Основы медицины
Изучение сущности физиологии. Характеристика особенностей хромосомного набора. Определение значения нервной системы и кровообращения. Исследование моторной функции кишечника. Рассмотрение свойств сердечной мышцы. Ознакомление с понятием фронтита.
Рубрика | Медицина |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 23.12.2014 |
Размер файла | 131,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Предмет возрастной физиологии
Физиология - наука о функциях живого организма, как единого целого, о процессах, протекающих в нем, и механизмах его деятельности.
Возрастная физиология является самостоятельной ветвью физиологии. Она изучает особенности жизнедеятельности организма в различные периоды онтогенеза (греч. ontos--существо, особь; genesis--развитие, происхождение; индивидуальное развитие особи с момента зарождения в виде оплодотворенной яйцеклетки до смерти), функции органов, систем органов и организма в целом по мере его роста и развития, своеобразие этих функций на каждом возрастном этапе.
АНАТОМИЯ (от греч. anatome -- рассечение), наука о строении (преимущественно внутреннем) организма, раздел морфологии. Различают анатомию животных и анатомию растений. Самостоятельными являются анатомия человека (с ее основными разделами -- нормальной анатомией и патологической анатомией) и сравнительная анатомия животных. Основоположники анатомии животных и человека в античный период -- Аристотель, К. Гален, современной анатомии -- А. Везалий и У. Гарвей.
Значение возрастной физиологии для психологии и педагогики. Необходимость для педагогов и воспитателей знания возрастных особенностей функционирования организма ребенка неоднократно подчеркивалась учеными.
«Первое, что должен знать педагог,-- писала Н. К. Крупская,-- это строение и жизнь человеческого тела -- анатомию и физиологию человеческого тела и его развитие. Без этого нельзя быть хорошим педагогом, правильно растить ребенка»'.
Педагогическая эффективность воспитания и обучения находится в тесной зависимости от того, в какой мере учитываются анатомофизиологические особенности детей и подростков, периоды развития, для которых характерна наибольшая восприимчивость к воздействию тех или иных факторов, а также периоды повышенной чувствительности и пониженной сопротивляемости организма. Знание физиологии ребенка необходимо при физическом воспитании для определения эффективных методов обучения двигательным действиям на уроках физической культуры, для разработки методов формирования двигательных навыков, развития двигательных качеств, для определения содержания физкультурно-оздоровительной работы в школе.
Важное значение возрастная физиология имеет для понимания возрастных особенностей психологии ребенка. Объективное изучение функций мозга детей разного возраста позволяет выявить механизмы, определяющие специфику осуществления психических и психофизиологических функций на разных этапах развития детского организма, установить этапы, наиболее чувствительные к корригирующим педагогическим воздействиям, направленным на развитие таких важных для педагогического процесса функций, как восприятие информации, внимание, познавательные потребности.
2. Строение клетки
Подобно другим организмам, тело человека имеет клеточное строение Клетки находятся в межклеточном веществе, обеспечивающем им механическую прочность, питание и дыхание.
Клетки разнообразны по размерам, форме и функциям, но все они имеют некоторые общие черты строения. Основные части любой клетки -- цитоплазма и ядро.
В ядре расположены нитевидные образования--хромосомы. В ядре клетки тела человека (кроме половых клеток) содержится по 46 хромосом. Хромосомы являются носителями наследственных задатков организма, передающихся от родителей потомству.
Клетка покрыта мембраной, состоящей из нескольких слоев молекул и обеспечивающей избирательную проницаемость веществ. В цитоплазме--полужидкой внутренней среде клетки-- расположены мельчайшие структуры -- органоиды. органоидам клетки относятся: эндоплазматическая сеть, рибосомы, мито-хондрии, лизосомы, комплекс Гольджи, клеточный центр, мембрана Органоиды, подобно органам тела, выполняют определенные функции, обеспечивая жизнедеятельность клетки. Например, в органоиде, называемом рибосомой, образуются белки, в митохондриях вырабатываются вещества, служащие источником энергии.
Химический состав клетки, В состав клеток входят разные химические соединения. Одни из них -- неорганические -- встречаются и в неживой природе. Однако для клеток наиболее характерны органические соединения, молекулы которых имеют очень сложное строение.
Неорганические соединения клетки. Вода и соли относятся к неорганическим соединениям. Больше всего в клетках воды. Она необходима для всех жизненных процессов. Вода -- хороший растворитель. В водном растворе происходит химическое взаимодействие различных веществ. Находящиеся в растворенном состоянии питательные вещества из межклеточного вещества проникают в клетку через мембрану. Вода также способствует удалению из клетки веществ, которые образуются в результате протекающих в ней реакций.
Соли содержатся в цитоплазме и ядре клеток в малых концентрациях, но их роль в жизни клетки очень велика. Наиболее важны для процессов жизнедеятельности клетки соли К, Nа, Са, Мg и др.
Органические соединения клетки. Главная роль в осуществлении функций клетки принадлежит органическим соединениям. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты.
Белки -- это основные и наиболее сложные вещества любой живой клетки. По размерам белковая молекула в сотни и тысячи раз превосходит молекулы неорганических соединений. Без белков нет жизни. Некоторые белки ускоряют химические реакции, выполняя роль катализаторов. Такие белки называют ферментами.
Жиры и углеводы имеют менее сложное строение. Они являются строительным материалом клетки и служат источниками энергии для процессов жизнедеятельности организма.
Нуклеиновые кислоты образуются в клеточном ядре. Отсюда и произошло их название (лат. нуклеус--ядро). Входя в состав хромосом, нуклеиновые кислоты участвуют в хранении и передаче наследственных свойств клетки. Нуклеиновые кислоты обеспечивают образование белков.
Жизненные свойства клетки. Основное жизненное свойство клетки -- обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада. Вещества, поступившие в клетку, участвуют в процессах биосинтеза. Биосинтез -- это образование белков, жиров, углеводов и их соединений из более простых веществ. В процессе биосинтеза образуются вещества, свойственные определенным клеткам организма. Например, в клетках мышц синтезируются белки, обеспечивающие их сокращение.
Одновременно с биосинтезом в клетках происходит распад органических соединений. В результате распада образуются вещества более простого строения. Большая часть реакций распада идет с участием кислорода и освобождением энергии. Эта энергия расходуется на жизненные процессы, протекающие в клетке. Процессы биосинтеза и распада составляют обмен веществ, который сопровождается превращениями энергии.
Клеткам свойственны рост и размножение. Клетки тела человека размножаются делением пополам. Каждая из образовавшихся дочерних клеток растет и достигает размеров материнской. Новые клетки выполняют функцию материнской клетки. Продолжительность жизни клеток различна: от нескольких часов до десятков лет.
