Развитие интереса к математическому творчеству у учащихся основной школы в процессе обучения подобиям плоскости в условиях информатизации общего образования

Методика развития интереса к математическому творчеству у учащихся основной школы относительно подобий плоскости в процессе обучения геометрии. Применение компьютерных технологий в сфере образования, дидактические проблемы компьютеризации обучения.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 25.03.2013
Размер файла 9,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Однако характер и степень использования наглядности различны на разных этапах обучения. Излишнее увлечение наглядностью в обучении может привести к нежелательным результатам. Конкретная наглядность (например, рассмотрение моделей геометрических тел) должна постепенно уступать место абстрактной наглядности (рассмотрению плоских чертежей).

Таким образом, понятия и абстрактные положения доходят до сознания учащихся легче, когда они подкрепляются конкретными фактами, примерами и образами; для раскрытия их необходимо использовать различные виды наглядности.

По характеру представления окружающей действительности выделяют такие виды наглядности, как:

- естественная наглядность предполагает ознакомление учащихся с реальными объектами в классе и за пределами школы;

- картинная и картинно-динамическая наглядность имеют целью дать отображение реального мира (фотографии, рисунки, диафильмы);

- объемная наглядность в системе учебных пособий представлена макетами, моделями, муляжами, геометрическими телами и фигурами и т.п.;

- символическая и графическая наглядность способствуют развитию абстрактного мышления, так как пособия этого типа отображают реальную действительность в условно-обобщенном символическом виде (схемы, чертежи, диаграммы, графики и т.п.);

- внутренняя, или опосредованная, наглядность представляет оперирование уже имеющимися представлениями для формирования новых представлений (получение представления о новом через сравнение с уже известным).

С возрастом учащихся предметная наглядность должна все более уступать место символической. Наглядность - сильнодействующее средство, которое при невнимательном и неумелом использовании может увести учащихся от решения главной задачи, подменить цель ярким средством. Чрезмерное количество наглядных пособий рассеивает внимание учащихся и мешает воспринимать главное, может вызвать замедленное развитие абстрактно-логического мышления.

Наглядность в обучении математике - это совокупность материальных, материализованных, идеальных действий, совершаемых как обучающим, так и обучаемым в ходе реализации дидактической цели наглядного обучения.

Выделяют следующие виды наглядности в обучении математике:

1. Оперативная наглядность - процесс формирования модели в учебной деятельности, базирующийся на опорных внешних действиях. К оперативной наглядности относится демонстрационная наглядность и технические средства обучения. Применение оперативной наглядности расширяет число каналов передачи и получения информации, ускоряя и углубляя восприятие изучаемого материала. В то же время применение оперативной наглядности может служить мотивацией творческой деятельности учащихся, позволяет увидеть процессы в динамике, способствует установлению межпредметных связей, расширяет область практического применения изучаемых вопросов.

2. Формализованная наглядность - процесс формирования модели в учебной деятельности, базирующийся на структурных внешних действиях, процесс формирования "внешней" структуры, структуры обозначения, выделения и размещения текста на доске или в учебном пособии. К этому виду наглядности относится форматирование текста, выделение формул, использование цвета. Это вид наглядности способствует лучшему восприятию, осмыслению и запоминанию материала.

3. Структурная наглядность - процесс формирования модели учебной деятельности, базирующийся на структурных внешних действиях, процесс формирования "внутренней" структуры. К этому виду наглядности относится выделение основного материала, построение модели с опорой на устойчивые ассоциации, характеризующиеся полнотой изложения основных понятий, методов, теорем, доведение изучаемого материала до узнаваемости объекта восприятия, построение системы непрерывного хранения информации (составление контролирующих программ для компьютера). Структурная наглядность активизирует мыслительную деятельность в процессе восприятия, учит логически мыслить, выделять существенное.

