Организм как открытая саморегулирующаяся система
Единство организма и внешней среды. Транспорт через биологические мембраны, виды транспорта. Факторы гуморальной регуляции: гормоны, местные гормоны, метаболиты. Регуляция и саморегуляция эндокринной системы. Биологические мембраны, их строение и функции.
Рубрика | Медицина |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 13.04.2022 |
Размер файла | 3,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В последние годы представление о механизме желчеобразования было значительно расширено в связи с учением о химической передаче нервного возбуждения. Так, при раздражении вегетативных нервов в крови, оттекающей от печени, были обнаружены медиаторы, введение холина и его производных или физостигмина вызывает усиление желчеобразования и выход желчи в кишку. Значительное влияние на желчеобразование оказывают гормоны. Так, вазопрессин, АКТГ, инсулин его стимулируют, причем действие АКТГ осуществляется путем усиления продукции глюкокортикоидов. После гипофизэктомии, депанкреатизации или адреналэктомии желчеотделение уменьшается. То же происходит при введении препаратов щитовидной железы. Противоположный эффект вызывает тиреоидэктомия или длительное применение антитиреоидного препарата -- 6-МТУ.
Повышает уровень желчеотделения гормон эпифиза. После кастрации наступают длительные расстройства желчеотделения, что указывает на немаловажную роль половых гормонов в регуляции внешнесекреторной функции печени. Несмотря на разноречивые данные, можно полагать, что блуждающий нерв преимущественно усиливает желчеотделение, а симпатический тормозит. На процесс желчеобразования оказывает влияние центральная нервная система. Еще в 1886 г. Гейденгайн установил, что раздражение электрическим током спинного мозга в шейном и верхнегрудном отделах вызывает снижение желчеобразования. То же наблюдается и при перерезке спинного мозга. Нервным центром регуляции желчеотделения считают центры блуждающих нервов. Имеются данные, что удаление мозговой коры у собак, повреждение премоторной и особенно лимбической области головного мозга изменяют желчеотделительную функцию печени. Все это дает основание говорить, что регуляция секреции желчи и выход ее в кишку осуществляются при помощи единого нервно-гуморального механизма, при ведущем значении нервного механизма.
220. Кишечный сок, его состав и свойства
Секреторная функция кишечника заключается в выработке кишечного сока секреторными железами слизистой оболочки тонкого кишечника. Он представляет собой мутную вязкую жидкость щелочной реакции и продуцируется в объеме до 2,5 л за сутки.
В кишечном соке содержится около 20 различных ферментов, принимающих участие в пищеварении: протеазы (карбоксипептидаза, аминопептидаза, дипептидазы), амилаза, мальтаза, липаза, эстераза, фосфолипаза, нуклеаза, щелочная фосфатаза и другие ферменты.
Ферменты кишечного сока осуществляют заключительный этап переваривания пищевых веществ, начальные стадии которого происходят под влиянием ферментов других пищеварительных соков в вышележащих отделах пищеварительного тракта (слюны, желудочного и панкреатического соков).
В регуляции секреции кишечного сока ведушую роль играют местные механизмы -- нервно-рефлекорные и гуморальные. Механическое раздражение слизистой тонкой кишки пищевыми массами возбуждает рецепторы изистой и рефлекторно вызывает усиление кишечной секреции по безусловно-рефлекторному механизму с участием нейронов межмышечного нервного сплетения кишечной стенки, при этом образуется жидкий кишечный сок, содержащий небольшое количество ферментов.
Гуморальными стимуляторами кишечной секреции являются продукты переваривания белков и жиров, соляная кислота, панкреатический сок, некоторые гормоны пищеварительного тракта, образующиеся в эндокринных клетках слизистой оболочки тонкой кишки (желудочный ингибирующий пептид, мотилин). Под влиянием гуморальных раздражителей усиливается выработка кишечного сока, богатого ферментами.
221.Виды сокращений мускулатуры желудочно-кишечного тракта, их характеристика. Регуляция моторной функции желудочно-кишечного тракта
Моторная деятельность представляет собой координированную работу гладких мышц желудочно-кишечного тракта и специальных скелетных мышц. Они лежат в три слоя и состоят из циркулярно расположенных мышечных волокон, которые постепенно переходят в продольные мышечные волокна и заканчиваются в подслизистом слое. К скелетным мышцам относятся жевательные и другие мышцы лица.
Значение моторной деятельности:
1) приводит к механическому расщеплению пищи;
2) способствует продвижению содержимого по желудочно-кишечному тракту;
3) обеспечивает открытие и закрытие сфинктеров;
4) влияет на эвакуацию переваренных пищевых веществ.
Существуют несколько видов сокращений:
1) перистальтические;
2) неперистальтические;
3) антиперистальтические;
4) голодовые.
Перистальтические относятся к строго координированным сокращениям циркулярного и продольного слоев мышц.
Циркулярные мыщцы сокращаются позади содержимого, а продольные - перед ним. Такой вид сокращений характерен для пищевода, желудка, тонкого и толстого кишечника. В толстом отделе также присутствуют масс-перистальтика и опорожнение. Масс-перистальтика происходит в результате одновременного сокращения всех гладкомышечных волокон.
Неперистальтические сокращения - это согласованная работа скелетной и гладкомышечной мускулатуры. Существуют пять видов движений:
1) сосание, жевание, глотание в ротовой полости;
2) тонические движения;
3) систолические движения;
4) ритмические движения;
5) маятникообразные движения.
Тонические сокращения - состояние умеренного напряжения гладких мышц желудочно-кишечного тракта. Значение заключается в изменении тонуса в процессе пищеварения. Например, при приеме пищи происходит рефлекторное расслабление гладких мышц желудка для того, чтобы он увеличился в размерах. Также они способствуют адаптации к различным объемам поступающей пищи и приводят к эвакуации содержимого за счет повышения давления.
Систолические движения возникают в антральном отделе желудка при сокращении всех слоев мышц. В результате происходит эвакуация пищи в двенадцатиперстную кишку. Большая часть содержимого выталкивается в обратном направлении, что способствует лучшему перемешиванию.
Ритмическая сегментация характерна для тонкого кишечника и возникает при сокращении циркулярных мышц на протяжении 1,5-2 см через каждые 15-20 см, т. е. тонкий кишечник делится на отдельные сегменты, которые через несколько минут возникают в другом месте. Такой вид движений обеспечивает перемешивание содержимого вместе с кишечными соками.
Маятникообразные сокращения возникают при растяжении циркулярных и продольных мышечных волокон. Такие сокращения характерны для тонкого кишечника и приводит к перемешиванию пищи.
Неперистальтические сокращения обеспечивают измельчение, перемешивание, продвижение и эвакуацию пищи.
Антиперистальтические движения возникают при сокращении циркулярных мышц впереди и продольных - позади пищевого комка. Они направлены от дистального отдела к проксимальному, т. е. снизу вверх, и приводят к рвоте. Акт рвоты - удаление содержимого через рот. Он возникает при возбуждении комплексного пищевого центра продолговатого мозга, которое происходит за счет рефлекторных и гуморальных механизмов. Значение заключается в перемещении пищи за счет защитных рефлексов.