Живые клетки способны реагировать на физические и химические изменения окружающей их среды. Это свойство клеток называют возбудимостью. При этом из состояния покоя клетки переходят в рабочее состояние -- возбуждение. При возбуждении в клетках меняется скорость биосинтеза и распада веществ, потребление кислорода, температура. В возбужденном состоянии разные клетки выполняют свойственные им функции. Железистые клетки образуют и выделяют вещества, мышечные -- сокращаются, в нервных клетках возникает слабый электрический сигнал--нервный импульс, который может распространяться по клеточным мембранам.
3. Ген
ГЕН (от греч. genos -- род, происхождение) (наследственный фактор), единица наследственного материала, ответственная за формирование какого-либо элементарного признака. У высших организмов (эукариот) входит в состав хромосом. Совокупность всех генов организма составляет его генетическую конституцию -- генотип. Дискретные наследственные задатки были открыты в 1865 Г. Менделем; в 1909 В. Иогансен назвал их генами. Развитие молекулярной генетики привело к раскрытию химической природы генетического материала и представлению о гене как об участке молекулы ДНК (у некоторых вирусов РНК) со специфическим набором нуклеотидов, в линейной последовательности которых закодирована генетическая информация (см. Код генетический). Каждый ген ответствен за синтез определенного белка (фермента или др.). Контролируя их образование, гены управляют всеми химическими реакциями организма и определяют таким образом его признаки. Уникальное свойство генов -- сочетание их высокой устойчивости (неизменяемости в ряду поколений) со способностью к наследуемым изменениям -- мутациям, которые являются источником генетической изменчивости организмов и основой для действия естественного отбора.
ХРОМОСОМЫ (от хромо... и греч. soma -- тело), структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. Самоудвоение и закономерное распределение хромосом по дочерним клеткам при клеточном делении обеспечивает передачу наследственных свойств организма от поколения к поколению. В виде четких структур хромосомы различимы (при микроскопии) только во время деления клеток. Каждая хромосома имеет специфическую форму, размер. В клетках организмов с недифференцированным ядром (бактерии) имеется одиночная двухспиральная молекула ДНК, нередко называемая хромосомой.
ХРОМОСОМНЫЙ НАБОР, совокупность хромосом, заключенных в каждой клетке организма. В половых клетках диплоидных видов содержится гаплоидный (одинарный) хромосомный набор, в котором хромосома каждого типа встречается только один раз; в большинстве соматических клеток большинства видов -- диплоидный (двойной), в котором имеются всегда по две хромосомы каждого типа (парные, или гомологичные, хромосомы, происходящие одна от материнского организма, а другая от отцовского). Каждый вид организмов обладает характерным и постоянным хромосомным набором.
ХРОМОСОМНЫЕ ПЕРЕСТРОЙКИ (аберрации хромосомные, хромосомные мутации), структурные изменения хромосом, сопровождающиеся разрывом хромосом, за которым обычно следует соединение разорванных концов в новых сочетаниях. При хромосомных перестройках наблюдаются перераспределение или утеря части генного материала клеток. Типы хромосомных перестроек: делеции, дупликации, инверсии, транслокации.
ХРОМОСОМНЫЕ БОЛЕЗНИ, наследственные заболевания, обусловленные изменениями числа или конфигурации хромосом, чаще отсутствием в кариотипе одной хромосомы из какой-либо пары гомологов (моносомия) или наличием добавочной 3-й хромосомы к паре гомологов (напр., Дауна болезнь).
ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ, утверждает, что передача признаков и свойств организма от поколения к поколению (наследственность) осуществляется в основном через хромосомы, в которых расположены гены. Основы теории сформулированы и экспериментально обоснованы Т. Х. Морганом с сотрудниками в нач. 20 в. Существование в клетках наследственных факторов, не связанных с хромосомами (т. н. нехромосомная, или цитоплазматическая, наследственность), не противоречит хромосомной теории наследственности.
4. Мышцы
В организме человека по структуре и функции различают три типа мышц: мышцы скелета, мышцы cepдцa и гладкие мышцы внутренних органов и сосудов.
Активной частью опорно-двигательного аппарата являются скелетные мышцы.
Строение и классификация скелетных мышц. В организме человека насчитывается около 600 скелетных мышц. Форма и величина мышц зависят от выполняемой ими работы. Различают мышцы длинные, широкие, короткие и круговые. Длинные мышцы располагаются на конечностях, короткие--там, где размах движения мал (например, между позвонками). Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела (мышцы живота, спины, груди). Круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их. Такие мышцы называют сфинктерами.
По функции различают мышцы-сгибатели, разгибатели, приводящие и отводящие мышцы, а также мышцы, вращающие внутрь и наружу.
В процессе развития ребенка отдельные мышечные группы растут неравномерно. У грудных детей прежде всего развиваются мышцы живота, позднее--жевательные. К концу первого года жизни в связи с ползанием и началом ходьбы заметно растут мышцы спины и конечностей. За весь период роста ребенка масса мускулатуры увеличивается в 35 раз. В период полового созревания (12--16 лет) наряду с удлинением трубчатых костей удлиняются интенсивно и сухожилия мышц. Мышцы в это время *становятся длинными и тонкими, и подростки выглядят длинноногими и длиннорукими. В 15--18 лет продолжается дальнейший рост поперечника мышц. Развитие мышц продолжается до 25--30 лет.
Мышцы ребенка бледнее, нежнее и более эластичны, чем мышцы взрослого человека.
Основные функциональные свойства мышц. Мышца обладает тремя важнейшими свойствами: возбудимостью, проводимостью и ократимостью. Сократимость является специфическим свойством мышц. Возбуждение и сокращение мышц вызывается нервными импульсами, поступающими из нервных центров. Нервные импульсы, приходящие в область нервно-мышечного синапса (место контакта нерва и мышцы), приводят к выделению в постсинаптической мембране медиатора ацетилхолина, вызывающего потенциал действия. Под влиянием потенциала действия происходит высвобождение кальция, запускающего всю систему мышечного сокращения. В присутствии ионов Са под влиянием активного фермента миозина начинается расщепление аденозинтрифосфата (АТФ), являющегося основным источником энергии при мышечном сокращении. При передаче этой энергии на миофибриллы белковые нити начинают перемещаться относительно друг друга, в результате чего изменяется длина миофибрилл -- мышца сокращается.
Работа и сила мышц. Сокращаясь, мышцы выполняют работу. Работа мышц зависит от их силы. Мышца тем сильнее, чем больше в ней мышечных волокон, т. е. чем она толще. При пересчете на 1 см2 поперечного сечения мышца способна поднять груз до 10 кг.
