Основы медицины

Изучение сущности физиологии. Характеристика особенностей хромосомного набора. Определение значения нервной системы и кровообращения. Исследование моторной функции кишечника. Рассмотрение свойств сердечной мышцы. Ознакомление с понятием фронтита.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 23.12.2014
Размер файла 131,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

37. Значение органов выделения

Органы выделения играют важную роль в сохранении постоянства внутренней среды, они удаляют из организма продукты обмена, которые не могут быть использованы, избыток воды и солей. В осуществлении процессов выделения участвуют легкие, кишечник, кожа и почки. Легкие удаляют из организма углекислый газ, пары воды, летучие вещества. Из кишечника удаляются с калом соли тяжелых металлов, избыток невсосавшихся пищевых веществ. Потовые железы кожи выделяют воду, соли, органические вещества, их усиленная деятельность наблюдается при напряженной мышечной работе и повышении температуры окружающей среды.

Основная роль в выделительных процессах принадлежит почкам, которые выводят из организма воду, соли, аммиак, мочевину, мочевую кислоту, восстанавливая постоянство осмотических свойств крови. Через почки удаляются некоторые ядовитые вещества, образующиеся в организме или принятые в виде лекарств.

Почки поддерживают определенную постоянную реакцию крови. При накоплении в крови кислых или щелочных продуктов обмена через почки увеличивается выделение излишков соответствующих солей. В поддержании постоянства реакции крови очень важную роль играет способность почек синтезировать аммиак, который связывает кислые продукты.

Строение почек. Почки (их две -- правая и левая) имеют форму боба; наружный край почки выпуклый, внутренний--вогнутый. Они красно-бурого цвета, массой около 120 г.

На вогнутом, внутреннем крае почки имеется глубокая вырезка. Это ворота почки. Сюда входит почечная артерия, а выходит почечная вена и мочеточник. Почки получают крови больше, чем любой другой орган, в них происходит образование мочи из веществ, приносимых кровью. Структурно-функциональной единицей почки является тельце почки--нефрон, в каждой почке около 1 млн. нефроноп. Нефрон состоит из двух основных частей: кровеносных сосудов и почечного канальца.

Общая длина канальцев одного тельца почки достигает 35--50 мм. В почках имеется примерно 130 км трубочек, по которым проходит жидкость. Ежесуточно в почках фильтруется около 170 л жидкости, которая концентрируется примерно в 1,5 л мочи и удаляется из организма.

Возрастные особенности функции почек. С возрастом меняются количество и состав мочи. Мочи у детей отделяется сравнительно больше, чем у взрослых, а мочеиспускание происходит чаще за счет интенсивного водного обмена и относительно большого количества воды и углеводов в рационе питания ребенка.

Только в первые 3--4 дня количество отделяющейся мочи у детей невелико. У месячного ребенка мочи отделяется в сутки 350--380 мл, к концу первого года жизни--750 мл, в 4--5 лет-- около 1 л, в 10 лет--1,5 л, а в период полового созревания-- до 2 л.

У новорожденных реакция мочи резкокнслая, с возрастом она становится слабокислой. Реакция мочи может меняться в зависимости от характера получаемой ребенком пищи. При питании преимущественно мясной пищей в организме образуется много кислых продуктов обмена, соответственно и моча становится более кислой. При употреблении растительной пищи реакция мочи сдвигается в щелочную сторону.

У новорожденных детей повышена проницаемость почечного эпителия, отчего в моче почти всегда обнаруживается белок. Позже у здоровых детей и взрослых белка в моче быть не должно.

Мочеиспускание и его механизм. Испускание мочи--процесс рефлекторный. Поступающая в мочевой пузырь моча вызывает повышение давления в нем, что раздражает рецепторы, находящиеся в стенке пузыря. Возникает возбуждение, доходящее до центра мочеиспускания в нижней части спинного мозга. Отсюда импульсы поступают к мускулатуре пузыря, заставляя ее сокращаться; сфинктер при этом расслабляется и моча поступает из пузыря в мочеиспускательный канал. Это непроизвольное испускание мочи. Оно имеет место у грудных детей.

Старшие дети, как и взрослые, могут произвольно задерживать и вызывать мочеиспускание. Это связано с установлением корковой, условнорефлекторной регуляции мочеиспускания. Обычно к двухлетнему возрасту у детей сформированы условнорефлекторные механизмы задержки мочеиспускания не только днем, но и ночью. Однако в возрасте 5--10 лет у детей, иногда до полового созревания, встречается ночное непроизвольное недержание мочи--энурез. В осенне-зимние периоды года в связи с большей возможностью охлаждения организма энурез учащается. С возрастом энурез, связанный преимущественно с функциональными отклонениями в психоневрологическом статусе детей, проходит. Однако в обязательном порядке дети должны быть обследованы врачами--урологом и невропатологом.

Способствуют энурезу психические травмы, переутомление (особенно от физических нагрузок), переохлаждение, нарушение сна, раздражающая, острая пища и обилие жидкости, принятой перед сном. Дети очень тяжело переживают свой недуг, испытывают страх, долго не засыпают, а затем погружаются в глубокий сон, во время которого слабые позывы к мочеиспусканию не воспринимаются.

38. Спинной мозг

Спинной мозг представляет собой длинный тяж. Он заполняет полость позвоночного канала и имеет сегментарное строение, соответствующее строению позвоночника.

В центре спинного мозга расположено серое вещество--скопление нервных клеток, окруженное белым веществом, образованным нервными волокнами.

В спинном мозге находятся рефлекторные центры мускулатуры туловища, конечностей и шеи. С их участием осуществляются сухожильные рефлексы в виде резкого сокращения мышц (коленный, ахиллов рефлексы), рефлексы растяжения, сгибательные рефлексы, разные рефлексы, направленные на поддержание определенной позы. Рефлексы мочеиспускания и дефекации, рефлекторного набухания полового члена и извержения семени у мужчин (эрекция и эякуляция) связаны с функцией спинного мозга.

Спинной мозг осуществляет и проводниковую функцию. Нервные волокна, составляющие основную массу белого вещества, образуют проводящие пути спинного мозга. По этим путям устанавливается связь между различными частями ЦНС и проходит импульсация в восходящем и нисходящем направлениях. По этим путям поступает информация в вышележащие отделы мозга, от которых отходят импульсы, изменяющие деятельность скелетной мускулатуры и внутренних органов.

Деятельность спинного мозга у человека в значительной степени подчинена координирующим влияниям вышележащих отделов ЦНС.