Голодовые сокращения появляется при длительном отсутствии пищи каждые 45-50 мин. Их активность приводит к возникновению пищевого поведения.
Особенностью моторной деятельности является способность некоторых клеток желудочно-кишечного тракта к ритмической спонтанной деполяризации. Это значит, что они могут ритмически возбуждаться. В результате возникает слабые сдвиги мембранного потенциала - медленные электрические волны. Поскольку они не достигают критического уровня, то сокращение гладких мышц не возникает, но происходит открытие быстрых потенциал зависимых кальциевых каналов. Ионы Ca движутся внутрь клетки и генерируют потенциал действия, приводящий к сокращению. После прекращения потенциал действия мышцы не расслабляются, а находятся в состоянии тонического сокращения. Это объясняется тем, что после потенциала действия остаются открытыми медленные потенциал зависимые каналы Na и Ca.
В гладкомышечных клетках имеются и хемочувствительные каналы, которые отрываются при взаимодействии рецепторов с какими-либо биологически активными веществами (например, медиаторами).
Регуляция этого процесса осуществляется тремя механизмами:
1) рефлекторным;
2) гуморальным;
3) местным.
Рефлекторный компонент вызывает торможение или активацию моторной деятельности при возбуждении рецепторов. Повышает моторную функцию парасимпатический отдел: для верхний части - блуждающие нервы, для нижней - тазовые. Тормозное влияние осуществляется за счет чревного сплетения симпатической нервной системы. При активации нижележащего отдела желудочно-кишечного тракта происходит торможение выше расположенного отдела. В рефлекторной регуляции выделяют три рефлекса:
1) гастроэнтеральный (при возбуждении рецепторов желудка активируются другие отделы);
2) энтеро-энтеральный (оказывают как тормозное, так и возбуждающие действие на нижележащие отделы);
3) ректо-энтеральный (при наполнении прямой кишки возникает торможение).
Гуморальные механизмы преобладают в основном в двенадцатиперстной кишке и верхней трети тонкого кишечника.
Возбуждающее действие оказывают:
1) мотилин (вырабатывается клетками желудка и двенадцатиперстной кишки, оказывает активирующее влияние на весь желудочно-кишечный тракт);
2) гастрин (стимулирует моторику желудка);
3) бамбезин (вызывает отделение гастрина);
4) холецистокинин-панкреозинин (обеспечивает общее возбуждение);
5) секретин (активирует моторку, но тормозит сокращения в желудке).
Тормозное влияние оказывают:
1) вазоактивный интестинальный полипептид;
2) гастроингибирующий полипептид;
3) соматостатин;
4) энтероглюкагон.
Гормоны желез внутренней секреции также влияют на моторную функцию. Так, например, инсулин ее стимулирует, а адреналин тормозит.
Местные механизмы осуществляются за счет наличия метсимпатической нервной системы и преобладают в тонком и толстом кишечнике. Стимулирующее действие оказывают:
1) грубые непереваренные продукты (клетчатка);
2) соляная кислота;
3) слюна;
4) конечные продукты расщепления белков и углеводов.
Тормозное действие возникает при наличии липидов.
Таким образом, в основе моторной деятельности лежит способность к генерации медленных электрических волн.
222.Всасывание основных пищевых веществ, механизм всасывания, его регуляция
Тонкий кишечник имеет ряд приспособлений для всасывания. Слизистая тонкого кишечника образует складки и ворсинки, которые покрыты каемчатым эпителием. Он образован микроворсинками, наружная поверхность которых является полупроницаемой мембраной и внутри которых находятся микроканальцы.
Благодаря сокращениям ворсинок лимфа выдавливается из лимфатических капилляров в более крупные лимфатические сосуды, что создает присасывающее действие центрального лимфатического сосуда ворсинки по отношению к кишечнику.
Процесс всасывания обеспечивается:
n фильтрацией, связанной с разностью гидростатического давления в средах снаружи и изнутри полупроницаемой мембраны;
n диффузией веществ вследствие наличия градиента концентраций по разные стороны мембраны;
n активным транспортом против градиента концентраций.
Всасывание - процесс переноса питательных веществ из полости желудочно-кишечного тракта во внутреннюю среду организма - кровь и лимфу. Всасывание происходит на протяжении всего желудочно-кишечного тракта, но его интенсивность неодинакова и зависит от трех причин:
1) строения слизистой оболочки;
2) наличия конечных продуктов;
3) времени нахождения содержимого в полости.
Слизистая оболочка нижней части языка и дна ротовой полости истончена, но способна к всасыванию воды и минеральных веществ. Вследствие короткой продолжительности нахождения пищи в пищеводе (примерно 5-8 с) всасывания не происходит. В желудке и двенадцатиперстной кишке всасывается небольшое количество воды, минеральных веществ, моносахаридов, пептонов и полипептидов, лекарственных компонентов, алкоголя.
Основное количество воды, минеральных веществ, конечных продуктов расщепления белков, жиров, углеводов, лекарственных компонентов всасывается в тонком кишечнике. Это связано с рядом морфологических особенностей строения слизистой оболочки, за счет которых значительно увеличивается площадь контакта с наличием складок, ворсинок и микроворсинок). Каждая ворсинка покрыта однослойным цилиндрическим эпителием, который обладает высокой степенью проницаемости.
В центре располагается сеть лимфоидных и кровеносных капилляров, относящихся к классу фенестрированных. Они имеют поры, через которые проходят питательные вещества. В соединительной ткани также находятся гладкомышечные волокна, обеспечивающие движения ворсинок. Оно может быть нагнетательным и колебательным. Метсимпатическая нервная система осуществляет иннервацию слизистой оболочки.
В толстом кишечнике происходит формирование каловых масс. Слизистая этого отдела обладает способностью к всасыванию питательных веществ, но этого не происходит, так как в норме они поглощаются в вышележащих структурах.
Всасывание осуществляется за счет физико-химический механизмов и физиологических закономерностей. В основе этого процесса лежат активный и пассивный виды транспорта. Большое значение имеет строение энтероцитов, поскольку поглощение происходит неодинаково через апикальную, базальную и латеральные мембраны.
Исследованиями доказано, что всасывание - активный процесс деятельности энтероцитов. В опыте вводили в просвет желудочно-кишечного тракта монойодуксусную кислоту, которая вызывает гибель клеток кишечника. Это привело к резкому снижению интенсивности всасывания. Для этого процесса характерны транспортировка питательных веществ в двух направлениях и избирательность.
Всасывание воды осуществляется на протяжении всего желудочно-кишечного тракта, но наиболее интенсивно в тонком кишечнике. Процесс идет пассивно в двух направлениях за счет наличия осмотического градиента, который создается при движении Na, Cl и глюкозы. Во время приема пищи, содержащей большое количество воды, из просвета кишечника вода поступает во внутреннюю среду организма. И наоборот, при употреблении гиперосмотической пищи вода из плазмы крови выделяется в полость кишечика. За сутки всасывается около 8-9 л воды, из которых около 2,5 л поступает с пищей, а остальной объем входит в состав пищеварительных соков.