Сила мышц зависит и от особенностей прикрепления их к костям. Кости вместе с прикрепляющимися к ним мышцами являются своеобразными рычагами, и мышца может развивать тем большую силу, чем дальше от точки опоры рычага и ближе к точке приложения силы тяжести она прикрепляется.
Человек может длительное время сохранять одну и ту же позу. Это статическое напряжение мышц. К статическим усилиям относятся стояние, держание головы в вертикальном положении и др. При статическом усилии мышца находится в состоянии напряжения. При некоторых упражнениях на кольцах, параллельных брусьях, при удержании поднятой штанги статическая работа требует одновременного сокращения почти всех мышечных волокон и, естественно, может быть очень непродолжительной из-за развивающегося утомления.
При динамической работе поочередно сокращаются различные группы мышц. Мышцы, производящие динамическую работу, быстро сокращаются и, работая с большим напряжением, скоро утомляются. Но обычно различные группы мышечных волокон при динамической работе сокращаются поочередно, что дает возможность мышце длительное время совершать работу. Нервная система, управляя работой мышц, приспосабливает их работу к текущим потребностям организма. Это дает им возможность работать экономно, с высоким коэффициентом полезного действия.
Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которых будет выполнена наибольшая величина работы, а утомление будет развиваться постепенно.
Работа мышц -- необходимое условие их существования. Длительная бездеятельность мышц ведет к их атрофии и потере ими работоспособности. Тренировка, т. е. систематическая, нечрезмерная работа мышц, способствует увеличению их объема, возрастанию силы и работоспособности, что важно для физического развития всего организма.
5. Значение нервной системы
Нервная система, основными функциями которой являются быстрая, точная передача информации и ее интеграция, обеспечивает взаимосвязь между органами и системами органов, функционирование организма как единого целого, его взаимодействие с внешней средой. Она регулирует и координирует деятельность различных органов, приспосабливает деятельность всего организма как целостной системы к изменяющимся условиям внешней и внутренней среды. С помощью нервной системы осуществляется прием и анализ разнообразных сигналов из окружающей среды и внутренних органов, формируются ответные реакции на эти сигналы. С деятельностью высших отделов нервной системы связано осуществление психических функций--осознание сигналов окружающего мира, их запоминание, принятие решения и организация целенаправленного поведения, абстрактное мышление и речь. Все эти сложные функции осуществляются огромным количеством нервных клеток--нейронов, объединенных в сложнейшие нейронные цепи и центры.
(Общий план строения нервной системы. Нервная система в функциональном и структурном отношении делится на периферическую и центральную нервную системы. Центральная нервная система -- совокупность связанных между собой нейронов. Она представлена головным и спинным мозгом. На разрезе головного и спинного мозга различают участки более темного цвета -- серое вещество (образовано телами нервных клеток) и участки белого цвета -- белое вещество мозга Оскопление нервных волокон, покрытых миелиновой оболочкой).
Периферическая часть нервной системы образована нервани--пучками нервных волокон, покрытых сверху общей соединительнотканной оболочкой. К периферической нервной системе относят и нервные узлы, или ганглии,-- скопления нервных клеток вне спинного и головного мозга.
Если в составе нерва собраны нервные волокна, передающие возбуждение из центральной нервной системы к иинервируемому органу (эффектору), то такие нервы называют центробежными или эфферентными. Есть нервы, которые образованы чувствительными нервными волокнами, по которым возбуждение распространяется в центральную нервную систему. Такие нервы называют центростремительными или афферентными. Большинство нервов являются смешанными, в их состав входят как центростремительные, так и центробежные нервные волокна.
Разделение нервной системы на центральную и периферическую во многом условно, так как функционирует нервная система как единое целое.
Понятие о нервном центре. Сложные функциональные объединения, «ансамбли» нейронов, расположенных в различных отделах центральной нервной системы, согласованно участвующие в регуляции функций и рефлекторных реакциях, называют нервными центрами. Функционирование центральной нервной системы осуществляется с помощью значительного числа таких центров.
Нервные центры обладают рядом характерных свойств, определяемых особенностями проведения возбуждения через синапсы центральной нервной системы и структурой нейронных цепей, образующих их.
Нейрон -- структурная единица нервной системы. Нейрон -- структурная и функциональная единица нервной системы, приспо< собленная для осуществления приема, обработки, хранения, передачи и интеграции информации. Эта сложноустроениая высокодифференцированная клетка состоит из тела, или сомы, и отростков разного типа--дендритов и аксонов.
В теле нейрона протекают сложные обменные процессы, синтезируются макромолекулы, поступающие в дендриты и аксоны, вырабатывается энергия, необходимая для нормального функционирования нервной клетки.
Тело имеет первостепенное значение для существования в целостности нейрона, при его разрушении перерождается (дегенерирует) вся клетка, включая аксон и дендриты.
Дендриты -- короткие, сильно ветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов. На дендритах имеются выросты (шипики). Ветвистость дендритов и наличие ши-пиков значительно увеличивают поверхность дендрита в сравнении с телом клетки и создают условия для размещения на дендритах большого числа контактов с другими нервными клетками. Дендриты одного нейрона контактируют с сотнями и тысячами других клеток. Строение дендритов определяет их специализированную роль в восприятии поступающих сигналов.
Аксон -- нитевидный отросток, начинающийся от тела клетки. По сравнению с диаметром длина его очень велика и может достигать 1,5 м. Конец аксона сильно ветвится, образует кисточку из конечных ветвей (окончания аксона, или терминали), образующих контакты с многими сотнями клеток.
Аксон является проводящей частью нейрона, он осуществляет проведение возбуждения от рецептора к нервным клеткам, от одной нервной клетки к другой и от нейрона к исполнительному органу (мышцы, железы). Аксон, покрытый оболочками, называют нервным волокном.
НЕЙРОГЛИЯ (от нейро... и греч. glia -- клей) (глия), клетки в головном и спинном мозге, заполняющие пространства между нейронами и мозговыми капиллярами. Служат для защиты и опоры нейронов, обеспечивают реактивные свойства нервной ткани (образование рубцов, участие в реакциях воспаления и др.).
6. Эпителий
ЭПИТЕЛИЙ (от эпи и греч. thele -- сосок), у животных и человека (эпителиальная ткань) -- пласт тесно расположенных клеток, покрывающий поверхность организма (напр., кожу), выстилающий все его полости и выполняющий главным образом защитную, выделительную и всасывающую функции. Из эпителия состоит также большинство желез. У растений -- клетки, выстилающие полости органов или их частей (напр., смоляные ходы у хвойных).
