Здоровая микробиота и натуральное функциональное питание: гуморальный и клеточный иммунитет

Наличие инновационных технологий, таких как секвенирование следующего поколения и коррелированные инструменты биоинформатики, позволяют глубже исследовать некоторые перекрестные нейросетевые взаимосвязи между микробиотой и иммунными реакциями человека.

Рубрика Медицина
Вид статья
Язык русский
Дата добавления 25.12.2024
Размер файла 6,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

-в-пятых, добавлен порошок спирулины, имеющий в своем составе полноценный белок, углеводы, жиры, микро- и макроэлементы, витамины, фикоцианин, бета-каротин, линолевую кислоту и другие биологически активные компоненты. Как мощный антиоксидант спирулина предотвращает преждевременное старение в результате окислительных процессов в организме;

-в-шестых, введена ламинария, которая обладает противоопухолевой активностью, антимикробным, антибактериальным и противовирусным действием. Антимутагенным и радиопротекторным действием, а также противовоспалительной и иммуномодулирующей активностью. В ламинарии концентрация магния превышает таковую в морской воде в 9-10 раз, серы -- в 17 раз, брома -- в 13 раз. В 1 кг ламинарии содержится столько йода, сколько его растворено в 100 000 л морской воды. Содержание полисахаридов фукоидана и ламинарина способствует профилактике и лечению сердечно-сосудистых и цереброваскулярных заболеваний. Эти заболевания во многом зависят от баланса липидов, нарушение которого приводит к повышенной склонности к образованию атеросклеротических бляшек в сосудах. Ламинарин также оказывает гипотензивный эффект и проявляет антикоагулянтную активность, которая составляет 30% от активности гепарина;

-в-седьмых, натуральное экологическое специально переработанное (для лучшей усвояемости) каменное масло, необходимое для организма человека, вместе с другими компонентами, входящими в данный состав, для достижения профилактического базиса по поддержанию функционирования нейрометаболических и интегративных процессов высшей нервной деятельности человека, посредством гармонизации биофизических, биохимических и гормональных взаимодействий в циклической системе «хронобиология-хрономедицина».

Клинические испытания проводились в Федеральном государственном учреждении «Российский научный центр Восстановительной медицины и курортологии (ФГУ «РНЦ ВМ и К») Минздравсоцразвития РФ в период с 20.10.2009 г. по 19.03.2010 г. по договору №1389/09 от 20.10.2009.

Установлены следующие клинические эффекты при употреблении функциональных продуктов питания в рекомендуемых дозах и режимах:

1) геропротекторный,

2) дезинтоксикационный,

3) пребиотический,

4) гепатопротекторный,

5) пробиотический,

6) антиоксидантное действие

7) постоянный синтез ферментов и гормонов.

Результаты клинического исследования эффективности функциональных продуктов питания с фитокомпонентами в предложенных дозах эффективно применяются в качестве диетического, пребиотического и функционального питания при ишемии головного мозга.

Данный функциональных продуктов питания содержит антиоксиданты, витамины, минералы, фитопродукты, пищевые волокна, микро- и макроэлементы без наличия ГМО, консервантов и пищевых химических добавок, необходимые для достижения указанного результата.

Помимо влияния диетических привычек на эпигенетическую регуляцию метаболизма существует еще несколько социальных факторов, таких как режим сна, время приема пищи и рабочие смены, которые вызывают циркадное рассогласование.

Даже одна ночь недосыпания приводит к гиперметилированию различных тканеспецифических часовых генов, что приводит к повышению инсулинорезистентности и нарушению толерантности к глюкозе. Кроме того, метаболиты являются субстратами, используемыми для формирования модификаций хроматина и играют фундаментальную роль в деятельности всех биохимических путей. Было показано, что метаболиты, вытекающих из различных пищевых источников могут служить субстратами для транскрипционных факторов и гистонов модификации ферментов, которые потом влияют на уплотнение хроматина. С другой стороны, существует несколько линий доказательств того, что эпигенетика, в свою очередь, может влиять на метаболизм и болезни.

Питание и энергетический обмен являются одними из наиболее важных функций, необходимых для поддержания физической формы и выживания организма, и поэтому являются мощными движущими силами эволюции.

Диетическая модуляция эпигенома. Хорошо известна важная роль эпигенетических механизмов в развитии и функционировании мозга. Однако прогресс в этой области на пути к пониманию механизмов вызванных диетой изменений ограничен в первую очередь из-за недоступности мозга от живых субъектов человека в сочетании со сложностью эпигенетических сигнатур различных типов клеток в головном мозге.

Все больше данных свидетельствует о том, что различные эпигенетические механизмы (метилирование ДНК, модификации гистонов, нкРНК) взаимосвязаны и образуют «эпигенетическую сеть». Наблюдаемый фенотип -- включая глобальное здоровье и возрастные процессы -- является конечным результатом ряда интегральных сигналов. Факторы образа жизни и воздействия окружающей среды оставляют эпигенетические следы на нашей ДНК, которые влияют на экспрессию генов; некоторые из них оказывают защитное действие, а другие -- вредны. Богатые фруктами и овощами диеты могут оказывать сходное воздействие на ДНК с эпигенетическими препаратами. Более глубокое понимание эпигенетических эффектов и сигнальных путей, активируемых биологически активными пищевыми компонентами, помогло бы оценить роль и потенциальную пользу питательных веществ для нашего здоровья [42-43].

Питательная эпигенетика может сочетаться с лекарственными средствами для синергического воздействия в целях лечения или профилактики или быть адаптирована для беременных женщин с целью снижения бремени хронических заболеваний у потомства посредством эпигенетически здоровой диеты. Дальнейшие исследования в области питания и эпигенетики может принести значительную пользу общественному здравоохранению, а персонализированное питание может стать частью медицинской программы пациента.

Мозг регулирует кишечник и его микробиоту посредством нейроанатомических, иммунологических и нейроэндокринных нейросетевых путей, сообщающихся с помощью нейромедиаторов, нейропептидов или продуктов микробного происхождения, влияющих на микробиоту кишечника. Соответственно, микробиота кишечника влияет на мозг. Эти два способа формируют двунаправленную связь и взаимодействие между кишечником и мозгом [44-45].

Дисбактериоз кишечника может быть вызван различными факторами окружающей среды, в том числе, такими как диета, стресс, воздействие антибиотиков, токсинов, лекарств и патогенов.