Всасывание Na, так же как и воды, происходит во всех отделах, но наиболее - интенсивно в толстом кишечнике. Na проникает через апикальную мембрану щеточной каймы, в которой находится транспортный белок - пассивный транспорт. А через базальную мембрану осуществляется активный транспорт - движение по электрохимическому градиенту концентрации.
Транспорт Cl связан с Na и также направлен по электрохимическому градиенту концентрации Na, содержащегося во внутренней среде.
Всасывание бикарбонатов основано на поступлении ионов H из внутренней среды во время транспорта Na. Ионы H взаимодействуют с бикарбонатами и образуют угольную кислоту. Под влиянием карбоангидразы кислота распадается на воду и углекислый газ. Далее всасывание во внутреннюю среду продолжается пассивно, выделение образовавшихся продуктов происходит через легкие при дыхании.
Всасывание двухвалентных катионов идет гораздо труднее. Наиболее легко транспортируется Ca. При небольших концентрациях катионы переходят внутрь энтероцитов с помощью кальцийсвязывающего белка путем облегченной диффузии. Из клеток кишечника он поступает во внутреннюю среду при помощи активного транспорта. При высокой концентрации катионы всасываются благодаря простой диффузии.
Железо поступает внутрь энтероцита путем активного транспорта, в ходе которого образуется комплекс железа и белка ферритина.
Всасывание углеводов происходит в виде конечных продуктов метаболизма (моно- и дисахаридов) в верхней трети тонкого кишечника. Глюкоза и галактоза поглощаются путем активного транспорта, причем всасывание глюкозы сопряжено с ионами Na - симпорт. Манноза и пентоза поступают пассивно по градиенте концентрации глюкозы. Фруктоза поступает с помощью облегченной диффузии. Наиболее интенсивно идет всасывание глюкозы в кровь.
Всасывание белков наиболее интенсивно протекает в верхних отделах тонкого кишечника, причем белки животного происхождения составляют 90-95 %, а растительного - 60-70 %. Основными продуктами распада, которые образуются в результате обмена веществ, являются аминокислоты, полипептиды, пептоны. Для транспорта аминокислот необходимо наличие молекул переносчика. Выделено четыре группы транспортных белков, обеспечивающих активный процесс всасывания. Поглощение полипептидов происходит пассивно по градиенту концентрации. Продукты поступают непосредственно во внутреннюю среду и с током крови разносятся по организму.
Скорость всасывания жиров значительно меньше, наиболее активно всасывание протекает в верхних отделах тонкого кишечника. Транспорт жиров осуществляется в виде двух форм - глицерина и жирных кислот, состоящих из длинных цепей (олеиновой, стеариновой, пальмитиновой и др.). Глицерин поступает пассивно внутрь энтероцитов. Жирные кислоты образуют мицеллы с желчными кислотами и только в такой форме направляются к мембране кишечных клеток. Здесь комплекс распадается: жирные кислоты растворяются в липидах клеточной мембраны и проходят в клетку, а желчные кислоты остаются в полости кишечника. Внутри энтероцитов начинается активный синтез липопротеидов (хиломикрона) и липопротеидов очень низкой плотности. Затем эти вещества путем пассивного транспорта попадают в лимфатические сосуды. Уровень липидов, обладающих короткими и средними цепями, низкий. Поэтому они практически в неизменном виде путем простой диффузии всасываются внутрь энтероцитов, где под действием эстераз расщепляются на конечные продукты и принимают участие в синтезе липопротеидов. Такой способ транспорта требует меньших затрат, поэтому в некоторых случаях при перегрузке желудочно-кишечного тракта активируется данный вид всасывания.
Таким образом, процесс всасывания идет по механизму активного и пассивного транспорта.
Нормальная функция клеток слизистой оболочки желудочно-кишечного такта регулируется нейрогуморальными и местными механизмами.
В тонком кишечнике основная роль принадлежит местному способу, так как на деятельность органов большое влияние оказывают интрамуральные сплетения. Они осуществляют иннервацию ворсинок. За счет этого увеличивается площадь взаимодействия пищевой кашицы со слизистой оболочкой, что увеличивает интенсивность процесса всасывания. Местное действие активируется при наличии конечных продуктов расщепления веществ и соляной кислоты, а также в присутствии жидкостей (кофе, чая, супа).
Гуморальная регуляция происходит за счет гормона желудочно-кишечного тракта вилликинина. Он вырабатывается в двенадцатиперстной кишке и стимулирует движение ворсинок. На интенсивность всасывания также оказывают воздействие секретин, гастрин, холецистокинин-панкреозинин. Не последнюю роль играют гормоны желез внутренней секреции. Так, инсулин стимулирует, а адреналин тормозит транспортную активность. Среди биологически активных веществ серотонин и гистамин обеспечивают всасывание.
Рефлекторный механизм основан на принципах безусловного рефлекса, т. е. стимуляция и угнетение процессов происходят с помощью парасимпатического и симпатического отделов вегетативной нервной системы.
Таким образом, регуляция процессов всасывания осуществляется с помощью рефлекторных, гуморальных и местных механизмов.
223.Пищевой центр. Современные представления о механизмах возникновения голода, жажды, насыщения
Первые представления о строении и функциях пищевого центра были обобщены И. П. Павловым в 1911 г. По современным представлениям пищевой центр - это совокупность нейронов, расположенных на разных уровнях ЦНС, основная функция которых заключается в регуляции деятельности системы пищеварения и обеспечении адаптации к потребностям организма. В настоящее время выделены следующее уровни:
1) спинальный;
2) бульбарный;
3) гипоталамический;
4) корковый.
Спинальный компонент образован нервными клетками боковых рогов спинного мозга, обеспечивающих иннервацию всего желудочно-кишечного тракта и пищеварительных желез. Самостоятельного значения не имеет и подчиняется импульсам из вышележащих отделов. Бульбарный уровень представлен нейронами ретикулярной формации продолговатого мозга, которые входят в состав ядер тройничного, лицевого, языкоглоточного, блуждающего и подъязычного нервов. Совокупность этих ядер и образует комплексный пищевой центр продолговатого мозга, который регулирует секреторную, моторную и всасывательную функцию всего желудочно-кишечного тракта.
Ядра гипоталамуса обеспечивают определенные формы пищевого поведения. Так, например, латеральные ядра составляют центр голода или питания. При раздражении нейронов возникает булимия - обжорство, а при их разрушении животное погибает от недостатка питательных веществ. Вентромедиальные ядра образуют центр насыщения. При их активации животное отказывается от пищи, и наоборот. Перифорникальные ядра относятся к центру жажды, при раздражении животное постоянно требует воду. Значение этого отдела заключается в обеспечении различных форм пищевого поведения.
Корковый уровень представлен нейронами, входящими в состав мозгового отдела вкусовой и обонятельной сенсорных систем. Кроме этого, обнаружены отдельные точечные очаги в лобных долях коры больших полушарий, которые принимают участие в регуляции процессах пищеварения. По принципу условного рефлекса достигается более совершенное приспособление организма к условиям существования.