ЭПИТЕЛИИ (от эпи... и греч. 8'р.т; -- сосок; первоначальное значение -- слой, покрывающий сосок) --1) Э., или эпителиальная ткань, у животных и у человека -- один из типов ткани; выполняет гл. обр. защитную, выделительную и всасывающую функции. Э. подразделяют на две обширные подгруппы: покровные и железистые, первые образуют покровные пласты между организмом и внешней средой или выстилают стенки полостей и внутренних полых органов (напр., кишечника), вторые -- составляют основную часть желез. 2) Э. у растений -- общее название тонкостенных парен-химных выделительных клеток, выстилающих изнутри нек-рые органы (или их части) растений; выделяет различные продукты жизнедеятельности.
7. Соединительная ткань
СОЕДИНИТЕЛЬНАЯ ТКАНЬ -- ткань организма животных и человека, развивающаяся из мезенхимы, содержащая большое количество межклеточного вещества и выполняющая опорную, трофическую (питательную) и защитную функции. В состав межклеточного вещества С. т. входят коллагеновые и эластичные волокна и аморфное основное вещество
(состоящее из полисахаридов, гл. обр. из гиалуроновой к-ты). Клетки С. т.: фибробласты, гистиоциты (способные превращаться в защитные клетки -- макрофаги), тучные клетки, плазматич. клетки Унна, жировые, пигментные клетки, а также различные формы лейкоцитов. Различают собственно С. т., хрящ и кость. В собственно С. т., в свою очередь, различают простую волокнистую С. т., пронизывающую всё тело организма и образующую прослойки между отдельными его органами, и специальные виды С. т.: ретикулярную ткань, представляющую собой основу кроветворных органов, жировую ткань -- скопления жировых клеток; пигментную ткань -- скопления пигментных клеток. В простой волокнистой С. т. различают: неоформленную (волокна расположены без особого порядка) и оформленную С. т. (волокна закономерно ориентированы). В неоформленной С. т. различают, кроме того, рыхлую С. т. (напр., С. т., заполняющую промежутки между органами) и п л о т н у ю С. т. (напр., составляющую основу кожи). При участии соединительнотканных элементов осуществляется защитная воспалит, реакция организма (см. Фагоцитоз}. В случае ранений С. т. заполняет образующиеся дефекты, формируя рубец.
СОЕДИНИТЕЛЬНАЯ ТКАНЬ, состоит из клеток (главным образом фибробластов), волокон и основного вещества. Выполняет опорную, трофическую (питательную) и защитную функции. Различают собственно соединительную ткань (подкожная клетчатка, сухожилия, связки), костную и хрящевую, ретикулярную, жировую. К соединительной ткани относят также кровь и лимфу.
8. Онтогенез
ОНТОГЕНЕЗ (от греч. ov, род. п. -- сущее и i, -- происхождение) -- индивидуальное развитие животного или растительного организма от момента зарождения до конца его жизни (в отличие от история, развития организмов -- филогенеза). У животных и растений, размножающихся половым путём, зарождение нового организма происходит в процессе оплодотворения, в соответствии с этим оплодотворённая яйцеклетка, или зигота, считается началом О. У организмов, к-рым свойственно бесполое размножение, образование нового организма происходит путём деления тела материнского организма либо из специализированной клетки -- споры.
О. охватывает все процессы морфологич. и функ-цион. изменений организма на протяжении индивидуальной жизни и осуществляется путём количеств, а также качеств, преобразований, тесно связанных между собой. Количеств, сторону О. составляет рост, или увеличение живой массы организма, без существенного изменения его физиологич. и морфологич. свойств. Качеств, стороной О. является дифференцировка -- возникновение качественно новых структурных и функцией, особенностей.
О. каждого организма закономерно составляется из последоват. этапов, стадий, периодов развития, из к-рых у организмов, размножающихся половым путём, выделяют зародышевый, или эмбриональный, и послезародышевый, или постэмбриональный, периоды. Каждый этап, или стадия, представляет собой закономерный качеств, момент О., осуществляющийся только при наличии определённого комплекса необходимых условий. Продолжительность индивидуальной жизни у различных видов многоклеточных организмов колеблется от нескольких десятков минут (иек-рые бактерии) до нескольких сот (крокодилы, черепахи) или тысяч лет (дерево веллингтония). Видовые признаки организма сформировываются обычно к наступлению половой зрелости, а развитие индивидуальных особенностей длится до конца жизни. Индивидуальное развитие, в частности рост организмов, зависит от питания, темп-ры, освещения, химич. веществ и мн- др. факторов среды, что широко используется в практике возделывания или разведения полезных организмов и в борьбе с вредными организмами, Онто- и филогенез взаимообусловлены, являясь сторонами единого процесса развития органич. природы.
Важнейшие особенности О. животных организмов связаны с их гетеротрофным питанием (питание органич. веществами), а у организмов, имеющих нервную систему,-- с регулирующей ролью последней. Начальный, зародышевый, период О. заканчивается моментом выхода зародыша из яйцевых и зародышевых оболочек, а у живородящих форм -- рождением, и состоит из след. этапов: дробление яйца, обособление зародышевых листков и закладка отд. органов. Послезародышевое развитие животных организмов протекает или по типу прямого, без личиночных стадий (среди беспозвоночных животных -- у гребневиков, пиявок, нек-рых насекомых; среди позвоночных -- у большинства рыб, пресмыкающихся, птиц, млекопитающих), или по типу непрямого развития -- метаморфоза -- с одной или несколькими личиночными стадиями (моллюски, большинство членистоногих, нек-рые рыбы, земноводные). Личиночная стадия организма характеризуется свободным об' разом жизни и наличием спец. приспособлений, т. н. личиночных, или провизорных, органов (желточный мешок, купферов пузырёк у мальков рыб, жабры, хвост -- у личинок земноводных).
Важнейшей закономерностью О. многих растений является смена, или чередование, двух фаз: спорофита -- бесполого поколения, и г а м е т о-ф и т а -- полового поколения. Высшие растения (особенно цветковые) характеризуются морфологич. упрощением гаметофита и усиленным развитием фазы спорофита. В О. высших растений весьма важную роль играет находящийся на вершине осевых органов конус нарастания. Большим вкладом в учение об О. явилась теория стадийного развития (см. Стадийного развития теория)
9. Значение опорно-двигательного аппарата
К опорно-двигательному аппарату относятся скелет и мышцы, объединенные в единую костно-мышечную систему. Функциональное значение этой системы заложено в самом ее названии. Скелет и мышцы являются опорными структурами организма, ограничивающими полости, в которых расположены внутренние органы. С помощью опорно-двигательного аппарата осуществляется одна из важнейших функций организма--движение. Движение--основное внешнее проявление деятельности организма и вместе с тем необходимый фактор его развития. В условиях ограничения движений резко замедляется как физическое, так и психическое развитие. Показано, что если новорожденных животных лишить возможности свободного передвижения, то уже на первом месяце их масса становится в 3 раза меньше, чем у особей того же помета. Двигательная активность, в особенности движения рук, является одним из необходимых условий нормального развития мозга, его речевой функции и мышления. Двигательная активность играет также важнейшую роль в обменных процессах, положительно влияет на работу всех внутренних органов.