В исследовании [46], установлено, что микробиом играет ключевую роль в сохранении здоровья и профилактике заболеваний, и существует значительный интерес к терапевтическому таргетированию микробиома, а также к разработке этого богатого ресурса в усилиях по открытию лекарств. Однако все больше данных свидетельствует о том, что микробиота кишечника сама может влиять на действие целого ряда ксенобиотиков, как благотворно, так и потенциально вредно. Традиционно клинические исследования, оценивающие фармакокинетику новых лекарственных средств, в основном игнорируют важное прямое и косвенное влияние микробиома кишечника на метаболизм и эффективность лекарственных средств. Несмотря на некоторые важные наблюдения за метаболизмом ксенобиотиков в целом, существует лишь неполное представление о масштабах влияния микробиома конкретно на метаболизм и абсорбцию лекарственных средств, а также о том, как это может влиять на системные концентрации исходных соединений и токсичных метаболитов. Значение как микробного метаболизма ксенобиотиков, так и влияния микробиома кишечника на ферментные системы печени хозяина, тем не менее, набирает обороты и представляет собой дополнительную проблему в усилиях по открытию лекарственных средств, имеющих последствия для улучшения результатов лечения или противодействия неблагоприятным лекарственным реакциям. В настоящее время микробные факторы должны учитываться при определении фармакокинетики лекарственных средств и влияния, которое эволюционирующий и динамичный микробиом может оказывать в этом отношении. Интегрировав вклад микробиома кишечника в сохранение здоровья и патогенез болезней к метаболизму ксенобиотиков, сосредоточив внимание на терапевтических вмешательствах, фармакологическом действии лекарственных средств и химических биотрансформациях, которые в совокупности являются стратегическими в доказательной медицине.

Локализация и пространственная организация кишечной микробиоты неоднородны по всему желудочно-кишечному тракту. Эта динамическая экосистема кишечника состоит из многих уникальных особенностей, таких как микрониши, градиенты pH и динамические микробно-тканевые взаимодействия, имеющие отношение к микробной биотрансформации. Самая высокая плотность бактерий присутствует в толстой кишке, причем последние оценки 1013 бактериальных клеток в толстой кишке связаны с микробными генами, кодирующими широкий спектр ферментов, необходимых для биотрансформации ксенобиотиков. Эти бактерии, вероятно, наиболее важны для фармакомикробиомики и обитают в реакционной камере со средним рН 6,4-7,0 и более низким окислительно-восстановительным потенциалом, чем другие желудочно-кишечные ниши. Парциальное давление кислорода по желудочно-кишечному тракту также вносит свой вклад в эти метаболические ниши.

На композиционные характеристики микробиома кишечника оказывает влияние целый ряд факторов, при этом начальный посев и траектория движения к здоровому подобию взрослому разнообразию и стабильности определяются способом доставки (естественный или кесарево сечение) и ранними схемами кормления (грудное вскармливание против искусственного вскармливания). Генетика хозяина также играет определенную роль, как и географическое положение, в то время как стресс на протяжении всей жизни может рассматриваться как угроза для разнообразия микробиома кишечника. Считается также, что «западная» диета нарушает целостность микробиома кишечника, в то время как повышенное потребление клетчатки связано с повышенным разнообразием. Физические упражнения могут также способствовать стабильности микробиома здоровья, хотя процесс старения связан с сужением разнообразия, как и многие болезненные состояния и чрезмерное/ нецелесообразное использование антибиотиков [46].

Исследованы [46], микробные биотрансформации, свидетельствуют, что комплексные различия могут не обязательно приравниваться к функциональным изменениям, индивидуально-специфический генетический состав генома хозяина объясняет некоторые различия в характеристиках микробиома кишечника и может влиять на метаболические результаты. Например, микробные ферменты, такие как Р-глюкуронидазы, могут отличаться по селективности субстрата и активности, в зависимости от бактерий, из которых они возникают. Другие известные факторы, влияющие на состав микробиома кишечника, такие как возраст, гормональный статус и пол, также перекрываются с переменной фармакокинетикой препарата и влияют на относительное содержание генов, кодирующих ферменты метаболизма ксенобиотиков. Метаболизм ксенобиотиков хозяина также зависит от циркадианных ритмов, и это может также быть истинно микробной ферментативной деятельности потому что структура сообщества микробиоты кишечника и метаболически деятельность также отличают биологическими ритмами. Также пока не ясно, сколько переменных, связанных с изменением состава и стабильности микробиома кишечника, в том числе диеты и географии, оставляют свой след на способности к ксенобиотическому метаболизму. Одним из примером модифицируемой природы микробиома кишечника в контексте диеты и географии является передача бактериальных генов, кодирующих порфираназы, агаразы и связанные с ними белки от морских красных водорослей к бактериям, обитающим в желудочно-кишечном тракте японских индивидуумов в результате их потребления морскими водорослями [46].

Многие ксенобиотики также влияют на характеристики микробиома кишечника. Это включает в себя фармацевтические соединения, такие как метформин и метотрексат, и психотропные агенты, такие как Оланзапин. Другие рецептурные препараты связаны с изменениями в разнообразии микробиома кишечника, включая ингибиторы протонной помпы, опиоиды и нестероидные противовоспалительные препараты. Пищевые соединения также оказывают значительное влияние на микробиом кишечника, включая полифенольные фитохимические вещества (ресвератрол, флавоноиды), полиненасыщенные жирные кислоты и сложный эфир растительного стерола. Кроме того, экологические и промышленные химикаты, включая эндокринные разрушающие химикаты, тяжелые металлы, пестициды и загрязнители, оказывают влияние на структуру, состав и функцию микробиома кишечника [46].

Микробиота кишечника экспрессирует более 3,3 миллиона бактериальных генов, в то время как геном человека экспрессирует только 20 тысяч генов. Ген-продукты микроба оказывают решающее влияние на регуляцию переваривания пищи и развитие иммунной системы. Исследования подтверждают [47], что манипуляции с непатогенными бактериальными штаммами в организме хозяина могут стимулировать восстановление иммунного ответа на патогенные бактерии, вызывающие заболевания. Различные подходы, включая использование нутрицевтиков (пребиотиков и пробиотиков), а также фагов, сконструированных с помощью систем CRISPR/Cas, были разработаны в качестве новых методов лечения дисбиоза (изменений в микробном сообществе) и распространенных заболеваний (например, диабета, ожирения и др.).

В исследовании [47], был сделан прогноз на действия и молекулярные подходы, направленные на защиту окружающей среды и микробных экосистем человека. Измерения экологических, филометагеномных и микробных метаболических изменений в микробиомах требуют специализированного и сложного набора знаний. Сотрудничество между университетами, исследовательскими учреждениями, неправительственными организациями и специалистами фармацевтической промышленности имеют ключевое значение для оценки как биологического, так и фармацевтического воздействия на экосистемы и выяснения механизма действия новых соединений в организме хозяина и его микробиомах. Полезность метагеномной функциональной реконструкции для прямой ассоциации функций сообщества с фенотипом среды обитания и хозяина будет иметь решающее значение для надлежащего изучения конструкций и производства более экологичных фармацевтических продуктов для будущей персонализированной медицины.