Голод - состояние организма, возникающее при длительном отсутствии пищи, в результате возбуждения латеральных ядер гипоталамуса. Для чувства голода характерны два проявления:
1) объективное (возникновение голодовых сокращений желудка, приводящих к пищедобывающему поведению);
2) субъективное (неприятные ощущения в эпигастральной области, слабость, головокружение, тошнота).
В настоящее время существует две теории, объясняющие механизмы возбуждения нейронов гипоталамуса:
1) теория «голодной крови»;
2) «периферическая» теория.
Теория «голодной крови» была разработана И. П. Чукичевым. Ее суть заключается в том, что при переливании крови голодного животного сытому у последнего возникает пищедобывающее поведение (и наоборот). «Голодная кровь» активирует нейроны гипоталамуса за счет низких концентраций глюкозы, аминокислот, липидов и т. д.
Выделено два пути влияния:
1) рефлекторный (через хеморецепторы рефлексогенных зон сердечно-сосудистой системы);
2) гуморальный (бедная питательными веществами кровь притекает к нейронам гипоталамуса и вызывает их возбуждение).
Согласно «периферической» теории голодовые сокращения желудка передаются на латеральные ядра и приводят к их активации.
Аппетит - страстное желание еды, эмоциональные ощущения, связанные с приемом пищи. Он возникает на уровне коры больших полушарий по принципу условного рефлекса и не всегда в ответ на состояние голода, а иногда и на снижение уровня питательных веществ в крови (в основном глюкозы). Появление чувства аппетита связано с выделением большого количества пищеварительных соков, содержащих высокий уровень ферментов.
Насыщение возникает при удовлетворении чувства голода, сопровождающееся возбуждением вентромедиальных ядер гипоталамуса по принципу безусловного рефлекса. Существует два вида проявлений:
1) объективные (прекращение пищедобывающего поведения и голодовых сокращений желудка);
2) субъективные (наличие приятных ощущений).
В настоящее время разработано две теории насыщения:
1) первичная сенсорная;
2) вторичная или истинная.
Первичная теория основана на раздражении механорецепторов желудка. Доказательство: в опытах при введении в желудок животного баллончика через 15-20 мин наступает насыщение, сопровождающееся повышением уровня питательных веществ, взятых из депонирующих органов.
Согласно вторичной (или метаболической) теории истинное насыщение возникает лишь спустя 1,5-2 ч после приема пищи. В результате повышается уровень питательных веществ в крови, приводящих к возбуждению вентромедиальных ядер гипоталамуса. За счет наличия реципрокных взаимоотношений в коре больших полушарий наблюдается торможение латеральных ядер гипоталамуса.
Жажда - состояние организма, возникающее при отсутствии воды. Она возникает:
1) при возбуждении перифорникальных ядер во время уменьшения жидкости за счет активации волюморецепторов;
2) при уменьшении объема жидкости (происходит повышение осмотического давления, на что реагируют осмотические и натрийзависимые рецепторы);
3) при подсыхании слизистых оболочек ротовой полости;
4) при местном согревании нейронов гипоталамуса.
Различают истинную и ложную жажду. Истинная жажда появляется при уменьшении уровня жидкости в организме и сопровождается желанием выпить. Ложная жажда сопровождается подсыханием слизистой оболочки ротовой полости.
Таким образом, пищевой центр регулирует деятельность системы пищеварения и обеспечивает различные формы пищедобывающего поведения организмам человека и животных.
224.Принципы организации функциональной системы дыхания
Организм человека может нормально существовать только при постоянном поступлении энергии, необходимой для всех процессов жизнедеятельности.
Основным источником энергии является химическая энергия питательных веществ, которая освобождается в организме в результате окислительных процессов.
Поэтому организм человека нуждается в постоянном поступлении кислорода из окружающей среды.
В результате окисления органических веществ в клетках образуется углекислый газ, который удаляется в окружающую среду.
Таким образом, дыхание - это совокупность процессов, которые обеспечивают поступление кислорода в организм, окисление субстратов в клетках и удаление, образовавшегося при этом углекислого газа из организма.
Дыхание осуществляется при помощи органов дыхания, которые представляют собой воздухоносные пути (носовая полость, глотка, гортань, трахея, бронхи) и дыхательную часть (лёгкие).
Особенностью строения дыхательных путей является наличие хрящевого остова (в результате стенки дыхательной трубки не спадаются) и мерцательного эпителия, выстилающего слизистую оболочку (его реснички колеблются по направлению движения выдыхаемого воздуха и изгоняют вместе со слизью инородные частицы, загрязняющие дыхательные пути).
Полость носа образована лицевыми костями и хрящами и поделена носовой перегородкой на 2 симметричные половины, которые сообщаются с атмосферой через нос, а сзади - с глоткой при помощи хоан.
Слизистая оболочка содержит слизистые железы, секрет которых обволакивает частички пыли, увлажняет воздух и согревает его (слизистая оболчка богата поверхностно расположенными кровеносными сосудами). Носовая полость также выполняет функцию обоняния, так как слизистая оболочка выстлана обонятельным эпителием.
Из полости носа вдыхаемый воздух попадает в носоглотку, далее в ротовую часть глотки и затем в гортань.
Гортань находится на уровне IV-VI шейных позвонков. Она образована хрящами, соединёнными между собой суставами, связками и поперчно-полосатыми мышцами.
Внутреннюю поверхность гортани выстилает слизистая оболочка.
Сзади гортани находится глотка, с которой гортань сообщается при помощи отверстия, называемого входом в гортань. В средней части гортани находятся голосовые связки.
Вдыхаемый воздух вызывает их колебание, в результате чего появляются звуки различного тона и силы.
Внизу гортань переходит в дыхательное горло или трахею.
Трахея представляет собой хрящевую трубку (состоит из 15-20 гиалиновых хрящевых полуколец, соединённых кольцевыми связками) длиной 11-13 см, расположенной на уровне нижнего края VI шейного и IV-V грудного позвонков.
Здесь трахея делится на два главных бронха (правый и левый).
Каждый из главных бронхов входит в ворота правого или левого лёгкого и разделяется (по числу основных долей лёгкого) на долевые бронхи (3 ветви - в правом и 2 ветви - в левом лёгком).
Эти крупные бронхиальные ветви разветвляются на более мелкие или сегментарные бронхи, которые, продолжая делиться, образуют бронхиальное дерево.
По мере деления бронхов происходит уменьшение их калибра, уменьшение хрящевых пластин и увеличение мышечной пластинки слизистой. В мелких бронхах исчезают хрящевые пластинки и железы.
Лёгкие располагаются в грудной полости, по обеим сторонам от сердца. Имеют вид половины усечённого конуса, разрезанного пополам от вершины до основания. Основание обращено вниз и прилегает к диафрагме. Закруглённая верхушка лёгкого обращена вверх.
На вогнутой поверхности, обращённой к средостению, находятся ворота лёгкого, куда входят бронхи, артерии и нервы и откуда выходят вены и лимфатические сосуды.
Наружная выпуклая поверхность лёгкого прилегает к рёбрам.