Знание возрастных особенностей органов движения и условий, способствующих их нормальному развитию, необходимо для разработки эффективных средств и методов физического воспитания, трудового обучения, организации режима дня.
Скелет -- структурная основа тела. Скелет образует структурную основу тела и в значительной мере определяет его форму и размер. Скелет состоит из костей, у взрослого человека их более 200. Роль костей не ограничивается функцией опоры. Входящие в состав их тканей минеральные соли -- одни из важнейших элементов обменных процессов. В костях находится также один из основных органов кроветворения -- костный мозг.
Каждая кость -- сложный орган, состоящий из костной ткани, надкостницы, костного мозга, кровеносных и лимфатических сосудов и нервов.
Кость, за исключением соединяющихся поверхностей, покрыта надкостницей. Это тонкая соединительнотканная оболочка, которая богата нервами и сосудами, проникающими из нее в кость через особые отверстия. К надкостнице прикреплены связки и мышцы. Внутренний слой надкостницы состоит из клеток, которые растут и размножаются, обеспечивая рост кости в толщину, а при переломах--образование костной мозоли.
Строение костей обеспечивает их основное свойство--механическую прочность. Свойства кости обеспечиваются также их химическим составом. Кости содержат 60% минеральных веществ, 30% органических, 10% составляет вода.
Минеральные вещества кости представлены солями кальция, фосфора, магния, обнаружены многие микроэлементы (алюминий, фтор, марганец, свинец, стронций, уран, кобальт, железо, молибден и др.). У взрослого человека в скелете сосредоточено около 1200 г кальция, 530 г фосфора, 11 г магния; 99% всего кальция, имеющегося в теле человека, содержится в костях. Среди органических веществ--волокнистый белок--коллаген, углеводы, ферменты. Минеральные вещества, в особенности кальций, делают кости твердыми, органические вещества придают им упругость. У детей в костной ткани преобладают органические вещества;
их скелет гибкий, эластичный, в связи с чем легко деформируется, искривляется при длительной и тяжелой нагрузке и неправильных положениях тела. С возрастом содержание минеральных веществ в костях увеличивается, отчего кости становятся менее эластичными и более хрупкими.
Органические и минеральные вещества делают кость прочной, твердой и упругой и в сочетании с особенностями строения костной ткани, расположением ее пластин, ориентированных в направлении сил давления и растяжения, придают кости свойства, превосходящие многие строительные материалы и металлы. Так, кость в 30 раз тверже кирпича и в 2,5 раза тверже гранита. Кость прочнее дуба. По прочности она в 9 раз превосходит свинец и почти так же прочна, как чугун.
Бедренная кость человека в вертикальном положении выдерживает давление груза до 1,5 т, а большеберцовая кость--до 1,8 т.
Рост и развитие костей. Молодые кости растут в длину за счет хрящей, расположенных между их концами и телом. К моменту окончания роста костей хрящи замещаются костной тканью. За период роста в костях ребенка количество воды сокращается, а количество минеральных веществ увеличивается. Содержание органических веществ при этом уменьшается.
Развитие скелета у мужчин заканчивается к 20--24 годам. При этом прекращается рост костей в длину, а их хрящевые части заменяются костной тканью. Развитие скелета у женщин заканчивается на 2--3 года раньше.
Строение и функция суставов. Различают неподвижные, малоподвижные и подвижные соединения костей, или суставы.
Неподвижное соединение костей происходит путем их срастания. Движения при этом крайне ограниченны или вовсе отсутствуют. Неподвижность костей мозгового черепа, например, достигается тем, что многочисленные выступы одной кости входят в соответствующее углубление другой. Такое соединение костей получило название шва.
Небольшая подвижность достигается упругими хрящевыми прокладками между костями. Такие прокладки находятся между отдельными позвонками. При сокращении мышц эти прокладки сжимаются и позвонки сближаются. При ходьбе, беге, прыжках хрящ действует как амортизатор, смягчая резкие толчки и предохраняя тело от сотрясения.
Подвижные соединения костей встречаются чаще, они обеспечиваются истинными суставами. Сочленяющиеся концы костей покрыты гиалиновым хрящом толщиной 0,2--0,6 мм. Этот хрящ эластичен, имеет гладкую блестящую поверхность, что значительно уменьшает трение между костями и тем самым облегчает их движение. Область сочленения костей окружена суставной сумкой (капсулой) из очень плотной соединительной ткани.
10. Позвоночный столб
Основными частями скелета являются скелет туловища, состоящий из позвоночного столба и грудной клетки, скелет верхних и нижних конечностей и скелет головы -- череп.
Позвоночный столб человека является осевой частью, стержнем скелета, верхним концом соединяющегося с черепом, нижним--с костями таза. Позвоночный столб занимает 40% длины тела. В нем различают следующие отделы: шейный, состоящий из 7 позвонков, грудной--из 12 позвонков, поясничный--из 5 позвонков, крестцовый -- из 5 позвонков и копчиковый -- из 4--5 позвонков. У взрослого человека крестцовые позвонки срастаются в одну кость--крестец, а копчиковые--в копчик. Позвоночные отверстия всех позвонков образуют позвоночный канал, в котором помещается спинной мозг. К отросткам позвонков прикрепляются мышцы.
Между позвонками расположены межпозвоночные диски из волокнистого хряща; они способствуют подвижности позвоночного столба. С возрастом высота дисков меняется.
Рост позвоночного столба наиболее интенсивно происходит в первые 2 года жизни. В течение первых полутора лет жизни рост различных отделов позвоночника относительно равномерен. Начиная с 1,5 до 3 лет замедляется рост шейных и верхнегрудных позвонков и быстрее начинает увеличиваться рост поясничного отдела, что характерно для всего периода роста позвоночника.
Усиление темпов роста позвоночника отмечается в 7--9 лет и в период полового созревания, после завершения которого прибавка в росте позвоночника очень невелика.
Структура тканей позвоночного столба существенно изменяется с возрастом. Окостенение, начинающееся еще во внутриутробном периоде, продолжается в течение всего детского возраста. До 14 лет окостеневают только средние части позвонков. В период полового созревания появляются новые точки окостенения в виде пластинок, которые сливаются с телом позвонка после 20 лет. Процесс окостенения отдельных позвонков завершается с окончанием ростовых процессов--к 21--23 годам. Позднее окостенение позвоночника обусловливает его подвижность и гибкость в детском возрасте. Кривизна позвоночника, являющаяся его характерной особенностью, формируется в процессе индивидуального развития ребенка. В самом раннем возрасте, когда ребенок начинает держать головку, появляется шейный изгиб, направленный выпуклостью вперед (лордоз). К 6 месяцам, когда ребенок начинает сидеть, образуется грудной изгиб с выпуклостью назад (кифоз). Когда ребенок начинает стоять и ходить, образуется поясничный лордоз. С образованием поясничного лордоза центр тяжести перемещается кзади, препятствуя падению тела при вертикальном положении.