Современное и своевременное внедрение эпигенетических постулатов питания от «Здоровое питание матери -- лучшее начало жизни» до «Здоровое питание человека -- обеспеченное здоровое старение» позволит эффективной реализации программ долголетия и сверхдолголетия H. sapiens и мозга H. sapiens.

Эпигенетика предполагает более широкое представление о развитии организма и функционировании генома и рассматривает гены и окружающую среду комплексно, как две неразрывно функционирующие системы, и объясняет такие биологические явления, как пластичность развития и образование множества фенотипов на основе одного генотипа.

Эпигенетические механизмы задействованы от внутриутробного развития ребенка до старения в более позднем возрасте. Функциональные продукты питания и их целевые пищевые компоненты могут вызывать защитные эпигенетические модификации на протяжении всей жизни, причем питание на ранних этапах жизни особенно важно. Помимо генетики, общее состояние здоровья индивидуума можно рассматривать как интеграцию многих экологических сигналов, начинающихся в период беременности и действующих на протяжении жизнедеятельности через эпигенетические модификации.

Микро- и макронутриенты функциональных продуктов питания в сочетании с фруктами и овощами могут оказывать сходное воздействие на ДНК с эпигенетическими препаратами. Более глубокое понимание эпигенетических эффектов и сигнальных путей, активируемых функциональными пищевыми компонентами, оказывает потенциальную пользу питательных веществ, для нашего здоровья и снижения восприимчивости к возраст- ассоциированнымзаболеваниям. Питательная(функционально-сбалансированная)

эпигенетика может сочетаться с лекарственными средствами для синергического воздействия в целях лечения или профилактики и быть адаптирована для беременных женщин с целью снижения бремени хронических заболеваний у потомства посредством «эпигенетически здоровой» диеты. Как в развитых, так и в развивающихся странах оптимизация рациона питания матерей является сложной проблемой общественного здравоохранения. Будущая работа в области питания и эпигенетики может принести значительную пользу общественному здравоохранению, а персонализированное питание может стать частью медицинской программы пациента.

Модификацииметаболической экспрессиигенов включают краткосрочное

метилирование гистонов, ацетилирование, фосфорилирование, убиквитинирование и более долгосрочный сайленсинг ДНК как результат метилирования ДНК.

Современная эпигенетическая защита мозга H. sapiens позволяет с помощью генетических и эпигенетических программ старения управлять здоровым долголетием, посредством мультимодальных инструментов:

-комбинированного и гибридного информационного кластера в диагностике, лечении, профилактике и реабилитации когнитивных нарушений и когнитивных расстройств;

-регуляции эпигенетических часов под контролем искусственного интеллекта для ранней диагностики, лечения и профилактики здорового старения H. sapiens;

-эпигенетического регулирования сердечно-сосудистого старения для замедления развития сосудистой деменции и болезни Альцгеймера;

-профилактики полипрагмазии через комбинированное применение питательной эпигенетики и фармэпигенетики;

-нутригенетики и нутригеномики -- персонализированного функционального питания «мозга и микробиоты» -- медицинской программы пациента;

-биочипирования, нейронных и мозговых чипов, технологий секвенирования следующего (нового) поколения для создания информативных биомаркеров;

-новой эпигенетики H. sapiens и мозга H. sapiens [1-2].

Количество видов бактерий пищеварительного тракта человека достигает от 10 тысяч штаммов -- до 50 тысяч. Количественное содержание этих бактерий находится в пределах сотен триллионов, а с вирусами -- превышает квадриллион. Количество генов в хромосомах человека достигает 25000; микрогеном включает до 5-10 миллионов генов. Восстановление (замена) всех эукариотических клеток у человека требует не менее 20-25 лет, за это время все симбиотические микроорганизмы меняются не менее пяти-шести раз, что свидетельствует о высокой адаптационной способности человеческого надорганизма. Более 80% энергии человека синтезируется в митохондриях, 20% энергетического обеспечения человека приходится на микроорганизмы кишечника. Установлено, что 90% энергии для клеток пищеварительного тракта производится кишечными бактериями. Именно микроорганизмы являются ключевым звеном, стартерами возникновения, а затем эволюции и разнообразия биологической жизни, включая человека, на нашей планете. Молекулярными, клеточными и средовыми основами здоровья и долголетия являются метагеном и эпигеном человека и полноценность их реализации в конкретных условиях его жизнедеятельности.

Нейродегенеративные и возраст-ассоциированные хронические заболевания, при которых имеют место такие патофизиологические проявления как нестабильность генома и эпигенома, окислительный стресс, хроническое воспаление, укорочение теломер, утрата протеостазиса, митохондриальные дисфункции, клеточное старение, истощение стволовых клеток и нарушение межклеточной коммуникации преимущественно инициируются несбалансированным питанием и дисбалансом симбиотической кишечной микробиоты.

С возрастом эффективность работы системы активные радикалы / антиоксидантная защита снижается, что приводит к нарушению работы дыхательной цепи переноса электронов и уменьшению образования АТФ. Увеличение образования активных радикалов кислорода и липидов в митохондриях сопровождается повреждением функций последних и приводит к преждевременной гибели клеточных структур и клеток. Долголетию способствует повышенная активность ряда белков, связанных с антиоксидантной защитой (Mn-SOD; Cu/Zn, SOD; митохондриальная каталаза). Активные радикалы усиливают пролиферативные процессы и выживаемость клеток в ответ на физиологические стрессы и сигналы, активируя компенсаторные гомеостатические ответы.

SOD; митохондриальная каталаза). С другой стороны, в результате пищеварительной деятельности кишечной микробиоты образуется огромное количество разнообразных низкомолекулярных соединений, в том числе и обладающих нейрогормональной активностью.

Понимание механизмов функционирования генома, эпигенома, их взаимоотношений с факторами среды повышает точность диагностики заболеваний, позволяет разрабатывать персонифицированные диеты и выявлять среди известных или вновь созданных лекарственных средств те, которые имеют эпигеномную направленность.

Основное внимание для реализации этого подхода уделяется созданию персонифицированных пищевых рационов для родителей (прежде всего женщин в детородном возрасте) и детей во все периоды их жизни после рождения, а также сохранению и восстановлению кишечной микробной экологии будущих матерей, беременных и кормящих женщин. Большое значение имеет поддержание на нужном уровне всех этапов становления и сукцессии микробиоты кишечника будущего человека. Более широкое применение для оптимизации пищевых рационов населения находят функциональные продукты питания, позволяющие целенаправленно конструировать пищевые рационы с учетом этнической принадлежности потребителей, их возраста, профессии, экологических и географических особенностей регионов их проживания.