Обеспечивая осуществление жизненно важных функций, спинной мозг развивается раньше, чем другие отделы нервной системы. Когда у эмбриона головной мозг находится на стадии мозговых пузырей, спинной мозг достигает уже значительных размеров. На ранних стадиях развития плода спинной мозг заполняет всю полость позвоночного канала. Затем позвоночный столб обгоняет в росте спинной мозг, и к моменту рождения он заканчивается на уровне третьего поясничного позвонка. У новорожденных длина спинного мозга 14--16 см, к 10 годам она удваивается. В толщину спинной мозг растет медленно. На поперечном срезе спинного мозга детей раннего возраста отмечается преобладание передних рогов над задними. Увеличение размеров нервных клеток спинного мозга наблюдается у детей в школьные годы.

39. Спинной мозг

Спинной мозг непосредственно переходит в стволовую часть головного мозга, расположенную в черепе. Прямым продолжением спинного мозга является продолговатый мозг, который вместе с мостом мозга (варолиев мост) образует задний мозг. Его нервные клетки образуют нервные центры, регулирующие рефлекторные функции сосания, глотания, пищеварения, сердечно-сосудистой и дыхательной систем, а также ядра V--XII пар черепных нервов и парасимпатических нервных волокон, идущих в их составе.

Необходимость реализации перечисленных жизненно важных функций с момента рождения ребенка определяет степень зрелости структур продолговатого мозга уже в период новорожденносди. К 7 годам созревание ядер продолговатого мозга в основном заканчивается.

На уровне продолговатого мозга начинается ретикулярная формация, состоящая из сети нервных клеток, с которыми.контактируют афферентные и эфферентные пути. Аксоны различных нейронов образуют множественные коллатерали, контактируя с огромным числом ретикулярных клеток. Один аксон может взаимодействовать с 27 500 нейронов. Ретикулярная формация распространяется на уровень среднего и промежуточного мозга. В ретикулярной формации выделяют нисходящую систему, регулирующую, под влиянием воздействия из высших отделов ЦНС, рефлекторную деятельность спинного мозга и мышечный тонус. К ней относятся передняя часть продолговатого мозга и средняя часть варолиева моста. Восходящая система -- структуры ствола, среднего и промежуточного мозга -- получает импульсы из спинного мозга и сенсорных систем, оказывает общее неспецифическое влияние на вышележащие отделы головного мозга. Ей, как будет показано дальше, принадлежит важнейшая роль в регуляции уровня бодрствования и организации поведенческих реакций.

40. Средний мозг

В состав среднего мозга входят ножки мозга и крыша мозга. Здесь расположены скопления нервных клеток в виде верхних и нижних бугров четверохолмия, красного ядра, черной субстанции, ядер глазодвигательного и блокового нервов, ретикулярной формации.

В верхних и нижних буграх четверохолмия замыкаются простейшие зрительные и слуховые рефлексы и осуществляется их взаимодействие (движение ушей, глаз, поворот в сторону раздражителя). Черная субстанция участвует в сложной координации движений пальцев рук, актов глотания и жевания. Красное ядро имеет непосредственное отношение к регуляции мышечного тонуса. Позади продолговатого мозга и моста расположен мозжечок. Мозжечок--орган, регулирующий и координирующий двигательные функции и их вегетативное обеспечение. Информация от различных мышечных, вестибулярных, слуховых и зрительных рецепторов, сигнализирующая о положении тела в пространстве и характере выполнения движений, интегрируется в мозжечке с влияниями от вышележащих отделов головного мозга, что обеспечивает реализацию плавного координированного двигательного акта, основанного на принципе обратной связи. Удаление мозжечка не влечет за собой потерю способности к движению, но нарушает характер выполняемых действий.

Усиленный рост мозжечка отмечается на первом году жизни ребенка, что определяется формированием в течение этого периода дифференцированных и координированных движений. В дальнейшем темпы его развития снижаются. К 15 годам мозжечок достигает размеров взрослого.

Важнейшие функции выполняют структуры промежуточного мозга, включающего в себя зрительный бугор (таламус) и под-бугровую область (гипоталамус). Гипоталамус, несмотря на небольшие размеры, содержит десятки высокодифференцированных ядер.

Гипоталамус связан с вегетативными функциями организма и осуществляет координационно-интегративную деятельность симпатического и парасимпатического отделов. Пути из гипоталамуса идут к среднему, продолговатому и спинному мозгу, оканчиваясь на нейронах--источниках преганглионарных волокон. Вегетативные эффекты гипоталамуса, разных его отделов имеют неодинаковые направленность и биологическое значение. Задние отделы приводят к возникновению эффектов симпатического типа, передние--парасимпатического. Восходящие влияния этих отделов также разнонаправлены: задние оказывают возбуждающее влияние на кору больших полушарий, передние--тормозящее. Связь гипоталамуса .о. одной из, важнейших желез внутренней секреции -- гипофизам--обеспечивает нервную регуляцию эндокринной функции.

В клетках ядер переднего гипоталамуса вырабатывается нейросекрет, который по волокнам гипоталамо-гипофизарного пути транспортируется в нейрогипофиз. Этому способствуют и обильное кровоснабжение, и сосудистые связи гипоталамуса и гипофиза.

Гипоталамус и гипофиз часто объединяют в гипоталамо-гипофизарную систему; играющую важнейшую роль в регуляции желез внутренней секреции.

Одно из крупных ядер гипоталамуса -- серый бугор -- принимает участие в регуляции функций многих эндокринных желез и обмена веществ. Разрушение серого бугра вызывает атрофию половых желез. Его длительное раздражение может привести к раннему половому созреванию, возникновению язв на коже, язвы желудка и двенадцатиперстной кишки.

Гипоталамус принимает участие в регуляции температуры тела. Доказана его роль в регуляции воднрго обмена, обмена углеводов. Ядра гипоталамуса участвуют во многих сложных поведенческих реакциях (половые, пищевые, агрессивно-оборонительные). Гипоталамус играет важную роль в формировании основных биологических мотиваций (голод, жажда, половое влечение) и эмоций положительного и отрицательного знака. Многообразие функций, осуществляемых структурами гипоталамуса, дает основание расценивать его как высший подкорковый центр регуляции жизненно важных процессов, их интеграции в сложные системы, обеспечивающие целесообразное приспособительное поведение.

Дифференцировка ядер гипоталамуса к моменту рождения не завершена и протекает в онтогенезе неравномерно. Развитие ядер гипоталамуса заканчивается в период полового созревания.

41. Таламус

Таламус (зрительный бугор) составляет значительную часть промежуточного мозга. Это многоядерное образование, связанное двусторонними связями с корой больших полушарий. В его состав входят три группы ядер. Релейные ядра передают зрительную, слуховую, кожно-мышечно-еуставную информацию в соответствующие проекционные области коры больших полушарий. Ассоциативные ядра передают ее в ассоциативные отделы коры больших полушарий. Неспецифические ядра (продолжение ретикулярной формации среднего мозга) оказывают активизирующее влияние на кору больших полушарий.

Центростремительные импульсы от всех рецепторов организма (за исключением обонятельных), прежде чем достигнут коры головного мозга, поступают в ядра таламуса. Здесь поступившая информация перерабатывается, получает эмоциональную окраску и направляется в кору больших полушарий.