Изгибы позвоночного столба составляют специфическую особенность человека и возникли в связи с вертикальным положением тела. Благодаря изгибам позвоночный столб пружинит. Удары и толчки при ходьбе, беге, прыжках ослабляются и затухают, что предохраняет мозг от сотрясений. Нарушения кривизны позвоночного столба, которые могут возникнуть в результате неправильной посадки ребенка за столом и партой, приводят к не; благоприятным последствиям в его здоровье.
Грудная клетка. Грудная клетка образует костную основу грудной полости. Она защищает сердце, легкие, печень и служит местом прикрепления дыхательных мышц и мышц верхних конечностей. Грудная клетка состоит из грудины, 12 пар ребер, соединенных сзади с позвоночным столбом.
Форма грудной клетки существенно изменяется с возрастом.
В грудном возрасте она как бы сжата с боков, ее переднезадний размер больше поперечного (коническая форма). У взрослого же преобладает поперечный размер.
На протяжении первого года жизни постепенно меняется форма грудной клетки, что связано с изменением положения тела и центра тяжести. Уменьшается угол ребер по отношению к позвоночнику. Соответственно изменению грудной клетки увеличивается объем легких. Изменение положения ребер способствует увеличению движений грудной клетки и позволяет эффективнее осуществлять дыхательные движения,
Дальнейшие изменения строения грудной клетки с возрастом происходят в том же направлении. Коническая форма грудной клетки сохраняется до 3--4 лет. К 6 годам устанавливаются свойственные взрослому относительные величины верхней и нижней части грудной клетки, резко увеличивается наклон ребер. К 12--13 годам грудная клетка приобретает ту же форму, что у взрослого.
На форму грудной клетки влияют физические упражнения и посадка. Под влиянием физических упражнений она может стать шире и объемистее. При длительной неправильной посадке, когда ребенок опирается грудью о край стола или крышку парты, может произойти деформация грудной клетки, что нарушает развитие сердца, крупных сосудов и легких.
Скелет конечностей. Скелет верхних конечностей состоит из пояса верхних конечностей и костей свободных конечностей. Пояс верхних конечностей образуют лопатки и ключицы.
Скелет свободной верхней конечности образован плечевой костью, подвижно соединенной с лопаткой, предплечьем, состоящим из лучевой и локтевой костей, и костями кисти. В состав кисти входят мелкие кости запястья, пять длинных костей пясти и кости пальцев кисти.
Ключицы относятся к стабильным костям, мало изменяющимся в онтогенезе. Лопатки окостеневают в постнатальном онтогенезе, процесс этот завершается после 16--18 лет. Окостенение свободных конечностей начинается с раннего детства и заканчивается в 18--20 лет, а иногда и позже.
Кости запястья у новорожденного только намечаются и становятся ясно видимыми к 7 годам. С 10--12 лет появляются половые отличия процессов окостенения. У мальчиков они опаздывают на 1 год. Окостенение фаланг пальцев завершается к 11 годам, а запястья в 12 лет. Эти данные следует учитывать в педагогическом процессе.
Окончательно не сформированная кисть быстро утомляется, детям младших классов не удается беглое письмо. Вместе с тем умеренные и доступные движения способствуют развитию кисти. Игра на музыкальных инструментах с раннего возраста задерживает процесс окостенения фаланг пальцев, что приводит к их удлинению («пальцы музыканта»).
Скелет нижних конечностей состоит из тазового пояса и костей свободных нижних конечностей. Тазовый пояс образует крестец и неподвижно соединенные с ним две тазовые кости. У новорожденного каждая тазовая кость состоит из трех костей (подвздошной, лобковой и седалищной), сращение которых начинается с 5--6 лет и завершается к 17--18 годам.
В подростковом возрасте происходит постепенное срастание крестцовых позвонков в единую кость -- крестец. У девочек при резких прыжках с большой высоты, при ношении обуви на высоких каблуках несросшиеся кости таза могут сместиться, что приведет к неправильному сращению их и, как следствие, сужению выхода из полости малого таза, что может в дальнейшем весьма затруднить прохождение плода при родах.
После 9 лет отмечаются различия в форме таза у мальчиков и девочек: у мальчиков таз более высокий и узкий, чем у девочек.
Тазовые кости имеют круглые впадины, куда входят головки бедренных костей.
Скелет свободной нижней конечности состоит из бедренной кости, двух костей голени -- большеберцовой и малоберцовой и костей стопы. Стопа образована костями предплюсны, плюсны и фаланг пальцев стопы.
Стопа человека образует свод, который опирается на пяточную кость и на передние концы костей плюсны. Различают продольный и поперечный своды стопы. Продольный, пружинящий свод стопы присущ только человеку, и его формирование связано с прямохождением. По своду стопы равномерно распределяется тяжесть тела, что имеет большое значение при переносе тяжестей. Свод действует как пружина, смягчая толчки тела при ходьбе.
У новорожденного ребенка сводчатость стопы не выражена, она формируется позже, когда ребенок начинает ходить.
Сводчатое расположение костей стопы поддерживается большим количеством крепких суставных связок. При длительном стоянии и сидении, переносе больших тяжестей, при ношении узкой обуви связки растягиваются, что приводит к уплощению стопы.
Череп. Череп--скелет головы. Различают два отдела черепа: мозговой, или черепную коробку, и лицевой, или кости лица. Мозговой отдел черепа является вместилищем головного мозга.
У новорожденного черепные кости соединены друг с другом мягкой соединительнотканной перепонкой. Эта перепонка особенно велика там, где сходятся несколько костей. Это--роднички. Роднички располагаются по углам обеих теменных костей; различают непарные лобный и затылочный и парные передние боковые и задние боковые роднички. Благодаря родничкам кости крыши черепа могут заходить своими краями друг на друга. Это имеет большое значение при прохождении головки плода по родовым путям. Малые роднички зарастают к 2--3 месяцам, а наибольший--лобный -- легко прощупывается и зарастает лишь к полутора годам.
У детей в раннем возрасте мозговая часть черепа более развита, чем лицевая. Наиболее сильно кости черепа растут в течение первого года жизни. С возрастом, особенно с 13--14 лет, лицевой отдел растет более энергично и начинает преобладать над мозговым. У новорожденного объем мозгового отдела черепа в 6 раз больше лицевого, а у взрослого в 2--2,5 раза.