Такие продукты, предназначены для систематического (регулярного) употребления в составе обычных пищевых рационов всеми группами здорового населения, сохраняющие и улучшающие состояние их здоровья и снижающие риск алиментарных заболеваний, благодаря наличию в составе подобных продуктов функциональных нутриентов, способных оказывать благоприятный эффект на физиологические функции, метаболические и/или поведенческие реакции организма человека. В категорию функциональных продуктов относят продукты, естественно содержащие требуемые количества функционального ингредиента или группы их; натуральные продукты, дополнительно обогащенные каким- либо функциональным ингредиентом или группой их; натуральные продукты, из которых удален компонент, препятствующий проявлению физиологической активности присутствующих в них функциональных ингредиентов; натуральные продукты, в которых исходные потенциальные функциональные ингредиенты модифицированы таким образом, что они начинают проявлять свою биологически активную физиологическую активность или эта активность усиливается; натуральные пищевые продукты, в которых в результате тех или иных модификаций биоусвояемость входящих в них функциональных ингредиентов увеличивается; натуральные или искусственные продукты, которые в результате применения комбинации вышеуказанных технологических приемов, приобретают способность сохранять и улучшать физическое и психическое здоровье человека и/или снижать риск возникновения заболеваний.

Кишечная микробиота играет жизненно важную роль в различных аспектах здоровья человека. Многочисленные исследования связали изменения в микробиоте кишечника с развитием различных заболеваний. Среди огромного бактериального сообщества кишечника бифидобактерии -- это род, который доминирует в кишечнике здоровых грудных детей, тогда как в зрелом возрасте уровни ниже, но относительно стабильны. Наличие различных видов бифидобактерий изменяется с возрастом, от детства до глубокой старости. Bifidobacterium longum, B. breve и B. bifidum как правило, доминируют у новорожденных, тогда как B. catenulatum, B. adolescentis и, а также B. longum они более распространены у взрослых [48].

Убедительные доказательства указывают на наличие окна возможностей в ранней жизни, во время которого изменения в кишечной микробной колонизации могут привести к иммунной дисрегуляции, которая предрасполагает восприимчивых хозяев к заболеванию. Хотя экологические закономерности микробной сукцессии в первый год жизни были частично определены в конкретных человеческих группах, таксономические и функциональные особенности, а также пороги разнообразия, характеризующие эти микробные изменения, по большей части неизвестны. Установлены, наиболее важные связи между временной мозаикой микробной колонизации кишечника и зависящими от возраста иммунными функциями, которые зависят от них. Взаимодействие между сложной экосистемой и иммунной системой хозяина ведет к пониманию важности темпорально структурированных структур разнообразия, ключевых групп и межцарственных микробных взаимодействий для экосистемных функций имеет большой потенциал для разработки биологически обоснованных мероприятий, направленных на поддержание и/или улучшение развития иммунной системы и предупреждение заболеваний.

В конечном счете, выявление критических событий и факторов, влияющих на устойчивость и функционирование микробиома, позволит разработать эффективные мероприятия, направленные на поддержание и/или улучшение развития иммунной системы и профилактику заболеваний. Выполнен огромный объем работы, чтобы понять зависимость иммунной системы от микробиома кишечника ребенка, многое еще предстоит выяснить о конкретных механизмах, ответственных за эту подготовку. Улучшение нашего понимания будет происходить в результате продолжения междисциплинарных совместных усилий иммунологов, микробиологов, клиницистов, биоинформатиков и экологов [49].

Микробиота младенцев и взрослых имеет важное значение для физиологических метаболических процессов (пищеварения) и должна быть способна снабжать хозяина метаболическими предшественниками, биологически активными молекулами, которые не присутствуют в основном в рационе и не производятся самим хозяином. Поглощение питательных веществ происходит на уровне кишечного барьера, обширной поверхности эпителия около 400 м2 поддерживается за счет плотного соединения между ячейками. Здоровая микробиота кишечника может модулировать метаболизм хозяина эпигенетической регулировкой. Следовательно, измененный состав микробиоты будет подавать аберрантный сигнал клеткам-хозяевам, что приведет к нарушению обмена веществ [50].

В настоящее время, мало что известно об отдаленном влиянии этих бактерий на эукариотическую эпигенетическую регуляцию. В последнее время дифференциальное метилирование ДНК и ковалентная модификация гистонов, регулирующих транскрипцию генов, были связаны с питанием. Было показано, что как недостаточное, так и избыточное питание во время беременности и/или лактации индуцируют устойчивые модификации потомства через программирования генетического наследования. Связь между микробиотой и эпигенетическими модификациями должна быть дополнительно исследована. Эпигенетика проявляет унаследованные характеристики (так называемое «эпигенетическое программирование»), именно клеточное микроокружение (бактериальные поверхностные антигены и секретируемые белки, низкомолекулярные соединения из бактерий и биологически активные молекулы, поступающие через диету и обрабатываемые кишечной микробиотой) остается неизменным от одного поколения к другому [50].

«Микробиологическая память» будет доставлять прямые и случайные сигналы в целевую ячейку. После поверхностного взаимодействия клеток (например, растворимое бактериальное соединение, взаимодействующее с рецепторным комплексом клеточной поверхности) внутриклеточные пути активации сигнала будут модулироваться (например, фосфорилирование цитоплазматических белков киназами, ядерная транслокация факторов транскрипции), тем самым влияя на баланс между активацией и генетическим блокированием транскрипции метилированием ДНК и нкРНК. Нуклеосомы состоят из гистонов и двуцепочечной ДНК. Когда динуклеотиды CpG не этилируются в области промотора гена, РНК-полимераза (РНКпол) может связывать и активировать транскрипцию. Метилирование CpG-динуклеотидов (красные символы) метилтрансферазами ДНК рекрутирует гистондиацетилазу (HDAC)/гистоновый комплекс метилтрансферазы (HMT), который в свою очередь удалит ацетильные группы из гистонов и метилирует специфические остатки, общий эффект которых заключается в подавлении транскрипции. Показана также транскрипционная и / или трансляционная интерференция некодирующей РНК (нкРНК) [50].

Исследовано [50], что передача биологической информации от одного поколения к другому основана на ДНК, то наиболее наследуемые фенотипические признаки, такие как хронические метаболические заболевания, не связаны с генетической вариабельностью последовательностей ДНК. Негенетическая наследуемость может иметь несколько причин, включая эпигенетический, родительский эффект, адаптивное социальное обучение и влияние экологической среды. Различение этих причин имеет решающее значение для разрешения основных фенотипических загадок.