Правое лёгкое состоит из 3-х долей, отделённых междолевыми бороздами.
Левое - из 2-х долей, разделённых междолевой бороздой.
Доли лёгкого состоят из сегментов, которые образованы дольками. Морфологической и функциональной единицей лёгкого является ацинус (12-18 ацинусов образуют одну лёгочную дольку).
Он начинается респираторными бронхиолами, которые переходят в разветвления конечных бронхиол.
Каждая респираторная бронхиола подразделяется на альвеолярные ходы, которые заканчиваются альвеолярными мешочками.
На стенках альвеолярных ходов и мешочков располагается несколько десятков альвеол.
Альвеолы имеют вид открытого пузырька и тесно примыкают друг к другу.
Ветви лёгочных артерий, сопровождая бронхиальное дерево, доходят до альвеол, где образуют капиллярную сеть. Альвеолярные капилляры собираются в посткапиллярные венулы, а затем в венулы, которые, сливаясь, образуют лёгочные вены. Такие морфологические особенности обеспечивают оптимальные условия для обмена газов между воздухом альвеол и кровью, протекающей в капиллярах.
225. Дыхание, его основные этапы
Дыхание включает в себя следующие этапы:
1. Внешнее дыхание - обмен воздуха между внешней средой и альвеолами лёгких.
2. Газообмен в лёгких - газообмен между альвеолярным воздухом и кровью в лёгочных капиллярах.
3. Транспорт газов кровью - перенос газов кровью к тканям.
4. Газообмен в тканях - газообмен между кровью и тканями в тканевых капиллярах.
5. Клеточное дыхание - окисление органических веществ в клетках.
226. Механизм внешнего дыхания. Биомеханика вдоха и выдоха
Внешнее дыхание включает в себя обмен воздуха между окружающей средой и лёгкими.
Атмосферный воздух, насыщенный кислородом, поступает в лёгкие через воздухоносные пути во время вдоха.
При выдохе альвеолярный воздух, насыщенный углекислым газом, удаляется по тем же путям в окружающую среду.
Вдох обеспечивается сокращением инспираторных дыхательных мышц.
Различают основные и вспомогательные дыхательные мышцы.
К основным относят диафрагму и межрёберные мышцы, обеспечивающие вентиляцию лёгких в физиологических условиях.
К вспомогательным относятся мышцы шеи, часть мышц верхнего плечевого пояса, мышцы брюшного пресса, принимающие участие в форсированном вдохе или выдохе в обстоятельствах, затрудняющих вентиляцию лёгких.
В результате сокращения наружных косых межрёберных и межхрящевых мышц рёбра поднимаются вверх, разворачиваясь вокруг оси, отходят в стороны, грудина отходит вперед.
Объём грудной клетки увеличивается во фронтальном и сагиттальном направлениях.
Диафрагма, сокращаясь, уплощается (опускается вниз) и объём грудной клетки увеличивается в вертикальном направлении.
Листки плевры следуют за грудной клеткой и диафрагмой (париетальный листок плотно спаян со стенкой грудной клетки и диафрагмой, висцеральный - с тканью лёгкого, между ними действуют молекулярные силы сцепления, прижимающие их друг к другу).
В результате лёгкие пассивно следуют за увеличивающейся в размерах грудной клеткой и объём лёгких увеличивается, внутрилёгочное давление падает.
Атмосферное давление становится больше внутрилёгочного и по градиенту давлений происходит пассивное заполнение лёгких воздухом.
Чем больше градиент давлений (определяется степенью сокращения дыхательной мускулатуры, а, следовательно, и степенью увеличения объёма грудной клетки), тем больший объём воздуха поступает в лёгкие.
Выдох наступает в результате расслабления дыхательной мускулатуры рёбра (в силу тяжести) опускаются вниз, грудина возвращается назад, диафрагма вновь принимает куполообразную форму (под давлением брюшных органов).
Объём грудной клетки уменьшается (во фронтальном, сагиттальном и вертикальном направлениях).
Листки плевры следуют за грудной клеткой и диафрагмой.
Объём лёгких уменьшается, внутрилегочное давление увеличивается, становится больше атмосферного и по градиенту давлений воздух выходит из лёгких.
Следовательно, спокойный вдох - активный процесс, а спокойный выдох - пассивный.
227. Давление в плевральной полости и его происхождение и роль в механизме внешнего дыхания. Изменения давления в плевральной полости в разные фазы дыхательного цикла
Давление в плевральной полости всегда ниже атмосферного - отрицательное давление.
Величина отрицательного давления в плевральной полости:
к концу максимального выдоха - 1-2 мм рт. ст.,
к концу спокойного выдоха - 2-3 мм рт. ст.,
к концу спокойного вдоха - 5-7 мм рт. ст.,
к концу максимального вдоха - 15-20 мм рт. ст.
Отрицательное давление в плевральной полости обусловлено так называемой эластической тягой лёгких - силой, с которой лёгкие постоянно стремятся уменьшить свой объём.
Эластическая тяга лёгких обусловлена:
1) поверхностным натяжением плёнки жидкости, покрывающей внутреннюю поверхность альвеол;
2) упругостью ткани стенок альвеол вследствие наличия в них эластических волокон;
3) тонусом бронхиальных мышц.
228. Жизненная ёмкость лёгких и составляющие её компоненты. Методы их определения. Остаточный объём
Характеризует резервные возможности внешнего дыхания жизненная ёмкость лёгких (ЖЕЛ).
Это тот объём воздуха, который человек максимально может вдохнуть после максимального глубокого выдоха. В среднем это величина составляет 3500 мл. Чем выше жизненная ёмкость, тем лучше снабжается организм кислородом. Жизненная ёмкость лёгких, как правило, выше у мужчин и у физически тренированных лиц.
Жизненная емкость легких - то количество воздуха, которое способен выдохнуть человек после глубокого вдоха. Она является одним из показателей физического развития организма и считается патологической, если составляет 70-80 % от должного объема. В течение жизни данная величина может меняться. Это зависит от ряда причин: возраста, роста, положения тела в пространстве, приема пищи, физической активности, наличия или отсутствия беременности.
Жизненная емкость легких состоит из дыхательного и резервного объемов. Дыхательный объем - это то количество воздуха, которое человек вдыхает и выдыхает в спокойном состоянии. Его величина составляет 0,3-0,7 л. Он поддерживает на определенном уровне парциальное давление кислорода и углекислого газа в альвеолярном воздухе. Резервный объем вдоха - количество воздуха, которое может дополнительно вдохнуть человек после спокойного вдоха. Как правило, это 1,5-2,0 л. Он характеризует способность легочной ткани к дополнительному растяжению. Резервный объем выдоха - то количество воздуха, которое можно выдохнуть вслед за нормальным выдохом.
Остаточный объем - постоянный объем воздуха, находящийся в легких даже после максимального выдоха. Составляет около 1,0-1,5 л.