Рост головы наблюдается на всех этапах развития ребенка, наиболее интенсивно он происходит в период полового созревания. С возрастом существенно изменяется соотношение между высотой головы и ростом. Это соотношение используется как один из нормативных показателей, характеризующих возраст ребенка.
11. Внутренняя среда организма
Клетки, ткани и органы организма могут существовать и нормально функционировать только в определенных условиях, которые создаются внутренней средой, к которой они приспособились в ходе эволюционного развития. Внутренняя среда обеспечивает возможность поступления в клетки. необходимых для их жизнедеятельности веществ и вывод продуктов обмена. Благодаря поддержанию определенного состава внутренней среды клетки функционируют в постоянных условиях. Сохранение постоянства внутренней среды называется гомеостазом.
В организме на относительно постоянном уровне поддерживаются кровяное давление, температура тела, осмотическое давление крови и тканевой жидкости, содержание в них белков и сахара, ионов натрия, калия, кальция, хлора и др.
Гомеостаз поддерживается комплексом динамических процессов. Значительная роль в поддержании гомеостаза принадлежит регуляторным системам -- нервной и эндокринной. Сохранение постоянства внутренней среды возможно только при функционировании системы дыхания, сердечно-сосудистой системы, органов пищеварения и выделения.
Внутренней средой организма человека являются кровь, лимфа и тканевая жидкость.
12. Значение крови
Поступающие в организм питательные вещества и кислород крови разносятся по организму и из крови поступают в лимфу и тканевую жидкость. В обратном порядке осуществляется выделение продуктов обмена. Находясь в непрерывном движении, кровь обеспечивает постоянство состава тканевой жидкости, непосредственно соприкасающейся с клетками. Следовательно, кровь выполняет важнейшую роль в обеспечении постоянства внутренней среды. Поглощение кровью кислорода и вынос углекислого газа называют дыхательной функцией крови. В легких кровь обогащается кислородом и отдает углекислый газ, который затем удаляется в окружающую среду с выдыхаемым воздухом. Протекая через капилляры различных тканей и органов, кровь отдает им кислород и поглощает углекислый газ.
Кровь осуществляет транспортную функцию,-- перенос питательных веществ из органов пищеварения в клетки и ткани организма и вынос продуктов распада. В процессе обмена веществ в клетках постоянно образуются вещества, которые уже не могут быть использованы для нужд организма, а часто оказываются и вредными для него. Из клеток эти вещества поступают в тканевую жидкость, а затем в кровь. Кровью эти продукты доставляются к почкам, потовым железам, легким и выводятся из организма.
Кровь выполняет защитную функцию. В организм могут поступать ядовитые вещества или микробы. Они подвергаются разрушению и уничтожению некоторыми клетками крови или склеиваются и обезвреживаются особыми защитными веществами.
Кровь участвует в гуморальной регуляции деятельности организма, выполняет терморегуляторнию функцию, охлаждая энергоемкие органы и согревая органы, теряющие тепло.
Количество и состав крови. Количество крови в организме человека меняется с возрастом. У детей крови относительно массы тела больше, чем у взрослых. У новорожденных кровь составляет 14,7% массы, у детей одного года--10,9%, у детей 14 лет--7%. Это связано с более интенсивным протеканием обмена веществ в детском организме. У взрослых людей массой 60--70 кг общее количество крови 5--5,5 л.
Обычно не вся кровь циркулирует в кровеносных сосудах. Некоторая ее часть находится в кровяных депо. Роль депо крови выполняют сосуды селезенки, кожи, печени и легких. При усиленной мышечной работе, при потере больших количеств крови при ранениях и хирургических операциях, некоторых заболеваниях запасы крови из депо поступают в общий кровоток. Депо крови участвуют в поддержании постоянного количества циркулирующей крови.
Плазма крови. Артериальная кровь представляет собой красную непрозрачную жидкость. Если принять меры, предупреждающие свертывание крови, то при отстаивании, а еще лучше при центрифугировании она отчетливо разделяется на два слоя. Верхний слой--слегка желтоватая жидкость--плазма, осадок темно-красного цвета. На границе между осадком и плазмой имеется тонкая светлая пленка. Осадок вместе с пленкой образован форменными элементами крови--эритроцитами, лейкоцитами и кровяными пластинками--тромбоцитами. Все клетки крови живут определенное время, после чего разрушаются. В кроветворных органах (костном мозге, лимфатических узлах, селезенке) происходит непрерывное образование новых клеток крови.
У здоровых людей соотношение между плазмой и форменными элементами колеблется незначительно (55% плазмы и 45% форменных элементов). У детей раннего возраста процентное содержание форменных элементов несколько выше.
Плазма состоит на 90--92% из воды, 8--10% составляют органические и неорганические соединения. Концентрация растворенных в жидкости веществ создает определенное осмотическое давление. Поскольку концентрация органических веществ (белки, углеводы, мочевина, жиры, гормоны и др.) невелика, осмотическое давление определяется в основном неорганическими солями.
Постоянство осмотического давления крови имеет важное значение для жизнедеятельности клеток организма. Мембраны многих клеток, в том числе и клеток крови, обладают избирательной проницаемостью. Поэтому при помещении клеток крови в растворы с различной концентрацией солей, а следовательно, и с разным осмотическим давлением в клетках крови могут произойти серьезные изменения.
Растворы, которые по своему качественному составу и концентрации солей соответствуют составу плазмы, называют физиологическими растворами. Они изотоничны. Такие жидкости используют как заменители крови при кровопотерях.
Осмотическое давление в организме поддерживается на постоянном уровне за счет регулирования поступления воды и минеральных солей и их выделения почками и потовыми железами. В плазме поддерживается также постоянство реакции, которая обозначается как рН крови; она определяется концентрацией ионов водорода. Реакция крови слабощелочная (рН равняется 7,36). Поддержание постоянства рН достигается наличием в крови буферных систем, которые нейтрализуют избыточно поступившие в организм кислоты и щелочи. К ним относятся белки крови, бикарбонаты, соли фосфорной кислоты. В постоянстве реакции крови важная роль принадлежит также легким, через которые удаляется углекислый газ, и органам отделения, выводящим избыток веществ, имеющих кислую или щелочную реакцию.
13. Форменные элементы крови
Форменные элементы, определяющие возможность осуществления важнейшей функции крови -- дыхательной,--эритроциты, (красные кровяные клетки). Количество эритроцитов в крови взрослого человека 4,5--5,0 млн. в 1 мм3 крови.