Убедительные доказательства указывают на то, что изменения в экспрессии ДНК через различные эпигенетические механизмы, могут быть связаны, со сходством между родителями и потомством с точки зрения чувствительности к метаболическим заболеваниям. Среди негенетических наследуемых признаков функциональное питание объясняет долгосрочное программирование экспрессии генов, ответственных за метаболические заболевания во взрослом возрасте. Питание может формировать неадекватную микробиоту кишечника (дисбиоз), вызывая эпигенетическое дерегулирование транскрипции, которое может наблюдаться при хронических заболеваниях обмена веществ. Дисбиоз может быть основной причиной наследуемых эпигенетических паттернов, обнаруженных в связи с метаболическими заболеваниями. Последние достижения в области микробиома кишечника, подтверждают гипотезу о том, что микробиота кишечника может способствовать молекулярному перекрестному столкновению между бактериями и окружающими клетками- хозяевами, которое контролирует патологическую эпигенетическую сигнатуру.

Микробиологическая память - это основной регулятор эпигенетических сигнатур, тем самым указывая, что различные причины негенетической наследуемости могут взаимодействовать в сложных путях для получения наследования.

Комбинированное основное действие различных эпигенетических факторов на человека из различных источников, присутствующих в окружающей среде. Хотя некоторые из них могут быть полезны для здоровья и поведения, другие могут быть вредными и мешать телу и головному мозгу, создавая дисбаланс, который может проявляться как болезнь или психологическое расстройство. Некоторые из перечисленных благотворных влияний включают физические упражнения, микробиом (полезные кишечные бактерии) и альтернативную медицину, в то время как вредные влияния включают воздействие токсичных химических веществ и наркотиков злоупотребления. Такие факторы, как диета, сезонные изменения, финансовое положение, психологическое состояние, социальные взаимодействия, терапевтические препараты и воздействие болезни, могут оказывать благотворное или вредное воздействие в зависимости от конкретного характера воздействия. Таким образом, окружающая среда дополняет и формирует здоровье человека.

Микробиологическая память будет оставаться стабильной, когда рацион питания и микробиота остаются почти неизменными. Согласно этой модели, в настоящее время известно как эпигенетическое программирование, вероятно, является не более чем негенетической наследуемой сигнатурой, возникающей в результате молекулярного скрещивания между прокариотами кишечника (метаболитом микробиоты) и эукариотическими клетками. Эта перекрестная помеха вызвала бы непрерывную перестройку клеточных генов через активацию сигнальных путей в клетках-хозяевах, тем самым контролируя эпигенетическую сигнатуру. Эпигенетика может быть исследована более или менее простым способом, изучая сигнатуру заболеваний, влияние микробиологической памяти гораздо труднее расшифровать из-за вовлечения многих переменных. Исследования очень необходимы для того, чтобы различать, что является причинным и что является совместным явлением в триаде «диете-микробиоте-эпигенетике» [50].

Оба хозяина клетки и микробы взаимодействуют друг с другом через множество молекул и механизмов, которые зависят от способности обоих типов ячеек адаптироваться к данной среде, то есть кишечнику хозяина; а при лечении, т е. специальном рационе питания; или при воспалении кишечника. Эти механизмы являются гибкими, поскольку бактерии, особенно патобиоты, используют свой спящий арсенал вирулентности в зависимости от патофизиологического статуса хозяина [51].

В исследовании [52], установлена сильная связь между микробиотой кишечника и многими заболеваниями человека, и понимание динамических перекрестных связей взаимодействия хозяина и микроба в кишечнике стало необходимым для обнаружения, профилактики или терапии заболеваний. Диета, питательные вещества, фармакологические факторы и многие другие стимулы играют доминирующую роль в модуляции микробных композиций кишечника. Факторы, связанные с эпителием, включая врожденные иммунные сенсоры, антимикробные пептиды, слизистый барьер, секреторные IgAs, эпителиальные микроворсинки, эпителиальные плотные соединения, метаболизм эпителия, кислородный барьер и даже микроРНК участвуют в формировании микробиоты. Указанные факторы, клеточного кишечного эпителия селективно «выбирают» микробы и влияют на микробный состав. Полученные результаты, предоставляют возможность для более эффективного контроля многих заболеваний и прогнозирования клинического успеха трансплантации фекальной микробиоты [52].

Важным фактором является понимание того, что соизмеримые микроорганизмы, которые составляют человеческую микробиоту, являются не просто пассажирами в хозяине, но могут фактически управлять определенными функциями [53]. Микробиота и ее микробиома, как установлено, имеют не только ассоциацию, но и ключевую модулирующую роль. Благодаря лучшему пониманию механизмов и вклада микробиоты в эти заболевания, будут разработаны новые терапевтические средства и стратегии для модулирования микробиоты для лечения или профилактики заболеваний. Кроме того, в некоторых случаях это может быть возможность использования микробиомы для выявления заболеваний, связанных с кишечником, до проведения обычной диагностики. В будущем будет проводиться стратификация пациентов более точно для более эффективного лечения. Заболевания печени и микробиота кишечника. Печень получает 70% своего кровоснабжения из кишечника через портальную вену, таким образом, она постоянно подвергается воздействию кишечных факторов, включая бактериальные компоненты. В настоящее время установлено, что микробиота кишечника и хронические заболевания печени тесно связаны между собой. Дисбиоз кишечника, целостность кишечного барьера и механизмы иммунного ответа печени на гуморальные факторы, полученные из кишечника, свидетельствуют о потенциальной актуальности разработки новых методов лечения хронических заболеваний печени [53].

Научные данные, касающиеся микробиоты кишечника, позволяют объяснить связь между питательными веществами и чертами человека. Микробиота кишечника не только непосредственно взаимодействует с соматическими клетками своего хозяина, влияя на особенности человека, как в случае тренировки иммунологических сетей, но и вырабатывает различные химические вещества, которые могут непосредственно модифицировать биохимические пути человека.

Состав микробиоты кишечника колеблется в зависимости от поглощения питательных веществ его хозяином, и состав микробиоты кишечника влияет на различные человеческие черты так же сильно, как и наши гены. Поэтому вполне разумно предположить, что воздействие питательных веществ на человеческие черты будет представлять собой комбинированные результаты как микробиоты кишечника, модифицированной поглощением питательных веществ, так и самих питательных веществ. Исследовано, что микробиота кишечника является недостающим звеном между питательными веществами и модификациями человеческих черт [54].

Влияние микробиоты кишечника на фенотипы человека стало бурно развивающейся областью исследований и представляет собой новую парадигму возможностей для применения в медицине и пищевой промышленности [54].

Многочисленные современные исследования, установили следующие функции кишечной микробиоты:

1. Защитная функция (колонизационная резистентность) заключается в предотвращении колонизации желудочно-кишечного тракта условно-патогенными и патогенными микроорганизмами. Микробный антагонизм реализуется посредством конкуренции за питательные вещества и рецепторы адгезии, а также за счет выработки органических кислот, перекиси водорода, антибиотикоподобных веществ -- бактерицинов, препятствующих росту патогенных микроорганизмов.