К моменту рождения большая часть ядер зрительных бугров хорошо развита. После рождения размеры зрительных бугров увеличиваются за счет роста нервных клеток и развития нервных волокон.

Онтогенетическая направленность развития структур промежуточного мозга состоит в увеличении их взаимосвязей с другими мозговыми образованиями, что создает условия для совершенствования координационной деятельности его различных отделов и промежуточного мозга в целом. В развитии промежуточного мозга существенная роль принадлежит нисходящим влияниям кор ковых полей конечного мозга.

Конечный, или передний, мозг включает в себя базальные ганглии и большие полушария.

Основной частью конечного мозга, достигающей наибольшего развития у человека, являются большие полушария.

Большие полушария головного мозга расположены над передней дорзальной поверхностью ствола мозга. Они соединены крупными пучками нервных волокон, образующих мозолистое тело. У взрослого человека масса больших полушарий составляет около 80% массы головного мозга и в 40 раз превышает массу ствола.

42. Особенности вегетативной нервной системы

Вегетативная нервная система регулирует работу внутренних органов, обмен веществ, приспосабливая органы к текущим потребностям организма. К ней относятся нервные центры продолговатого мозга, гипоталамуса и лимбической системы, импульсы из которых поступают к внутренним органам через волокна и узлы вегетативной нервной системы.

Вегетативная нервная система иннервирует гладкую мускулатуру внутренних органов, кровеносных сосудов и кожи, мышцу сердца и железы. Вегетативные волокна подходят и к скелетным мышцам, но они при возбуждении не вызывают сокращения мышц, а повышают в них обмен веществ и тем самым стимулируют их работоспособность. Раздражение симпатических нервов утомленной скелетной мышцы восстанавливает ее работоспособность. Все это дало основание Л. А. Орбели и А. Г. Гинецинскому

Отделы и функции вегетативной нервной системы. Большинство внутренних органов обладают двойной иннервацией: к каждому из них подходят два нерва -- симпатический и парасимпатический. На многие органы симпатический и парасимпатический нервы оказывают противоположное влияние. Так, симпатический нерв ускоряет и усиливает работу сердца, а парасимпатический (блуждающий) тормозит; парасимпатический нерв вызывает сокращение кольцевой мускулатуры радужной оболочки глаза и в связи с этим сужение зрачка, а симпатический нерв вызывает расширение зрачка (сокращение радиальной мускулатуры радужной оболочки).

Н.Е. Введенским, однако, было показано, что, изменяя условия раздражения, можно наблюдать и иной эффект: взаимно усиливающее друг друга влияние симпатических и парасимпатических нервных волокон на сердце.

Симпатическая часть вегетативной нервной системы способствует интенсивной деятельности организма, особенно в экстремальных условиях, когда нужно напряжение всех его сил. Парасимпатическая часть вегетативной нервной системы--система «отбоя», она способствует восстановлению истраченных организмом ресурсов.

Рефлекторные реакции поддержания кровяного давления на относительно постоянном уровне, теплорегуляции, учащения и усиления сердечных сокращений при мышечной работе и многие другие функции связаны с деятельностью вегетативной нервной системы.

Все отделы вегетативной нервной системы подчинены высшим вегетативным центрам, расположенным в промежуточном мозге. К центрам вегетативной нервной системы приходят импульсы от ретикулярной формации ствола мозга, мозжечка, подкорковых ядер' и коры больших полушарий.

Как система, обеспечивающая осуществление жизненно важных функций, вегетативная нервная система созревает на ранних этапах развития. Однако к моменту рождения влияния симпатической и парасимпатической систем еще недостаточно сбалансированы, повышенная активность симпатической системы определяет более частый пульс новорожденных. В процессе развития ребенка усиливаются влияния высших отделов ЦНС, соответственно совершенствуется приспособительный регулирующий характер воздействия вегетативной нервной системы на деятельность внутренних органов.

43. Структурно-функциональная организация коры головного мозга

Кора больших полушарий представляет собой тонкий слой серого вещества на поверхности полушарий. В процессе эволюции поверхность коры интенсивно увеличивалась по размеру за счет появления борозд и извилин. Общая площадь поверхности коры у взрослого человека достигает 2200--2600 см2. Толщина коры в различных частях полушарий колеблется от 1,3 до 4,5 мм. В коре насчитывается от 12 до 18 млрд. нервных клеток. Отростки этих клеток образуют огромное количество контактов, что и создает условия для сложнейших процессов обработки и хранения информации.

На нижней и внутренней поверхности полушарий расположены старая и древняя кора, или архи- и палеокортекс. Функционально эти отделы коры больших полушарий тесно связаны с гипоталамусом, миндалиной, некоторыми ядрами среднего мозга. Все эти структуры составляют лимбическую систему мозга. Как будет показано дальше, лимбическая система играет важнейшую роль в формировании эмоций и внимания. В старой и древней коре расположены также высшие центры вегетативной регуляции.

На наружной поверхности полушарий расположена филогенетически наиболее новая кора, появляющаяся только у млекопитающих и достигающая наибольшего развития у человека. Это неокортекс.

Кора больших полушарий имеет 6--7 слоев, различающихся формой, величиной и расположением нейронов. Между нервными клетками всех слоев коры в процессе их деятельности возникают как постоянные, так и временные связи.

По особенностям клеточного состава и строения кору больших полушарий разделяют на ряд участков. Их называют корковыми полями.

Под корой располагается белое вещество больших полушарий. В составе белого вещества различают ассоциативные, комиссуральные и проекционные волокна. Ассоциативные волокна связывают между собой отдельные участки одного и того же полушария. Короткие ассоциативные волокна связывают между собой отдельные извилины и близкие поля. Длинные волокна -- извилины различных долей в пределах одного полушария. Комиссуральные волокна связывают симметричные части обоих полушарий. Большая часть их проходит через мозолистое тело. Проекционные волокна выходят за пределы полушарий. Они входят в состав нисходящих и восходящих путей, по которым осуществляется двусторонняя связь коры с нижележащими отделами ЦНС.

Известны случаи рождения детей, лишенных коры больших полушарий головного мозга. Это анэнцефалы. Они обычно живут всего несколько дней. Но известен случай жизни анэнцефала в течение 3 лет 9 месяцев. После его смерти при вскрытии оказалось, что большие полушария отсутствовали полностью, на их месте были обнаружены два пузыря. В течение первого года жизни этот ребенок почти все время спал. На звук и свет не реагировал. Прожив почти 4 года, он не научился говорить, ходить, узнавать мать, хотя врожденные реакции (некоторые) у него проявлялись: он сосал, когда ему вкладывали в рот сосок материнской груди или соску, глотал и т. п.