Лёгочные объёмы:
1. Дыхательный объём (ДО) = 500 мл
2. Резервный объём вдоха (РОвдоха)= 1500-2500 мл
3. Резервный объём выдоха (РОвыдоха)=1000 мл
4. Остаточный объём (ОО) = 1000 -1500мл
Лёгочные ёмкости:
- общая ёмкость лёгких (ОЕЛ)= (1+2+3+4) = 4-6 литров
- жизненная ёмкость лёгких (ЖЕЛ) = (1+2+3) =3,5-5 литров
- функциональная остаточная ёмкость лёгких (ФОЕ) = (3+4 ) = 2-3 литра
- ёмкость вдоха (ЕВ) = (1+2) = 2-3 литра
229. Минутный объём вентиляции лёгких и его изменения при различных нагрузках, методы его определения. «Вредное пространство» и эффективная лёгочная вентиляция. Почему редкое и глубокое дыхание более эффективно
Движение воздуха в лёгких во время дыхания называют лёгочной вентиляцией. Она характеризуется минутным объёмом дыхания.
Минутный объём дыхания (МОД) - это то количество воздуха, которое проходит через лёгкие за одну минуту.
МОД зависит от величин дыхательного объёма и частоты дыханий в минуту.
Дыхательный объём - это то количество воздуха, которое поступает в лёгкие при одном спокойном вдохе.
Его величина, в среднем, составляет 500 мл, частота дыханий за минуту равна 12-16 и, следовательно, минутный объём дыхания, в среднем, составляет 6-8 л.
Однако, не весь воздух, поступивший в органы дыхания, принимает участие в газообмене. Часть воздуха заполняет воздухоносные пути (гортань, трахею, бронхи, бронхиолы) и не доходит до альвеол, поскольку при выдохе первым покидает организм.
Этот воздух получил название - воздух вредного пространства. Его объём, в среднем, составляет 140-150 мл. Поэтому вводится понятие эффективная лёгочная вентиляция.
Это то количество воздуха за одну минуту, которое принимает участие в газообмене.
Эффективная лёгочная вентиляция при одном и том же минутном объёме дыхания может быть различной. Так, чем больше дыхательный объём, тем меньше относительный объём воздуха вредного пространства. Поэтому редкое и глубокое дыхание более эффективно для снабжения организма кислородом, так как вентиляция альвеол увеличивается.
230. Состав атмосферного и выдыхаемого воздуха. Альвеолярный воздух как внутренняя среда организма. Понятие о парциальном давлении газов
Легочное дыхание заключается в обмене газов между альвеолярным воздухом и окружающей средой и между альвеолярным воздухом и капиллярами.
При газообмене с внешней средой поступает воздух, содержащий 21 % кислорода и 0,03--0,04 % углекислого газа, а выдыхаемый воздух содержит 16 % кислорода и 4 % углекислого газа. Кислород поступает из атмосферного воздуха в альвеолярный, а углекислый газ выделяется в обратном направлении.
При обмене с капиллярами малого круга кровообращения в альвеолярном воздухе давление кислорода 102 мм рт. ст., а углекислого газа - 40 мм рт. ст., напряжение в венозной крови кислорода - 40 мм рт. ст., а углекислого газа - 50 мм рт. ст. В результате внешнего дыхания от легких оттекает артериальная кровь, богатая кислородом и бедная углекислым газом.
231. Газообмен в лёгких. Парциальное давление газов (О2 и СО2) в альвеолярном воздухе и напряжение газов в крови. Основные закономерности перехода газов через мембрану
В лёгких совершается обмен О2 и СО2 между воздухом и кровью. Этот обмен происходит благодаря разнице парциального давления газов в альвеолярном воздухе и в крови, протекающей в капиллярах лёгких.
Диффузия газов из окружающей среды в жидкость подчиняется законам движения газов.
Если над жидкостью находится смесь газов, то каждый газ растворяется в жидкости соответственно его парциальному давлению, то есть тому давлению, которое приходится на его долю от общего давления смеси газов. Парциальное давление пропорционально содержанию каждого газа в смеси.
При атмосферном давлении 760 мм pт. ст. и температуре 22 оС парциальное давление кислорода воздуха умеренной влажности составляет 21 % от 760 мм рт. ст. и равно 159 мм рт. ст.
В тех же условиях парциальное давление углекислого газа составляет 0,03 % от 760 мм рт. ст. и равно 0,23 мм рт. ст.
Остальная часть атмосферного давления приходится на азот, пары воды и инертные газы.
В альвеолярном воздухе содержится О2 - 14 %, СО2 - 6 % и присутствует большее количество воды.
Поэтому здесь парциальное давление О2 = 105, а pСО2 = 40 мм рт. ст.
Парциальное давление газов в крови называется их напряжением.
Оно также пропорционально содержанию газа в крови.
Альвеолярный воздух непосредственно не соприкасается с кровью, так как отделён от неё тканевыми мембранами.
Однако анатомо-физиологические особенности лёгких создают благоприятные условия для газообмена.
232. Обмен газов между кровью и тканями. Напряжение О2 и СО2 в крови, тканевой жидкости и клетках
В притекающей к альвеолам лёгких венозной крови pО2 ниже, чем в альвеолярном воздухе, и не превышает 40 мм рт. ст., а pСО2, наоборот, выше и равно 46 мм рт. ст.
Благодаря градиенту давлений происходит диффузия СО2 из венозной крови в альвеолярный воздух и О2 - наоборот, из альвеол в кровь.
В оттекающей от альвеол артериальной крови парциальное напряжение О2 составляет 100 мм pт. ст. и pСО2 - 40 мм pт. ст.
Артериальная кровь направляется к тканям, где в процессе тканевого дыхания происходит утилизация О2 и образование СО2.
В результате pО2 в тканях снижается до 20 мм рт. ст., а pСО2 увеличивается до 60 мм рт. ст.
Возникший градиент давлений обеспечивает переход О2 из артериальной крови в ткани и, наоборот, СО2 - от тканей в кровь образовавшаяся венозная кровь направляется к альвеолам лёгких, где она вновь отдаёт СО2 и обогащается кислородом.
После газообмена в альвеолах воздух проходит через воздухоносные пути и смешивается с воздухом вредного пространства, который не принимает участия в газообмене.
Поэтому выдыхаемый воздух отличается от альвеолярного большим содержанием О2 (16 %) и меньшим содержанием СО2 (4 %)ю
Таким образом, для парциальных напряжений как О2, так и СО2 существует артерио-венозная разница, которая характеризует различия в парциальных напряжениях газов в притекающей к тканям артериальной крови и оттекающей от них венозной крови.
Величина аpтеpио-венозной разницы определяет степень утилизации О2 тканями и образование СО2.
Эта величина также зависит от общего содержания О2 и СО2 в организме.
Атмосферный воздух:
O2 -- 20,93 %
CO2 -- 0,03 %
Альвеолярный воздух:
O2 -- 14 %
CO2 -- 6 %
Выдыхаемый воздух:
O2 -- 16 %
CO2 -- 4,5 %
Атмосферный воздух:
pO2=159 мм рт. ст., pCO2=0,23 мм рт. ст.
Альвеолярный воздух:
pO2=105 мм рт. ст., pCO2=40 мм рт. ст.
Венозная кровь:
pO2=40 мм рт. ст., pCO2=46 мм рт. ст.