2. Пищеварительная функция реализуется за счет, как регуляции функций кишечника, так и непосредственной утилизации питательных субстратов. Облигатная микрофлора толстой кишки в норме обеспечивает конечный гидролиз белков, омыление жиров, сбраживание высокомолекулярных углеводов, которые не абсорбировались в тонкой кишке. Протеолитические микроорганизмы (бактероиды, нормальная кишечная палочка) ферментируют протеины. Некоторые поступающие с пищей вещества могут метаболизироваться только кишечной микрофлорой. Так, сахаролитическая микрофлора расщепляет целлюлозу и гемицеллюлозу до короткоцепочечных жирных кислот.

3. Детоксикационная и антиканцерогенная функция. Нормальная микрофлора способна нейтрализовать многие токсические субстраты и метаболиты (нитраты, ксенобиотики, гистамин, мутагенные стероиды), предохраняя энтероциты и отдаленные органы от воздействия повреждающих факторов и канцерогенов.

4. Синтетическая функция. Нормальная микрофлора обеспечивает синтез многих макро- и микронутриентов: витаминов группы В, С, К, фолиевой, никотиновой кислоты. Только кишечная палочка синтезирует 9 витаминов. Синтез гормонов и биологически активных веществ лежит в основе регуляторного действия микрофлоры на функции внутренних органов и ЦНС.

5. Иммунная функция. Как известно, слизистая оболочка кишечника обладает собственной лимфоидной тканью, известной как GALT (gut-associated lymphoid tissue), которая является одним из значимых компонентов иммунной системы макроорганизма. В слизистой оболочке кишечника локализовано около 80% иммунокомпетентных клеток, 25% слизистой оболочки кишечника состоит из иммунологически активной ткани. Таким образом, кишечник можно рассматривать как самый большой иммунный орган человека. Микрофлора участвует в формировании как местного (активация продукции IgA, фагоцитарной активности), так и системного иммунитета. Само наличие бактерий оказывает постоянное антигенное тренирующее действие.

6. Генетическая функция. Микробиота является своего рода «генетическим банком», обмениваясь генетическим материалом с клетками человека путем фагоцитоза. В результате этого микробиота приобретает рецепторы и другие антигены, присущие хозяину и делающие ее «своей» для иммунной системы. Эпителиальные ткани в результате такого обмена приобретают бактериальные антигены. Известно также, что микроорганизмы влияют на экспрессию генов макроорганизма.

7. «Суперорганизменная». Кишечная микрофлора -- сложнейший «суперорганизм», не уступающий любому другому жизненно важному органу.

Технология производства функциональных продуктов питания. Функционально- макробиотические продукты из мытого, цельного зерна (пшеницы, риса, гречки, овса, ржи, кукурузы, сои, проса, пшена), термообработанного с использованием технологии взрыва (паром), и содержат натуральные не подвергнутые термической обработке растительные добавки: расторопши, льна, амаранта, топинамбура, тыквы, шиповника, кедра, ламинарии, стевии, спирулина, виноградной косточки. Инновационность цикла приготовления готового лечебного продукта питания заключается в использовании современных нанотехнологий с применением импульсного теплового воздействия длительностью 10 сек. Импульс обеспечивает разрыхление зернового продукта из внутри клетки 7-10 сек и измельчение пектиновых связей в растительном сырье, тем самым улучшается биологическая доступность растительной клетки [4].

В исследовании [3-4], под наблюдением находились 41 пациент с различной патологией желудочно-кишечного тракта:

-хроническим панкреатитом -- 14,

-эрозивным гастритом -- 7,

-гастроэзофагеальной рефлюксной болезнью -- 5,

-хроническим гастродуоденитом -- 3,

-постхолецистэктомическим синдромом -- 6,

-синдромом раздраженного кишечника с преобладанием запоров -- 4,

-язвенной болезнью двенадцатиперстной кишки -- 2.

Средний возраст больных составил 57,1±1,3 года. У большинства пациентов имело место сочетание 2 или 3 гастроэнтерологических заболеваний. Стеатогепатоз имел место у 5, стеатогепатит -- у 3, гипомоторная дискинезия толстой кишки -- у 7 пациентов.

Больные были разделены на 2 группы: 31 пациент составил основную группу, 10 -- контрольную. Пациенты основной группы получали ФПП «Самарский здоровяк» с фитокомпопентами, по 60 г 2 раза в день (утром и вечером). 31 пациент получал питание «Самарский здоровяк» с фитокомпонентами на фоне комплексной медикаментозной и физиобальнеотерапии.

Контрольная группа (10 пациентов) принимали ФПП «Самарский здоровяк» без какой- либо терапии.

При поступлении в реабилитационный комплекс больные предъявляли жалобы на боли в эпигастрии (46,3%) и в правом подреберье (26,8%), изжогу (44%), дискомфорт в эпигастрии (32%) и в правом подреберье (20%), вздутие и урчание живота (39%), горечь во рту (19,5%), отрыжку (54%), тошноту (10%), запоры (56%), диарею (12,2%).

При оценке синдрома цитолиза учитывали уровни АЛТ и АСТ в крови. Синдром холестаза оценивали по уровню билирубина, щелочной фосфотазы и ГГТП в крови, липидный обмен -- по уровню холестерина, холестерина ЛПНП, холестерина ЛПОНП, холестерина ЛПВП и триглицеридов.

Исследование биоценоза кишечника у 41 больного выявило нарушение нормального состава микрофлоры толстой кишки до лечения (у 85,3% пациентов).

У обследованных больных выявлены общие закономерности в характеристике эубиотического состояния толстой кишки: изменено общее количество микроорганизмов с одновременным снижением содержания бифидобактерий, лактобактерий и кишечной палочки; отмечены качественные изменения микрофлоры толстой кишки; выявлен высокий

процент высевания условно-патогенных энтеробактерий:гемолитических и

лактозонегативных штаммов кишечных палочек, клостридий, грибов рода Кандида.

У 95,0% находившихся под наблюдением больных установлено положительное восстановление биоценоза кишечника [1-2].

Таким образом, понимание механизмов функционирования генома, эпигенома, их взаимоотношений с факторами окружающей среды повышает точность диагностики заболеваний, позволяет разрабатывать персонифицированные функциональные диеты и выявлять среди известных или вновь созданных лекарственных средств те, которые имеют эпигеномную направленность.