Наблюдения над животными с удаленными полушариями гот ловного мозга и над анэнцефалами показывают, что в процессе филогенеза резко возрастает значение высших отделов ЦНС в жизни организма. Происходит кортиколизация функций, подчинение сложных реакций организма коре больших полушарий. Все, что приобретается организмом в течение индивидуальной жизни, связано с функцией больших полушарий головного мозга. С функцией коры больших полушарий связана высшая нервная деятельность. Взаимодействие организма с внешней средой, его поведение в окружающем материальном мире связаны с большими полушариями головного мозга. Вместе с ближайшими подкорковыми центрами, стволом мозга и спинным мозгом большие полушария объединяют отдельные части организма в единое целое, осуществляют нервную регуляцию функций всех органов.

В опытах с удалением различных участков коры, их раздражением и при регистрации электрической активности мозга установлено наличие трех типов корковых областей: сенсорные, моторные и ассоциативные.

Сенсорные области коры больших полушарий. Афферентные волокна, несущие сигналы от различных рецепторов, приходят к определенным зонам коры. Каждому рецепторному аппарату соответствует в коре определенная область. И. П. Павловым эти области были названы корковым ядром анализатора. В сенсорных зонах выделяют первичные и вторичные проекционные поля.

Нейроны проекционных первичных полей выделяют отдельные признаки сигнала. В области зрительной проекции, например, анализируются место объекта в поле зрения, направление движения, контур, цвет, контраст. Разрушение этой области приводит к потере способности к первичному анализу внешних стимулов в определенной части поля зрения. При раздражении первичной зрительной зоны во время операций отмечается появление световых мельканий, цветовых пятен; при раздражении проекционного поля слуховой коры пациент слышит тоны, отдельные звуки.

При ограниченном поражении вторичных, например зрительных, полей больной отчетливо видит отдельные элементы изображения, но не может объединить их в целостный образ, узнать знакомый предмет (зрительная агнозия). Раздражение вторичных сенсорных зон у человека во время операции вызывает оформленные предметные зрительные и сложные слуховые галлюцинации; звуки музыки, речи и т. д.

Сенсорные зоны локализованы в определенных областях коры зрительная сенсорная зона располагается в затылочной области обоих полушарий, слуховая -- в височной области, зона вкусовых ощущений -- в нижней части теменных областей, соматосенсорная зона, анализирующая импульсацию с рецепторов мышц, суставов, сухожилий, кожи, располагается в области задней центральной извилины.

Моторные области коры. Зоны, раздражение которых закономерно вызывает двигательную реакцию, называют моторными или двигательными. Они расположены в области переднецентральной извилины. Моторная кора имеет двусторонние внутрикорковые связи со всеми сенсорными областями. Это обеспечивает тесное взаимодействие сенсорных и моторных зон.

Ассоциативные области коры. Кора больших полушарий человека характеризуется наличием обширной области, не имеющей прямых афферентных и эфферентных связей с периферией. Эти области, связанные обширной системой связей ассоциативных волокон с сенсорными и моторными зонами, получили название ассоциативных или третичных корковых зон. В задних отделах коры они расположены между теменными, затылочными и височными областями, в передних отделах они занимают основную поверхность лобных долей. Ассоциативная кора либо отсутствует, либо слабо развита у всех млекопитающих до приматов. У человека заднеассоциативная кора занимает примерно половину, а лобные области 25% всей поверхности коры. По строению они отличаются особенно мощным развитием верхних ассоциативных слоев клеток в сравнении с системой афферентных и эфферентных нейронов. Их особенностью является также наличие полисенсорных нейронов -- клеток, воспринимающих информацию из различных сенсорных систем.

В ассоциативной коре расположены и центры, связанные с речевой деятельностью. Ассоциативные области коры рассматриваются как структуры, ответственные за синтез поступающей информации, и как аппарат, необходимый для перехода от наглядного восприятия к абстрактным символическим процессам. С ассоциативными зонами коры связано формирование свойственной только человеку второй сигнальной системы.

Клинические наблюдения показывают, что при поражении заднеассоциативных областей нарушаются сложные формы ориентации в пространстве, конструктивная деятельность, затрудняется выполнение всех интеллектуальных операций, которые осуществляются с участием пространственного анализа (счет, восприятие сложных смысловых изображений). При поражении речевых зон нарушается возможность восприятия и воспроизведения речи. Поражение лобных отделов коры приводит к невозможности осуществления сложных программ поведения, требующих выделения значимых сигналов на основе прошлого опыта и предвидения будущего.

44. Учение И.П. Павлова об анализаторах

Восприятие как сложный системный процесс приема и обработки информации осуществляется на основе функционирования специальных сенсорных систем или анализаторов. Эти системы осуществляют превращение раздражителей внешнего мира в нервные сигналы и передачу их в центры головного мозга. На разных уровнях головного мозга сигналы преобразуются и перекодируются. Преобразование сенсорных сигналов в высших отделах центральной нервной системы завершается ощущениями и представлениями, опознанием образов. И. П. Павлов впервые создал представление об анализаторе как о единой системе анализа информации, состоящей из трех взаимосвязанных отделов: периферического, проводникового и центрального.

Рецепторы являются периферическим звеном анализатора. Они представлены нервными окончаниями или специализированными нервными клетками, реагирующими на определенные изменения в окружающей среде. Рецепторы различны по строению, местоположению и функциям. Некоторые рецепторы имеют вид сравнительно просто устроенных нервных окончаний, другие являются отдельными элементами сложно устроенных органов чувств, как, например, сетчатка глаза.

Центростремительные нейроны, проводящие пути от рецептора до коры больших полушарий, составляют проводниковый отдел анализатора. Участки коры больших полушарий головного мозга, воспринимающие информацию от соответствующих рецепторных образований, составляют центральную часть, или корковый отдел, анализатора.

Все части анализатора действуют как единое целое. Нарушение деятельности одной из частей вызывает нарушение функций всего анализатора.

С помощью анализаторов человек познает окружающий мир. Особенно велика роль анализаторов в трудовой деятельности. Если ограничить поступление в центральную нервную систему раздражений с разных органов чувств или полностью исключить их, то наблюдается задержка в развитии мозга, интеллекта.

Анализ воспринимаемых раздражений начинается уже в рецепторной части анализатора. Здесь идет простейший анализ и раздражение трансформируется в процессе возбуждения. Более совершенный анализ происходит в подкорковых образованиях, результатом чего является выполнение сложных врожденных актов (вставание, настораживание, поворот головы к источнику света или звука, поддержание положения тела и др.). Высший, наиболее тонкий анализ осуществляется в коре больших полушарий головного мозга, в корковом отделе анализатора.

Сенсорные системы организма. Среди сенсорных систем организма различают зрительную, слуховую, вестибулярную, вкусовую, обонятельную системы, а также соматосенсорную систему, рецепторы которой расположены в коже и воспринимают прикосновение, давление, вибрацию, тепло, холод, боль; в соматосенсорную систему также поступают импульсы от проприорецепторов, воспринимающих движения в суставах и мышцах. Изучений интерорецепторов, расположенных во всех внутренних органах, путей проведения и переработки поступающих от них сигналов дало основание говорить о так называемой висцеральной сенсорвой системе, которая воспринимает различные изменения во внутренней среде организма.