Артериальная кровь:
pO2=100 мм рт. ст., pCO2=40 мм рт. ст.
Ткани:
pO2=20 мм рт. ст., pCO2=60 мм рт. ст.
Альвеолярный воздух:
pO2=105 мм рт. ст., pCO2=40 мм рт. ст.
233. Транспорт О2 кровью, кривая диссоциации оксигемоглобина, её характеристика, кислородная ёмкость крови
Кровь ежедневно переносит из лёгких в ткани около 600 л О2. Основной объём О2 транспортирует HbO2 (O2 обратимо ассоциирован с Fe2+ гема, это так называемый химически связанный O2 [неверный по существу, но -- к сожалению -- устоявшийся термин]). Незначительная часть O2 растворена в крови (физически растворённый O2). Содержание O2 в крови в зависимости от парциального давления O2 (pO2).
Согласно закону Генри, количество растворённого в крови O2 пропорционально pO2 (парциальному давлению O2) и коэффициенту растворимости O2. Физическая растворимость O2 в крови примерно в 20 раз меньше, чем растворимость СО2, но для обоих газов незначительна. В то же время физически растворённый в крови газ Ї необходимый этап транспорта любого газа (например, при перемещении O2 в эритроцит из полости альвеол).
Кислородная ёмкость крови Ї максимальное возможное количество связанного с Hb О2 Ї теоретически составляет 0,062 ммоль О2 (1,39 мл О2) на 1 г Hb (реальное значение несколько меньше Ї 1,34 мл О2 на 1 г Hb). Измеренные же значения составляют для мужчин 9,4 ммоль/л (210 мл О2 /л), для женщин Ї 8,7 ммоль/л (195 мл О2 /л).
Насыщение (сатурация, S) Hb О2 (So2) зависит от парциального давления кислорода (pO2) и фактически отражает содержание оксигенированного Hb (HbО2). So2 может принимать значения от 0 (HbО2 нет) до 1 (нет HbH). При половинном насыщении (S0,5) pO2 равно 3,6 кПа (27 мм рт.ст.), при S0,75 Ї 5,4 кПа, при S0,98 13,3 кПа.
Другими словами зависимость между So2 и pO2 не является линейной (характерная S-образная кривая), что благоприятствует как связыванию О2 в лёгких (артериальная кровь) и транспорту О2, так и освобождению О2 в кровеносных капиллярах органов и тканей, так как насыщение артериальной крови кислородом (SAo2) составляет примерно 97,5 %, а венозной крови (SVo2) Ї 75 %.
Характер насыщения таков, что кривая существенно уплощается при pO2 около 70 мм рт. ст. Так, при pO2 ниже 60 рт.ст. кислород хорошо связывается с Hb, но уже при pO2 60 мм рт. ст. насыщение составляет 90 %, и дальнейшее увеличение pO2 относительно слабо сказывается на насыщении (увеличение pO2 от 60 до 100 мм рт. ст. увеличивает насыщение всего на 7 %).
Другими словами, в этом диапазоне pO2 насыщение O2 благоприятно для обеспечения его транспорта. Совершенно иная картина складывается при значениях pO2 ниже 60 мм рт. ст., то есть при небольших изменениях pO2 из Hb освобождается существенные количества O2, что облегчает его диффузию из крови в ткани.
Кривая диссоциации оксигемоглобина имеет сигмоидную форму (S-образную). Это указывает на то, что субъединицы Hb работают кооперативно: чем больше О2 связывают (отдают) субъединицы, тем легче идёт ассоциация (диссоциация) последующих молекул О2. Из графика видно, что Hb (в отличие от миоглобина) имеет значительно меньшее сродство к О2 - полунасыщение гемоглобина О2 наступает при более высоком давлении О2 (около 26 мм рт. ст.).
В капиллярах покоящихся мышц, где давление О2 составляет около 40 мм рт. ст., большая часть кислорода возвращается в составе оксигемоглобина обратно в лёгкие. При физической работе pO2 в мышечных капиллярах падает до 10-20 мм рт. ст. Именно в этой области (от 10 до 40 мм рт. ст.) располагается «крутая часть» S-образной кривой, где в наибольшей степени проявляется свойство кооперативной работы субъединиц.
Сдвиг влево - легче насыщение кислородом: <t; <Pco2; >pH
Сдвиг вправо - легче отдача кислорода: >t; >Pco2; <pH
234. Транспорт углекислоты кровью, значение карбоангидразы, взаимосвязь транспорта О2 и СО2
Углекислый газ транспортируется следующими путями:
Растворенный в плазме крови - около 25 мл / л.
Связанный с гемоглобином (карбгемоглобин) - 45 мл / л.
В виде солей угольной кислоты - букарбонаты калия и натрия в плазме крови - 510 мл / л.
Таким образом, в состоянии покоя кровь транспортирует 580 мл углекислого газа в 1 л. Итак, основной формой транспорта СО2 является бикорбонаты плазмы, образующихся благодаря активному протеканию карбоангидразнои реакции.
В эритроцитах содержится фермент карбоангидраза (КГ), который катализирует взаимодействие углекислого газа с водой с образованием угольной кислоты, распадается с образованием бикарбонатного иона и протона. Бикарбонат внутри эритроцита взаимодействует с ионами калия, выделяемых из калиевой соли гемоглобина при восстановлении последнего. Так внутри эритроцита образуется бикарбонат калия. Но бикарбонатно ионы образуются в значительной концентрации и поэтому по градиенту концентрации (в обмен на ионы хлора) поступают в плазму крови. Так в плазме образуется бикарбонат натрия. Протон, образовавшегося при диссоциации угольной кислоты, реагирует с гемоглобином с образованием слабой кислоты ННb.
В капиллярах легких эти процессы идут в обратном направлении. С ионов водорода и бикарбонатных ионов образуется угольная кислота, которая быстро распадается на углекислый газ и воду. Углекислый газ удаляется наружу.
Итак, роль эритроцитов в транспорте углекислоты такова:
образование солей угольной кислоты;
образования карбгемоглобин.
Диффузия газов в тканях подчиняется общим законам (объем диффузии прямо пропорционален площади диффузии, градиента напряжения газов в крови и тканях). Площадь диффузии увеличивается, а толщина диффузного слоя уменьшается при увеличении количества функционирующих капилляров, что имеет место при повышении уровня функциональной активности тканей. В этих же условиях возрастает градиент напряжения газов за счет снижения в активно работающих органах Ро2 и повышения Рсо2 (газовый состав артериальной крови, как и альвеолярного воздуха остается неизменным!). Все эти изменения в активно работающих тканях способствуют увеличению объема диффузии О2 и СО2 в них. Потребление О2 (СО2) по спирограмму определяют по изменению (сдвигу) кривой вверх за единицу времени (1 минуту).
235. Иннервация дыхательных мышц
Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III--IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III--XII) грудных сегментов спинного мозга.
236. Дыхательный центр. Современные представления о структуре и локализации. Автоматия дыхательного центра
Информация о состоянии кислородно-углекислого баланса в организме поступает в дыхательный центр, который представляет нейронную организацию центральной нервной системы, определяющую функцию дыхания.
