
Дата добавления 03.05.2019
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие начертательной геометрии, ее сущность и особенности, предмет и методы изучения, история зарождения и развития. Цели и задачи начертательной геометрии, ее структура и элементы. Прямая и варианты ее расположения, разновидности и методы определения

    лекция [451,3 K], добавлен 21.02.2009

  • Теоретические основы изучения площадей многоугольников. Вычисление площадей в древности. Различные подходы к изучению понятий "площадь", "многоугольник", "площадь многоугольника". Вычисление площади многоугольника по координатам его вершин. Формула Пика.

    дипломная работа [1,1 M], добавлен 24.02.2010

  • Площадь как величина, измеряющая размер площади, ее основные свойства и характеристики. Порядок определения площади треугольника, прямоугольника, четырехугольника, ромба, параллелограмма. Интегральное вычисление как методика определения площади.

    презентация [259,4 K], добавлен 13.12.2010

  • Меры площади, использовавшиеся в Древней Руси, их эволюция и современное состояние. Площадь многоугольника и прямоугольника. Определение и доказательство площади квадрата. Формула площади параллелограмма и треугольника, трапеции. Теорема Пифагора.

    реферат [389,2 K], добавлен 05.02.2011

  • Открытие формулы австрийским математиком Георгом Пиком в 1899 году. Доказательство Теоремы Пика, последовательность этапов для различных вариантов. Нахождение и расчет площадей четырехугольников в квадратных сантиметрах с использованием данной формулы.

    презентация [1,1 M], добавлен 14.04.2013

  • Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.

    презентация [1,8 M], добавлен 17.12.2010

  • Применение метода интервалов для решения неравенств. Формула перехода от простейшего логарифмического неравенства к двойному. Формула решения тригонометрического уравнения. Нахождение множества всех первообразных функции f(x) на области определения.

    контрольная работа [11,3 K], добавлен 03.06.2010

  • Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Основные этапы становления и развития данной науки, ее современные достижения и перспективы.

    презентация [1,9 M], добавлен 21.05.2012

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат [38,5 K], добавлен 16.01.2010

  • Обратимые матрицы над полем Zp. Формула для подсчета обратимых матриц порядка 2. Формула для подсчета обратимых матриц порядка 3. Общая формула подсчета обратимых матриц над полем Zp. Обратимые матрицы над Zn.

    дипломная работа [156,7 K], добавлен 08.08.2007

  • Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.

    презентация [159,1 K], добавлен 18.09.2013

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций [3,7 M], добавлен 23.04.2011

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа [2,0 M], добавлен 29.01.2010

  • Многошаговые методы и их построение. Вычисление интеграла. Формула для определения неизвестного значения сеточной функции. Запись разностной схемы четвертого порядка. Сущность методов Адамса, Милна, прогноза и коррекции. Оценка точности вычислений.

    презентация [162,9 K], добавлен 18.04.2013

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат [99,0 K], добавлен 05.09.2010

  • Основные понятия и определения кубических уравнений, способы их решения. Формула Кардано и тригонометрическая формула Виета, сущность метода перебора. Применение формулы сокращенного умножения разности кубов. Определение корня квадратного трехчлена.

    курсовая работа [478,4 K], добавлен 21.10.2013

  • Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.

    реферат [273,3 K], добавлен 29.06.2015

  • Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.

    презентация [527,9 K], добавлен 23.03.2011

  • Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.

    курсовая работа [28,9 K], добавлен 12.05.2009

  • Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.

    презентация [1,9 M], добавлен 06.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.