Функциональное созревание сенсорных систем. Различные анализаторные системы начинают функционировать в разные сроки онтогенетического развития. Вестибулярный анализатор как филогенетически наиболее древний созревает еще во внутриутробном периоде. Рефлекторные акты, связанные с активностью этого анализатора (например, изменение положения конечностей при повороте), отмечаются у плодов и глубоконедоношенных детей. Также рано созревает кожный анализатор. Первые реакции на раздражение кожи отмечены у эмбриона в 7,5 недели. Уже на З-м месяце жизни ребенка параметры кожной чувствительности практически соответствуют таковым взрослого.

Адекватные реакции на раздражения вкусового анализатора наблюдаются с 9 -- 10-го дня жизни. Тонкость дифференцировки основных пищевых веществ формируется на 3--4-м месяце жизни. До 6-летнего возраста чувствительность к вкусовым раздражителям повышается и в школьном возрасте не отличается от чувствительности взрослого.

Обонятельный анализатор функционирует с момента рождения ребенка. Дифференцировка запахов, отмечается на 4-м месяце жизни.

Созревание анализаторных систем определяется развитием всех звеньев анализаторов. Периферические звенья в основном являются сформированными к моменту рождения. Позже других рецепторных образований формируется периферическая часть зрительного анализатора -- сетчатка глаза, однако и ее развитие заканчивается к первому полугодию.

Миелинизация нервных волокон в течение первых месяцев жизни обеспечивает значительное увеличение скорости проведения возбуждения. Позже других отделов анализаторов созревают их корковые звенья. Именно их созревание в основном определяет особенности функционирования анализаторных систем в детском возрасте. Наиболее поздно завершают свое развитие области проекции в коре слухового и зрительного анализаторов. Определенная степень их зрелости, к моменту рождения создает условия для различения простых зрительных и слуховых стимулов уже в период новорожденности. При изучении движения глаз установлено, что ребенок способен воспринимать элементы предъявляемых. изображений с момента рождения. При введении в поле зрения геометрической фигуры движения глаз становятся менее хаотичными, концентрируясь у одной из сторон треугольника или у одного из краев круга. Интересно, что отдельные элементы изображения в раннем младенческом возрасте отождествляются с целостным предметом. Об этом свидетельствуют экспериментальные данные, показавшие, что младенцы, у которых вырабатывался условный рефлекс на целостную конфигурацию, реагировали также на ее компоненты, предъявляемые в отдельности, и только с 16 недель ребенок воспринимал целостную конфигурацию, она становилась эффективным стимулом условной реакции.

По мере созревания внутрикоркового аппарата нейронов и их связей, в течение первых лет жизни ребенка анализ внешней ин4)0рмации становится более тонким и дифференцированным, совершенствуется процесс опознания сложных стимулов. Период интенсивного созревания систем наиболее пластичен. Созревание коркового звена анализатора в значительной степени определяется поступающей информацией. Известно, что если лишить организм новорожденного притока сенсорной информации, то нервные клетки проекционной коры не развиваются; в сенсорно обогащенной среде развитие нервных клеток и их синаптических контактов происходит наиболее интенсивно. Отсюда очевидно значение сенсорного воспитания в раннем детском возрасте. Средствами его осуществления являются разнообразные предметы, окружающие ребенка, ярко окрашенные игрушки, привлечение внимания к их форме и цвету.

Функциональное созревание сенсорных систем не заканчивается в раннем детском возрасте. Помимо корковых отделов анализаторов в переработку поступающей информации вовлекаются и другие корковые зоны -- ассоциативные отделы, участвующие в опознании стимулов, их, классификации, выработке эталонов, Эти, структуры созревают в течение длительного периода развития, включая подростковый возраст. Постепенность их созревания определяет специфику процесса восприятия в школьном возрасте (см. гл. IV). При изучении вызванных ответов коры больших полушарий на стимулы разной сложности, так называемых вызванных потенциалов, установлено, что ответы на сложные структурированные зрительные стимулы становятся идентичными таковым взрослого к 11--12 годам. Этому соответствуют данные Офтальмологов и психологов о совершенствовании восприятия формы изображения в период обучения в школе. Поэтому чрезвычайно важным является соблюдение условий, необходимых для нормального развития сенсорной функции школьника.

Зрительный и слуховой анализаторы играют особую роль в познавательной деятельности, поэтому на особенностях их функционирования в онтогенезе и гигиенических требованиях к их нормальному развитию остановимся подробнее.

45. Строение глаза

Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов, трансформирующих световую энергию в нервное возбуждение. Сложность зрительных сигналов, поступающих из внешнего мира, необходимость активного их восприятия обусловила формирование в эволюции сложного оптического прибора. Этим периферическим прибором является глаз.

Форма глаза шаровидная. У взрослых диаметр его составляет около 24 мм, у новорожденных -- около 16 мм.

Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые пять лет жизни, менее интенсивно--до 9--12 лет.

Наружная оболочка глаза -- склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм. В передней части она переходит в прозрачную роговицу.

В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку)

В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.

Хрусталик -- это прозрачное эластичное образование, имеющее форму двояковыпуклой линзы. Хрусталик покрыт прозрачной сумкой; по всему его краю к ресничному телу тянутся тонкие, но очень упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии.

В центре радужки имеется круглое отверстие--зрачок. Величина зрачка изменяется, отчего в глаз может попадать большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке.

Ткань радужной оболочки содержит особое красящее вещество -- меланин, в зависимости от количества этого пигмента цвет радужки колеблется от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз.

Между роговицей и радужкой, а также между радужкой и хрусталиком имеются небольшие пространства, называемые соответственно передней и задней камерами глаза. В них находится прозрачная жидкость. Она снабжает питательными веществами роговицу и хрусталик, которые лишены кровеносных сосудов.

Полость глаза позади хрусталика заполнена прозрачной желеобразной массой -- стекловидным телом.

Внутренняя поверхность глаза выстлана тонкой (0,2--0,3 мм), весьма сложной по строению оболочкой -- сетчаткой, или ретиной. Она содержит светочувствительные клетки, названные из-за их формы колбочками и палочками. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв, который направляется в головной мозг.

Оптическая система глаза. Поступающие в глаз световые лучи, прежде чем они попадут на сетчатку, проходят через несколько преломляющих сред. К ним относятся роговица, водянистое вещество передней и задней камер глаза, хрусталик и стекловидное тело. Каждая из этих сред имеет свой показатель преломляющей силы.

Аккомодация. Чтобы рассматриваемый предмет был ясно виден, надо, чтобы лучи от всех его точек попали на заднюю поверхность сетчатки, т. е. были здесь сфокусированы.