Нейроось «микробиота-кишечник-мозг» представляет собой динамическую матрицу тканей и органов, включая желудочно-кишечную микробиоту, иммунные клетки, ткани кишечника, железы, вегетативную нервную систему и головной мозг, которые взаимодействуют сложным разнонаправленным образом через ряд анатомически и физиологически различных систем. Долгосрочные возмущения этой гомеостатической среды могут способствовать прогрессированию ряда нарушений путем изменения физиологических процессов, включая активацию гипоталамо-гипофизарно-надпочечниковой оси, нейромедиаторных систем, иммунной функции и воспалительной реакции [55].

Продолжаются исследования того, что триллионы микробов, населяющих наш кишечник, являются существенным фактором, способствующим психическому здоровью и, в равной степени, прогрессированию нервно-психических расстройств. Экстраординарная сложность экосистемы кишечника и ее взаимодействие с кишечным эпителием для проявления физиологических изменений в головном мозге, влияющих на настроение и поведение. H. sapiens имеет уникальное сообщество микробиоты и здоровой биомикробиоты, которая меняется под воздействием ряда факторов, включая диету, физические упражнения, стресс, состояние здоровья, генетику, «свою полипрагмазию» и т. д.

Современные инструменты и методики эпигенетической, диетической и биомикробиотической защиты здорового старения -- это междисциплинарные, межвузовские и межведомственные направления, которые фокусируются на изучении нервной системы и влияния мозга на поведение и мыслительную способность людей [1-2].

Новая эпигенетика H. sapiens управляет взаимодействием эпигенетических механизмов старения и долголетия с биологией, биофизикой, физиологией и факторами окружающей среды в регуляции транскрипции. Старение -- это структурно-функциональная перестройка (перепрограммирование) и постепенное снижение физиологических функций организма, которые приводят к возрастной потере профессиональной пригодности, болезням, и к смерти. Понимание причин здорового старения составляет одно из самых проблемных междисциплинарных направлений.

Генетический и эпигенетический вклад в старение и долголетие человека огромен. В то время как факторы окружающей среды и образа жизни важны в более молодом возрасте, вклад генетики проявляется более доминантно в достижении долголетия и здоровой старости. Эпигеномные изменения во время старения глубоко влияют на клеточную функцию и стрессоустойчивость. Дисрегуляция транскрипционных и хроматиновых сетей, вероятно, является важнейшим компонентом старения. В ближайшем будущем искусственный интеллект и крупномасштабная биоинформационная система анализа сможет выявить вовлеченность многочисленных сетей взаимодействия.

Американские и корейские ученые выяснили, что гепарин, входящий в состав морских водорослей блокирует новый коронавирус лучше, чем ремдесивир -- главный препарат от

COVID-19, применяемый в США. Хорошо известный антикоагулянт гепарин обладает исключительным сродством связывания со спайковым белком (S-белком) SARS-CoV-2 [56]. S-белок SARS-CoV-2 более плотно связывается с иммобилизованным гепарином (КД= ~10- 11M) чем S-белки любого из SARS-CoV (КД= ~10-7М) или БВРС-КоВ (КД= ~10-9М). Однако неизвестно, приводит ли плотное связывание гепарина с S-белком SARS-CoV-2 к мощной противовирусной активности [57].

Выводы

Микробиологическая память будет оставаться стабильной, когда рацион функционального (здорового) диетического питания и здоровая биомикробиота остаются почти неизменными.

Новая управляемая здоровая биомикробиота и персонализированное функциональное и сбалансированное питание «мозга и микробиоты» -- это долговременные медицинские программы пациента, которые позволяет проведению профилактики полипрагмазии.

Персонализированные функциональные диеты на основе алгоритмов искусственного интеллекта улучшают гликемические реакции на диетические продукты. Другие персонализированные терапевтические применения диетической-иммуно-метаболической оси включают функциональные пробиотические добавки и/или функциональное диетическое планирование, основанное на профилях микробиома.

Иммунная система человека и микробиота совместно эволюционируют, и их сбалансированное системное взаимодействие происходит в течение всей жизни. Эта тесная ассоциация и общий состав, и богатство микробиоты играют важную роль в модуляции иммунитета хозяина и могут влиять на иммунный ответ при вакцинации.

Наличие инновационных технологий, таких как секвенирование следующего нового поколения и коррелированные инструменты биоинформатики, позволяют глубже исследовать перекрестные нейросетевые взаимосвязи между микробиотой и иммунными реакциями человека.

Микробиота представляет собой ключевой элемент, потенциально способный влиять на функции антигена вызывать защитный иммунный ответ и на способность иммунной системы адекватно реагировать на антигенную стимуляцию (эффективность вакцины), действуя в качестве иммунологического модулятора, а также природного адъюванта вакцины.

Функциональные продукты питания, здоровая биомикробиота, здоровый образ жизни и управляемое защитное воздействия окружающей среды, искусственный интеллект и электромагнитная информационная нагрузка/перегрузка - ответственны за работу иммунной системы и ее способности своевременного иммунного ответа на пандемические атаки.

Совершенствование стратегий иммунизации и географического успеха вакцинации, взаимосвязаны с искусственным интеллектом и инновационными инструментами, моделированием и управлением иммунной защитой и индивидуальным иммунным ответом.

Мультимодальные инструменты, биочипирование, нейронные и мозговые чипы, технологии секвенирования следующего (нового) поколения создают биомаркеры для управления структурой здоровой биомикробиоты и функционального питания, в зависимости от целевых показателей.

Функциональный продукт питания с помощью биомаркеров и технологий искусственного интеллекта является целевой питательной средой как для организма в целом, так и для биомикробиоты в частности.

Список литературы:

1. Романчук П. И. Возраст и микробиота: эпигенетическая и диетическая защита, эндотелиальная и сосудистая реабилитация, новая управляемая здоровая биомикробиота // Бюллетень науки и практики. 2020. Т. 6. №2. С. 67-110. https://doi.org/10.33619/2414- 2948/51/07

2. Романчук П. И., Волобуев А. Н. Современные инструменты и методики эпигенетической защиты здорового старения и долголетия Homo sapiens // Бюллетень науки и практики. 2020. Т 6. №1. С. 43-70. https://doi.org/10.33619/2414-2948/50/06

3. Малышев В. К., Романчук П. И. Функциональные продукты питания: инновации в диетологии и кардиологии. М.-Самара, 2012. 248 с.

4. Романчук Н. П. Способ производства зернового компонента для пищевого продукта быстрого приготовления и способ производства функционального пищевого продукта быстрого приготовления. Патент РФ на изобретение №2423873.

5. Романчук Н. П., Пятин В. Ф. Мелатонин:нейрофизиологические и

нейроэндокринные аспекты // Бюллетень науки и практики. 2019. Т 5. №7. С. 71-85. https://doi.org/10.33619/2414-2948/44/08

6. Романчук Н. П., Романчук П. И., Малышев В. К. Продукт диетического, профилактического и функционального питания при хронической ишемии головного мозга // Патент РФ на изобретение №2489038.