В анатомическом смысле дыхательный центр - это совокупность нейронов в локальной зоне центральной нервной системы, без которой дыхание становится невозможным.
Такой центр находится в ретикулярной формации продолговатого мозга в области дна IV желудочка.
Он состоит из двух отделов:
1) центр вдоха (инспираторный отдел);
2) центр выдоха (экспираторный отдел).
Нейроны бульбарного центра обладают автоматией и находятся в реципрокных взаимоотношениях между собой.
Несовершенность координации дыхательного акта центрами продолговатого мозга была доказана методом перерезок. Так после отделения продолговатого мозга от вышележащих отделов чередование вдохов и выдохов сохраняется, но длительность и глубина дыханий становится нерегулярной.
В физиологическом смысле дыхательный центр - это совокупность нейронов, расположенных на различных уровнях центральной нервной системы (от спинного мозга до коры головного мозга), которые обеспечивают координированное ритмическое дыхание, то есть делают функцию дыхания более совершенной.
...Подобные документы
Гормоны как биологически высокоактивные вещества, оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма, их общие свойства и эффекты. Принципы организации гуморальной регуляции. Место выработки, стимуляция.
презентация [5,9 M], добавлен 05.01.2014Что такое гормоны? Транспорт гормонов. Основные органы эндокринной системы. Гипоталамус. Гипофиз. Эпифиз. Щитовидная железа. Паращитовидные железы. Тимус. Поджелудочная железа. Надпочечники. Половые железы.
реферат [39,6 K], добавлен 06.05.2002Свойства, механизмы действия и классификация гормонов. Синтез катехоламинов и пролактина. Гормоны гипофиза и аденогипофиза. Функции вазопрессина, окситоцина. Структура щитовидной железы. Физиологическое значение и регуляция образования клюкокортикоидов.
презентация [5,9 M], добавлен 20.04.2015Гормоны. Периферические эндокринные железы. Управляющие эндокринные железы. Анатомия и физиология эпифиза. Влияние эпифиза на различные функции организма. Биологические ритмы организма. Связь эпифиза и психики человека. Влияние эпифиза на старение.
научная работа [286,5 K], добавлен 08.02.2007Строение, функции и значение эндокринной системы. Общие анатомо-физиологические свойства желез внутренней и внешней секреции; нейрогуморальная регуляция. Классификация эндокринных органов. Влияние гормонов на обмен веществ, рост и развитие организма.
презентация [6,1 M], добавлен 19.04.2015Гипоталамо-гипофизарная система. Функции гипофиза. Основные гормоны и их эффекты. Функции надпочечников. Железы внутренней секреции. Классификация гормонов по их химической природе по В. Розену. Прямые и обратные связи в регуляции эндокринных желез.
презентация [4,4 M], добавлен 13.12.2013Назначение и молекулярная структура цитоплазматических мембран. Перенос молекул через них, уравнение Фика. Электродиффузионное уравнение Нернста-Планка. Анализ механизмов транспорта веществ через Биологические мембраны. Биоэлектрические потенциалы.
презентация [1,1 M], добавлен 21.05.2017Гормоны как биологически активные вещества, вырабатываемые эндокринными железами. Основные свойства и механизм действия гормонов. Главные эндокринные железы. Особенности мужских и женских гормонов. Функции паращитовидных желез в организме человека.
презентация [774,8 K], добавлен 06.02.2013Функции щитовидной железы. Основные группы гормонов. Гипоталамус и эндокринная система. Периферические эндокринные железы. Регуляция секреции гонадотропинов. Гормоны эпифиза, нейрогипофиза, аденогипофиза, гонадотропные гормоны (гонадотропины).
презентация [2,0 M], добавлен 05.06.2012Этиология, патогенез, клиника, диагностика, лечение, профилактика заболеваний эндокринной системы. Классический опыт Бертольда. Теория о внутренней секреции Ш. Секара. Эндокринные железы и секретируемые ими гормоны. Основные патологические факторы.
презентация [4,4 M], добавлен 06.02.2014Гормоны как продукты внутренней секреции. Стероидные гормоны, эффективность кальмодулина, гормон роста (соматотропин): его строение и синтез, воздействие на ряд систем организма. Особенности тиреоидных гормонов. Система ренин-ангиотензин-альдостерон.
реферат [318,8 K], добавлен 07.06.2010Строение организма человека. Нервная и гуморальная регуляции. Клетки и ткани человеческого тела. Органы и системы органов. Биологически активные элементы. Интересные факты об организме человека. Факторы, обеспечивающие определённую коррекцию фенотипа.
презентация [194,8 K], добавлен 06.03.2013Функции единой нейроэндокринной системы организма. Основные эндокринные железы. Схема гипоталамо-гипофизарных механизмов регуляции их активности. Поджелудочная железа и образование инсулина. Эпифиз и восприятие света. Гормоны "неэндокринных" органов.
презентация [1,9 M], добавлен 29.08.2013Железы внутренней секреции и их гормоны. Классификация гормонов по их химической природе по В. Розену. Прямые и обратные связи в регуляции эндокринных желез. Взаимодействие гипоталамуса и гипофиза. Основные гормоны коры надпочечников, их метаболизм.
презентация [4,5 M], добавлен 06.12.2016Тироидные гормоны, катехоламины. Действие эндокринных органов и клеток. Центральный и периферический отделы эндокринной системы. Симпатическая нервная система. Клубочковая и пучковая зона надпочечников. Строение гипофиза, гипоталамуса и эпифиза.
реферат [17,8 K], добавлен 18.01.2010Гормоны поджелудочной железы. Физиологическое значение инсулина, регуляция секреции. Гормоны коркового слоя надпочечников. Регуляция образования глюкокортикоидов и минералкортикоидов. Роль надпочечников адаптационного синдрома. Половые железы (гонады).
лекция [114,9 K], добавлен 25.09.2013Организация мембран. Транспорт веществ через мембраны. Центральный механизм регуляции орагнов дыхания. Нефрон - структурно-функциональная единица почки. Функциональные связи гипоталамуса с гипофизом. Проблема локализации функций в коре большого мозга.
контрольная работа [39,4 K], добавлен 03.02.2008Определение понятия иммунного ответа организма. Пути и механизмы регуляции иммунного ответа с помощью нейромедиаторов, нейропептидов и гормонов. Основные клеточные регуляторные системы. Глюкокортикоидные гормоны и иммунологические процессы в организме.
презентация [405,1 K], добавлен 20.05.2015Характеристика и классификация видов гормонов. Характеристика анаболических стероидов. Механизм действия стероидов. Влияние анаболических стероидов на организм. Регуляция деятельности органов и тканей живого организма. Пептидные и белковые гормоны.
презентация [10,9 M], добавлен 01.03.2013Регуляция функций организма, согласованная деятельность органов и систем, связь организма с внешней средой как основные функции деятельности нервной системы. Свойства нервной ткани - возбудимость и проводимость. Строение головного мозга и его зоны.
реферат [2,7 M], добавлен 04.06.2010