Когда человек смотрит вдаль, предметы, расположенные на близком расстоянии, кажутся расплывчатыми, они не в фокусе. Если глаз фиксирует близкие предметы, неясно видны отдаленные.

Глаз способен приспосабливаться к четкому видению предметов, находящихся от него на различных расстояниях. Эту способность глаза называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи от предметов сходятся на сетчатке.

Хрусталик посредством связки соединен с мышцей, располагающейся широким кольцом позади корня радужной оболочки. Благодаря деятельности этой мышцы хрусталик может менять свою форму, становиться более или менее выпуклым и соответственно сильнее или слабее преломлять попадающие в глаз лучи света.

При рассматривании предметов, находящихся на далеком расстоянии, ресничная мышца расслаблена, а связки, прикрепленные преимущественно к передней и задней поверхности капсулы хрусталика, в это время натянуты, что вызывает сдавливание хрусталика спереди назад и его растягивание. Поэтому при смотрении вдаль кривизна хрусталика и, следовательно, преломляющая сила его становятся наименьшими.

При приближении предмета к глазу происходит сокращение ресничной мышцы, связка расслабляется. Это прекращает сдавливание и растягивание хрусталика. Вследствие эластичности хрусталик становится более выпуклым и его преломляющая сила увеличивается.

Преломляющие свойства, или рефракция, обеспечивают фокусирование изображения на сетчатке. Для четкого изображения необходимо, чтобы параллельные лучи от изображения сходились на сетчатке. Существуют два основных вида аномалии рефракции -- дальнозоркость и близорукость.

Дальнозоркость. Дальнозоркость является следствием короткой продольной оси глаза. Она бывает связана либо с неправильной формой глаза (укороченное глазное яблоко), либо с неправильной кривизной роговицы или хрусталика. В этих случаях изображение фокусируется сзади глаза.

На сетчатке при этом получается расплывчатое изображение предмета. Для перемещения изображения на сетчатку дальнозоркий глаз должен усилить свою преломляющую способность за счет увеличения кривизны хрусталика уже при рассматривании отдаленных предметов. Еще большее напряжение аккомодации потребуется для ясного видения близко расположенных предметов.

Близорукость. В близоруком глазу параллельные лучи, идущие от далеких предметов, пересекаются впереди сетчатки, не доходя до нее. Это может быть связано со слишком длинной продольной осью глаза или с большей, чем нормальная, преломляющей силой среды глаза (кривизна хрусталика больше). Такому глазу, преломляющая способность которого и без того велика, аккомодация помочь не в состоянии. Близорукий глаз хорошо видит только расположенные близко предметы. При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, однако она увеличивается в школьном возрасте от младших классов к старшим.

В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслоению сетчатки.

Рахит, туберкулез, ревматизм и другие общие заболевания могут стать причиной растяжения глазного яблока, но чаще всего они создают благоприятную почву для развития близорукости.

Астигматизм. К аномалии рефракции относят и астигматизм-невозможность схождения всех лучей в одной точке. Астигматизм является следствием неодинаковой кривизны роговицы в различных ее меридианах. Если больше преломляет вертикальный меридиан, астигматизм прямой, если горизонтальный--обратный.

Нормальные глаза тоже имеют небольшую степень астигматизма, так как поверхность роговицы не строго сферическая: при рассмотрении с расстояния наилучшего видения диска с нанесенными на него концентрическими кругами наблюдается незначительное сплющивание кругов. Резкие степени астигматизма, нарушающие зрение, исправляются при помощи цилиндрических стекол, которые располагаются по соответствующим меридианам роговицы.

Острота зрения. Острота зрения отражает способность оптической системы глаза строить четкое изображение на сетчатке. Она измеряется путем определения наименьшего расстояния между двумя точками, достаточного для того, чтобы они не сливались, чтобы лучи от них попадали на разные рецепторы сетчатки.

Мерилом остроты зрения служит угол, который образуется между лучами, идущими от двух точек предмета к глазу,-- угол зрения. Чем меньше этот угол, тем выше острота зрения. У большинства людей минимальная величина угла зрения составляет 1 мин. Принято считать этот угол нормой, а остроту зрения глаза, имеющего наименьший угол зрения 1 мин,-- единицей остроты зрения.

Световая и цветовая чувствительность. Рецепторный аппарат зрительного анализатора расположен на внутренней оболочке глаза--сетчатке. Сетчатка имеет сложную многослойную структуру. Она состоит из пигментного слоя, фоторецепторов и двух слоев нервных клеток, отростки которых образуют зрительный нерв. В сетчатке имеется два вида фоторецепторов:

Палочки -- их у человека примерно 120--125 млн. и колбочки-- 5--6 млн.

Палочки, чувствительность которых выше, ответственны за сумеречное зрение. Они расположены на периферии сетчатки. Колбочки воспринимают различные цвета. Они сосредоточены преимущественно в центре сетчатки, в основном в центральной ямке.

Колбочки -- аппарат дневного зрения. Они, в отличие от палочек, воспринимают зрительные сигналы при ярком освещении, т. е. чувствительность их к свету меньше.

У человека встречаются случаи частичного и полного нарушения цветового зрения. При полной цветовой слепоте человек видит все предметы одинаково окрашенными в серый цвет, никаких других цветов он не воспринимает. Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые было обнаружено это нарушение). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков).

Возбудимость зрительного анализатора зависит от количества светореактивных веществ в сетчатке. При действии света на глаз вследствие распада светореактивных веществ возбудимость глаза понижается. Это приспособление глаза к свету -- световая адаптация. Например, при выходе из темного помещения на яркий солнечный свет мы вначале ничего Не различаем, но вскоре адаптируемся к свету и прекрасно все видим. Снижение возбудимости глаза на свету тем больше, чем ярче свет. Особенно быстро понижается возбудимость в первые 3--5 мин.

В темноте в связи с восстановлением светореактивных веществ возбудимость глаза к свету возрастает -- темповая адаптация. Возбудимость колбочек может возрасти в темноте в 20-- 50 раз, а палочек--в 200--400 тыс. раз.

Кроме световой есть еще цветовая адаптация, т. е. падение возбудимости глаза при действии лучей, вызывающих цветовые ощущения. Чем интенсивнее цвет, тем быстрее падает возбудимость глаза. Наиболее быстро и резко понижается возбудимость при действии сине-фиолетового раздражителя, медленнее и меньше всего -- зеленого.

При проецировании на сетчатку неподвижного изображения глаз скоро перестает его различать. Вследствие адаптации человек не мог бы видеть неподвижных предметов, если бы не непрерывные мелкие колебательные движения глаз, которые совершаются постоянно в течение 25 мс каждое. За это время прекращается адаптация соответствующего рецептивного поля и возобновляется эффект включения зрительного раздражения, поэтому человек может видеть неподвижный предмет.