7. Пятин В. Ф., Романчук Н. П., Романчук П. И., и др. Способ нормализации циркадианных ритмов человека. Патент РФ на изобретение 2533965.

8. Ciabattini A., Olivieri R., Lazzeri E., Medaglini D. Role of the Microbiota in the Modulation of Vaccine Immune Responses // Frontiers in microbiology. 2019. №10. P. 1305. https://doi.org/10.3389/fmicb.2019.01305

...

Подобные документы

  • Основные группы факторов, обеспечивающие невосприимчивость человека к возбудителям инфекции. Неспецифическая физическая резистентность, специфическая невосприимчивость (иммунитет). Неспецифические защитные механизмы. Гуморальный и клеточный иммунитет.

    контрольная работа [26,2 K], добавлен 18.02.2013

  • Классификация видов иммунитета: видовой (врожденный) и приобретенный (естественный, искусственный, активный, пассивный, стерильный, не стерильный, гуморальный, клеточный). Механизмы естественной неспецифической резистентности. Основные стадии фагоцитоза.

    презентация [1,8 M], добавлен 16.10.2014

  • Антигены - вещества различного происхождения, несущие признаки генетической чужеродности, вызывающие развитие иммунных реакций. Основные типы антигенной специфичности. Основные биологические характеристики антител. Гуморальный иммунитет и иммуноглобулины.

    реферат [26,4 K], добавлен 21.01.2010

  • Гуморальный иммунитет как один из механизмов реализации защитных свойств организма в жидкой среде. Неспецифические и специфические факторы гуморального иммунитета. Формирование антител. Иммунный ответ. Система комплемента, ее роль в заболеваниях.

    презентация [1,2 M], добавлен 08.10.2017

  • Иммунитет как совокупность свойств и механизмов, обеспечивающих постоянство состава организма и его защиту от инфекционных и других чужеродных агентов, его типы, формы проявления. Принципы и факторы, влияющие на формирование. Механизм защиты от инфекций.

    презентация [191,4 K], добавлен 25.12.2014

  • Изучение особенностей цитомегаловирусной инфекции. Пути распространения вируса. Клеточный и гуморальный иммунитет. Воспалительные процессы в зараженных органах. Лабораторная диагностика, методы лечения и специальные способы профилактики цитомегаловируса.

    презентация [1,5 M], добавлен 01.11.2014

  • Понятие инновационных технологий и их роль в медицине. Расчет экономической эффективности внедрения инновационных технологий. Анализ внедрения инновационных технологий в практике кожно-венерических диспансеров. Применение дорогостоящих препаратов.

    дипломная работа [58,1 K], добавлен 24.06.2011

  • Дерматофитии, отрубевидный лишай и пьедра. Споротрихоз и мицетома, микозы. Роль цитотоксической Т-лимфоциты в развитии клеточного иммунитета. Главные свойства опухоли. Иммунные макрофаги: понятие, свойства. Основоположник экспериментальной трансплантации.

    презентация [2,6 M], добавлен 03.12.2014

  • Описание механизмов защиты организма человека от различных возбудителей: вирусов, бактерий, грибов, простейших, гельминтов. Общие свойства клеточных факторов неспецифической защиты. Функции гранулоцитов и нейтрофилов. Свойства антител-иммуноглобулинов.

    презентация [176,1 K], добавлен 15.02.2014

  • Иммунитет — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям, а также воздействию чужеродной генетической информации. Укрепление иммунитета: закаливание, прогулки, физические нагрузки, рациональное питание; позитивный настрой, сон.

    презентация [1,1 M], добавлен 05.03.2013

  • Сравнительные размеры генома человека и некоторых других организмов. Секвенирование - определение нуклеотидной последовательности избранного участка ДНК. Типы карт хромосом. Сущность метода гибридизации. Полимеразная цепная реакция, схема ее проведения.

    презентация [2,4 M], добавлен 21.02.2014

  • Терминальная хроническая почечная недостаточность. Состояние иммунитета у данных пациентов. Строение и функции иммуноглобулинов. Определение и оценка концентрации общего Ig A, Ig M, Ig G в сыворотке крови с использованием тест-системы фирмы "Хема".

    контрольная работа [33,8 K], добавлен 06.12.2013

  • Общая характеристика влияния правильного питания на организм человека. Основные нарушения в пищевом статусе населения России. Влияние спортивного питания на функциональное состояние организма. Вегетарианское питание, причины отказа от мяса и рыбы.

    реферат [26,9 K], добавлен 14.07.2010

  • Инсулинозависимый сахарный диабет. Клеточный иммунитет. Имунный ответ на эндогенные и эндоцитированные белки. Дефицит инсулина. Коматозное состояние при диабете. Гликирование белков. Диабетические ангиопатии, макро- и микроангиопатии. Интерлейкин-1.

    реферат [175,3 K], добавлен 04.01.2008

  • Рациональное питание. Основные принципы рационального, сбалансированного питания. Питание в профилактике и лечении болезней. Правильное питание, с учетом условий жизни, труда и быта, обеспечивает постоянство внутренней среды организма человека.

    реферат [33,1 K], добавлен 09.10.2008

  • Понятие высокотехнологической физиотерапевтической помощи. Этапы развития новых инновационных технологий в современной физиотерапии. Использование микропроцессорных информационных технологий. Применение нанотехнологий. Роботизированная физиотерапия.

    реферат [194,1 K], добавлен 23.08.2013

  • Клинические признаки нефропатии. Инсулинзависимый сахарный диабет, гипергликемия и другие первичные симптомы ИЗСД. Молекулы, обеспечивающие клеточный иммунитет. Осложнения сахарного диабета. Повреждение кровеносных сосудов (диабетические ангиопатии).

    презентация [543,6 K], добавлен 24.10.2012

  • Классификация туберкулеза. Основные клинические формы, характеристика туберкулезного процесса, осложнения, остаточные изменения после перенесенного туберкулеза. Профилактика (БЦЖ, реакция Манту). Приобретенный клеточный иммунитет. Лечение заболевания.

    контрольная работа [34,2 K], добавлен 15.03.2011

  • Иммунитет и иммунокомпетентные клетки человека. Характер и основные типы повреждений ДНК. Свойства изотопов водорода. Влияние воды с измененным изотопным составом на биологические объекты. Выявление и выделение лимфоцитов из цельной крови человека.

    дипломная работа [1,1 M], добавлен 16.02.2015

  • Иммунитет как защитная реакция организма в ответ на внедрение инфекционных и других чужеродных агентов. Механизм действия иммунитета. Состав иммунной системы. Врожденный и приобретенный виды иммунитета. Определение состояния иммунной системы человека.

    презентация [1,1 M], добавлен 20.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.