Если расположить все эритроциты человека в один ряд, то получилась бы цепочка длиной около 150 тыс. км; если положить эритроциты один на другой, то образовалась бы колонна высотой, превосходящей длину экватора земного шара (50-- 60 тыс. км). Количество эритроцитов не строго постоянно. Оно может значительно увеличиваться при недостатке кислорода на больших высотах, при мышечной работе. У людей, живущих в высокогорных районах, эритроцитов примерно на 30% больше, чем у жителей морского побережья. При переезде из низменных районов в высокогорные количество эритроцитов в крови увеличивается. Когда же потребность в кислороде уменьшается, количество эритроцитов в крови снижается.
Осуществление эритроцитами дыхательной функции связано с наличием в них особого вещества -- гемоглобина, являющегося переносчиком кислорода. В состав гемоглобина входит двухвалентное железо, которое, соединяясь с кислородом, образует непрочное соединение оксигемоглобин. В капиллярах такой оксигемоглобин легко распадается на гемоглобин и кислород, который поглощается клетками. Там же в капиллярах тканей гемоглобин соединяется с углекислым газом. Это соединение распадается в легких, углекислый газ выделяется в атмосферный воздух.
...Подобные документы
Общая характеристика системы кровообращения в организме человека. Рассмотрение строения сердца. Изучение теории мышечного сокращения "скользящих нитей". Описание правил сопряжения сердечной мышцы, фаз сердечного цикла, особенностей функций миокарда.
презентация [4,1 M], добавлен 25.11.2015Изучение связей между электрофизиологическими и клинико-анатомическими процессами живого организма. Электрокардиография как диагностический метод оценки состояния сердечной мышцы. Регистрация и анализ электрическй активности центральной нервной системы.
презентация [225,3 K], добавлен 08.05.2014Изучение сущности, основных причин и диагностики дисбиоза кишечника - изменения количественного и качественного состава, а также свойств кишечной микрофлоры. Коррекция морфокинетической функции и физиологической активности желудочно-кишечного тракта.
контрольная работа [25,6 K], добавлен 22.10.2010Регуляция кровообращения в миокарде и в легких. Схема перестроек кровотока при физической нагрузке. Обмен жидкостью между кровеносным лимфатическим капилляром и межклеточным пространством. Определение давления в терминальных лимфатических капиллярах.
лекция [1,2 M], добавлен 12.01.2014Ознакомление с морфологическими особенностями мозгового кровообращения. Анализ чувствительности нервной ткани. Изучение функциональных характеристик мозгового кровообращения. Описание системы суммарного и локального мозгового кровотока человека.
реферат [96,9 K], добавлен 19.08.2015Исследование гемодинамических показателей у педагогов разных возрастных групп. Строение сердечно-сосудистой системы. Свойства сердечной мышцы. Расчет индекса Робинсона, коэффициента выносливости и экономичности кровообращения, показатель Кремптома.
курсовая работа [42,4 K], добавлен 30.01.2014Основные вопросы физиологии центральной нервной системы и высшей нервной деятельности в научном плане. Роль механизмов работы мозга, лежащих в основе поведения. Значение знаний по анатомии и физиологии ЦНС для практических психологов, врачей и педагогов.
реферат [20,9 K], добавлен 05.10.2010Ознакомление с понятием о стомах. Анализ возрастного состава стомированных пациентов в Российской Федерации. Рассмотрение особенностей послеоперационного ухода за стомой. Исследование и характеристика специфических особенностей питания при стоме.
презентация [13,3 M], добавлен 01.04.2019Изучение сведений о развитии и исследованиях Физиологического Института имени академика И.П. Павлова, отдела сравнительной физиологии и патологии, организованного в Институте экспериментальной медицины АМН СССР академиком Дмитрием Андреевичем Бирюковым.
реферат [28,3 K], добавлен 05.10.2010Изучение строения и особенностей работы сердца, аорты, артерии, артериолы, капилляров, венулы и вены как отделов системы кровообращения. Рассмотрение признаков возникновения тромбозов (локальное проявление патологии всей сосудистой системы) и эмболии.
реферат [23,3 K], добавлен 28.03.2010Сущность генеалогического метода изучения родословных в семьях, в которых есть наследственные заболевания. Рассмотрение сходства однояйцевых и разнояйцевых близнецов. Изучение хромосомного набора человека. Анализ биохимического и популяционного методов.
презентация [1,5 M], добавлен 12.09.2015Исследование физиологии центральной нервной системы в целях анестезиологического обеспечения нейрохирургических операций. Особенности регуляции мозгового кровообращения. Влияние анестетиков и вспомогательных средств на ЦНС, защита мозга от ишемии.
реферат [46,1 K], добавлен 25.01.2011Характеристика системы кровообращения, ее функции и строение. Особенности кровообращения у человека, классификация сосудов по их функциям. Взаимосвязь кровообращения и лимфооттока. Описание характерных черт расстройства и заболевания кровообращения.
реферат [1,9 M], добавлен 05.06.2010Введение термина "аорта" Аристотелем. Изучение нервной системы Галеном. Описание строения человеческого тела в работах Везалия. Роль деятельности русских ученых Пирогова, Сеченова, Мечникова, Павлова, Боткина и Бурденко в развитии медицинской науки.
презентация [4,9 M], добавлен 27.11.2010Реактивность: характеристика, факторы, формы. Виды наследственной патологии. Характеристика заболеваний нервной системы. Расстройства вегетативных функций. Инфекционные заболевания нервной системы. Нарушения центрального и периферического кровообращения.
контрольная работа [36,4 K], добавлен 25.03.2011Понятие и структура автономной нервной системы, ее типы: симпатическая, парасимпатическая и метасимпатическая, отличительные признаки от соматической и функциональные особенности. Основные медиаторы. Принципы регуляции в катехоламинергическом синапсе.
презентация [1,7 M], добавлен 08.01.2014Характеристика и функции, основные компоненты пирамидной системы: двигательные области коры больших полушарий, пирамидные пути. Симптомы центрального и периферического паралича. Базальные ганглии. Ретикулярная формация, ее зоны и ядра, основные функции.
презентация [3,5 M], добавлен 08.01.2014Современная функциональная диагностика. Общие сведения о физиологии сердца: автоматизм, проводимость и возбудимость сердечной мышцы. Изменение потенциалов возбужденных клеток. Интервалы и сегменты электрокардиограммы, основные измеряемые параметры.
реферат [178,1 K], добавлен 22.12.2010Предмет, задачи возрастной физиологии и ее связь с другими науками. Общебиологические закономерности индивидуального развития. Возрастные особенности нервной системы и высшей нервной деятельности. Развитие сенсорных систем в онтогенезе.
курс лекций [107,4 K], добавлен 06.04.2007Общая характеристика анатомии и физиологии сердечно-сосудистой системы. Сущность физиологии работы сердца. Анализ хронической сердечной недостаточности: симптомы, первые признаки, клиническое лечение. Основные законы режима физической активности.
презентация [1,0 M], добавлен 19.07.2012