Вопрос о развитии цветоощущений до конца не выяснен. По данным некоторых исследователей, цветоощущение присуще уже новорожденным.

46. Основные функции

Слуховой анализатор -- это второй по значению анализатор в обеспечении адаптивных реакций и познавательной деятельности человека. Его особая роль у человека связана с членораздельной речью. Слуховое восприятие--основа членораздельной речи.

Орган слуха. Слуховые рецепторы находятся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания передаются к ним через целую систему вспомогательных образований, обеспечивающих совершенное восприятие звуковых раздражений. Орган слуха человека состоит из трех частей наружного, среднего и внутреннего уха.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Наружное ухо служит для улавливания звуков.

Определение направления звука у человека связано с так называемым бинауральным слухом, т. е. со слышанием двумя ушами. Всякий звук, идущий сбоку, поступает в одно ухо раньше на несколько долей миллисекунды, чем в другое (в зависимости от местоположения источника звука). Разница во времени прихода звуковых волн, воспринимаемых левым и правым ухом, дает возможность человеку определить направление звука. Если у человека одно ухо поражено и не функционирует, то он определяет направление звука поворачивая голову.

На границе между наружным и средним ухом находится барабанная перепонка. Это тонкая соединительнотканная пластинка (ее толщина около 0,1 мм), которая снаружи покрыта эпителием, а изнутри слизистой оболочкой. Барабанная перепонка расположена наклонно и начинает колебаться, когда на нее падают со стороны наружного слухового прохода звуковые колебания. И так как барабанная перепонка не имеет собственного периода колебаний, то она колеблется при всяком звуке соответственно его длине волны.

Среднее ухо представлено барабанной полостью, имеющей неправильную форму в виде маленького плоского барабана, на который туго натянута колеблющаяся перепонка, и слуховой трубой. Внутри полости среднего уха расположены сочленяющиеся между собой слуховые косточки -- молоточек, наковальня и стремечко. Внутреннее ухо отделено от среднего перепонкой овального окна.

Система слуховых косточек обеспечивает увеличение давления звуковой волны при передаче с барабанной перепонки на перепонку овального окна примерно в 30--40 раз. Это очень важно, так как даже слабые звуковые волны, падающие на барабанную перепонку, в результате оказываются способными преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо, трансформируясь там в колебания жидкости-- эндолимфы.

Барабанная полость соединена с носоглоткой при помощи слуховой, или евстахиевой, трубы длиной 3,5 см и шириной всего 2 мм. Труба поддерживает одинаковое давление на барабанную перепонку снаружи и изнутри, что создает наиболее благоприятные условия для ее колебания. Проход воздуха в барабанную полость происходит во время акта глотания и зевания, когда открывается просвет трубы и давление в глотке и барабанной полости выравнивается.

Внутреннее ухо расположено в каменистой части височной кости и представляет собой костный лабиринт, внутри которого находится перепончатый лабиринт из соединительной ткани. Перепончатый лабиринт как бы вставлен в костный лабиринт и в общем повторяет его форму. Между костным и перепончатым лабиринтами имеется жидкость--перилимфа, а внутри перепончатого лабиринта--эндолимфа.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального окошка имеется еще круглое окно, которое делает возможным колебание жидкости.

Костный лабиринт состоит из трех частей: в центре--преддверие, спереди от него находится улитка, а сзади -- полукружные каналы. Костная улитка--спирально извивающийся канал, образующий два с половиной оборота вокруг стержня конической формы. Диаметр костного канала у основания улитки 0,04 мм, а на вершине 0,5. От стержня отходит костная спиральная пластинка, которая делит полость канала на две части, или лестницы.

Внутри среднего канала улитки, в улитковом ходе, находится звуковоспринимающий аппарат--спиральный, или кортиев, орган. Кортиев орган имеет базилярную (основную) пластинку, которая состоит примерно из 24 тыс. тонких фиброзных волоконец различной длины, очень упругих и слабо связанных друг с другом. Вдоль основной пластинки в 5 рядов располагаются опорные и волосковые чувствительные клетки, которые являются собственно слуховыми рецепторами.

Механизм восприятия звука. Для слухового анализатора адекватным раздражителем является звук. Звуковые волны возникают как чередование сгущений и разрежений воздуха, которые распространяются во все стороны от источника звука. Все вибрации воздуха, воды или другой упругой среды распадаются на периодические (тоны) и непериодические (шумы). Если их записать, то тоны имеют правильную, четкую, ритмическую форму, шумы--неправильную, сложную. Тоны бывают высокие и низкие, последним соответствует меньшее число колебаний в секунду.

Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенное число колебаний в секунду. Длину звуковой волны определяют расстоянием, которое проходит звук в секунду, деленным на число полных колебаний, которое совершает звучащее тело в секунду. Чем больше число колебаний, тем короче длина волны. У высоких звуков волна короткая, измеряемая в миллиметрах, у низких-- длинная, измеряемая метрами.

Высота звука определяется его частотой, или числом волн за 1 с. Частота измеряется в герцах (Гц). 1 Гц соответствует одному полному колебанию в секунду. Чем больше частота звука, тем звук выше. Сила звука пропорциональна амплитуде колебаний звуковой волны и измеряется в децибелах.

Самый высокий звук, который мы в состоянии услышать, имеет 20 тыс. колебаний в секунду (20 тыс. Гц), самый низкий-- 12--24 Гц. У детей верхняя граница слуха достигает 22 тыс. Гц, у пожилых людей она ниже--около 15 тыс. Гц.

Наибольшей возбудимостью обладает ухо к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно понижается.

Воздушные звуковые волны, попадая в наружный слуховой проход, вызывают колебания барабанной перепонки. Далее колебания барабанной перепонки передаются через среднее ухо. Система слуховых косточек, действуя как рычаг, усиливает звуковые колебания и передает их жидкости, находящейся между костным и перепончатым лабиринтами улитки. При распространении звуковых волн в улитке смещается основная мембрана, и ее колебания вызывают перемещение ресничек волосковых клеток. В результате этого возникает рецепторный потенциал, возбуждающий окончания нервных волокон. Колебания основной мембраны зависят от высоты звука. Эластичность ее на разных отрезках не одинакова. Ближе к овальному окну мембрана уже и жестче, дальше шире и эластичнее. Поэтому ее более узкие участки восприимчивы к высоким частотам, более широкие -- к низким. От высоты звука зависит, какой участок мембраны ответит на этот звук колебанием наибольшей амплитуды. Соответственно на звуки разной частоты реагируют разные волосковые клетки. Клетки, реагирующие на высокие тоны, расположены на узкой, туго натянутой части основной мембраны, вблизи овального окна; рецепторы низких звуков на широких, менее туго натянутых отрезках мембраны. Это проверено в опытах на собаках. Если у собак разрушить улитку в области основания, то исчезают условные рефлексы на высокие тоны, если разрушить верхушку улитки исчезают условные рефлексы на низкие тоны. Разрушение средней части улитки приводит к выпадению рефлексов на средние тоны. Следовательно, анализ различения звука происходит уже на уровне рецепторов. Сила звука, измеряемая в децибелах, кодируется числом возбужденных нейронов и частотой их импульсации. Пороги возбуждения внутренних и наружных рецепторных клеток не одинаковы. Возбуждение внутренних волосковых клеток возникает при большой интенсивности звука, наружных -- при меньшей. В зависимости от интенсивности звука меняется соотношение возбуждения внутренних и наружных волосковых клеток. Возникшее возбуждение по нервным волокнам через систему переключательных ядер передается в слуховую кору, где соотносятся частота и сила звуковых стимулов и осуществляется распознавание сложных звуков. Смысл услышанного интерпретируется в ассоциативных корковых зонах.

...

Подобные документы

  • Общая характеристика системы кровообращения в организме человека. Рассмотрение строения сердца. Изучение теории мышечного сокращения "скользящих нитей". Описание правил сопряжения сердечной мышцы, фаз сердечного цикла, особенностей функций миокарда.

    презентация [4,1 M], добавлен 25.11.2015

  • Изучение связей между электрофизиологическими и клинико-анатомическими процессами живого организма. Электрокардиография как диагностический метод оценки состояния сердечной мышцы. Регистрация и анализ электрическй активности центральной нервной системы.

    презентация [225,3 K], добавлен 08.05.2014

  • Изучение сущности, основных причин и диагностики дисбиоза кишечника - изменения количественного и качественного состава, а также свойств кишечной микрофлоры. Коррекция морфокинетической функции и физиологической активности желудочно-кишечного тракта.

    контрольная работа [25,6 K], добавлен 22.10.2010

  • Регуляция кровообращения в миокарде и в легких. Схема перестроек кровотока при физической нагрузке. Обмен жидкостью между кровеносным лимфатическим капилляром и межклеточным пространством. Определение давления в терминальных лимфатических капиллярах.

    лекция [1,2 M], добавлен 12.01.2014

  • Ознакомление с морфологическими особенностями мозгового кровообращения. Анализ чувствительности нервной ткани. Изучение функциональных характеристик мозгового кровообращения. Описание системы суммарного и локального мозгового кровотока человека.

    реферат [96,9 K], добавлен 19.08.2015

  • Исследование гемодинамических показателей у педагогов разных возрастных групп. Строение сердечно-сосудистой системы. Свойства сердечной мышцы. Расчет индекса Робинсона, коэффициента выносливости и экономичности кровообращения, показатель Кремптома.

    курсовая работа [42,4 K], добавлен 30.01.2014

  • Основные вопросы физиологии центральной нервной системы и высшей нервной деятельности в научном плане. Роль механизмов работы мозга, лежащих в основе поведения. Значение знаний по анатомии и физиологии ЦНС для практических психологов, врачей и педагогов.

    реферат [20,9 K], добавлен 05.10.2010

  • Ознакомление с понятием о стомах. Анализ возрастного состава стомированных пациентов в Российской Федерации. Рассмотрение особенностей послеоперационного ухода за стомой. Исследование и характеристика специфических особенностей питания при стоме.

    презентация [13,3 M], добавлен 01.04.2019

  • Изучение сведений о развитии и исследованиях Физиологического Института имени академика И.П. Павлова, отдела сравнительной физиологии и патологии, организованного в Институте экспериментальной медицины АМН СССР академиком Дмитрием Андреевичем Бирюковым.

    реферат [28,3 K], добавлен 05.10.2010

  • Изучение строения и особенностей работы сердца, аорты, артерии, артериолы, капилляров, венулы и вены как отделов системы кровообращения. Рассмотрение признаков возникновения тромбозов (локальное проявление патологии всей сосудистой системы) и эмболии.

    реферат [23,3 K], добавлен 28.03.2010

  • Сущность генеалогического метода изучения родословных в семьях, в которых есть наследственные заболевания. Рассмотрение сходства однояйцевых и разнояйцевых близнецов. Изучение хромосомного набора человека. Анализ биохимического и популяционного методов.

    презентация [1,5 M], добавлен 12.09.2015

  • Исследование физиологии центральной нервной системы в целях анестезиологического обеспечения нейрохирургических операций. Особенности регуляции мозгового кровообращения. Влияние анестетиков и вспомогательных средств на ЦНС, защита мозга от ишемии.

    реферат [46,1 K], добавлен 25.01.2011

  • Характеристика системы кровообращения, ее функции и строение. Особенности кровообращения у человека, классификация сосудов по их функциям. Взаимосвязь кровообращения и лимфооттока. Описание характерных черт расстройства и заболевания кровообращения.

    реферат [1,9 M], добавлен 05.06.2010

  • Введение термина "аорта" Аристотелем. Изучение нервной системы Галеном. Описание строения человеческого тела в работах Везалия. Роль деятельности русских ученых Пирогова, Сеченова, Мечникова, Павлова, Боткина и Бурденко в развитии медицинской науки.

    презентация [4,9 M], добавлен 27.11.2010

  • Реактивность: характеристика, факторы, формы. Виды наследственной патологии. Характеристика заболеваний нервной системы. Расстройства вегетативных функций. Инфекционные заболевания нервной системы. Нарушения центрального и периферического кровообращения.

    контрольная работа [36,4 K], добавлен 25.03.2011

  • Понятие и структура автономной нервной системы, ее типы: симпатическая, парасимпатическая и метасимпатическая, отличительные признаки от соматической и функциональные особенности. Основные медиаторы. Принципы регуляции в катехоламинергическом синапсе.

    презентация [1,7 M], добавлен 08.01.2014

  • Характеристика и функции, основные компоненты пирамидной системы: двигательные области коры больших полушарий, пирамидные пути. Симптомы центрального и периферического паралича. Базальные ганглии. Ретикулярная формация, ее зоны и ядра, основные функции.

    презентация [3,5 M], добавлен 08.01.2014

  • Современная функциональная диагностика. Общие сведения о физиологии сердца: автоматизм, проводимость и возбудимость сердечной мышцы. Изменение потенциалов возбужденных клеток. Интервалы и сегменты электрокардиограммы, основные измеряемые параметры.

    реферат [178,1 K], добавлен 22.12.2010

  • Предмет, задачи возрастной физиологии и ее связь с другими науками. Общебиологические закономерности индивидуального развития. Возрастные особенности нервной системы и высшей нервной деятельности. Развитие сенсорных систем в онтогенезе.

    курс лекций [107,4 K], добавлен 06.04.2007

  • Общая характеристика анатомии и физиологии сердечно-сосудистой системы. Сущность физиологии работы сердца. Анализ хронической сердечной недостаточности: симптомы, первые признаки, клиническое лечение. Основные законы режима физической активности.

    презентация [1,0 M], добавлен 19.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.