4. Фоновая наглядность - процесс моделирования специфических особенностей данного организованного набора знаний, носящий мотивированный сквозной характер, обеспечивающий лучшее восприятие и усвоение. Фоновая наглядность характеризуется длительностью, неодномоментностью, "ненавязчивостью" побочно применяемых действий. Примером применения наглядности этого вида могут служить приемы создания фона настроения, создания пониженного фона интенсивности вокруг опорной информации, привлечение исторического материала, применение мнемонических эффектов. Целевая установка, мотивация, внешнее ненавязчивое побуждение учителя к внутренним действиям ученика, адекватным поставленным целям - составляющие компоненты фоновой наглядности. Особое значение этот вид наглядности приобретает в условиях профильной дифференциации. Фоновая наглядность - это тот фактор, который позволяет проводить воспитательную работу в процессе обучения.

5. Дистрибутивная наглядность характеризуется структурными внешними действиями при изучении сформированной модели в процессе учебной деятельности. К этому виду наглядности относится структура размещения материала, выделение базовых определений, порций материала, классификацию методов доказательств. Этот вид наглядности широко используют авторы учебников и учебных пособий. Использование этого вида наглядности позволяет расставить акценты на изучаемом материале, делает его более доступным для восприятия и усвоения, учит логически мыслить, анализировать, выделять главное и устанавливать связи между изучаемыми понятиями, уметь ориентироваться в большом объеме информации, воспитывает критическое отношение, учит быть собранным.

6. Наглядность преемственности характеризуется опорностью ассоциативных связей внутри раздела, предмета и межпредметных. Сюда относится структура взаимосвязей, методы изложения, пропедевтика, опорные мотивационные исторические задачи, циклы задач исследовательского характера. Применение этого вида наглядности зависит от того, насколько глубоко учитель владеет материалом, от творческого использования им методов изложения материала, от его эрудиции, общей культуры, заинтересованности в результатах своего труда.

Различные виды наглядности выполняют различные функции. Одни содействуют оживлению представлений (картины, предметы жизни), другие являются опорой для отвлеченного мышления.

С целью реализации принципа наглядности многие учителя используют различные наглядные пособия на своих уроках. К наглядным пособиям относятся:

- реальные предметы и явления в их натуральном виде;

- модели объектов и процессов;

- муляжи (от фр. - формовать, отливать в форму);

- иллюстративные пособия: картины, рисунки, фотографии;

- графические пособия: диаграммы, графики, схемы, таблицы;

- различные технические средства обучения - устройства, помогающие учителю обеспечивать учащихся учебной информацией, управлять процессами запоминания, применения и понимания знаний, контролировать результаты обучения: учебные кинофильмы, средства программированного обучения, компьютерные программные средства.

Наглядность применяется и как средство познания нового, и для иллюстрации мысли, и для развития наблюдательности, и для лучшего запоминания материала. Средства наглядности используются на всех этапах процесса обучения: при объяснении нового материала учителем, при закреплении знаний, формировании умений и навыков, при выполнении домашних заданий, при контроле усвоения учебного материала.

Применение наглядных пособий в обучении подчинено ряду правил:

- ориентировать учащихся на всестороннее восприятие предмета с помощью разных органов чувств;

- обращать внимание учащихся на самые важные, существенные признаки предмета;

- показать предмет (по возможности) в его развитии; предоставить учащимся возможность проявлять максимум активности и самостоятельности при рассмотрении наглядных пособий;

- использовать средств наглядности ровно столько, сколько это нужно, не допускать перегрузки обучения наглядными пособиями, не превращать наглядность в самоцель.

Следовательно, умелое применение средств наглядности в обучении всецело находится в руках учителя. Учитель в каждом отдельном случае должен самостоятельно решать, когда и в какой мере надо применять наглядность в процессе обучения, ибо от этого в определенной степени зависит качество знаний учащихся.

Принцип наглядности, по выражению Я.А. Коменского, является "золотым правилом дидактики". Он требует сочетания наглядности и мысленных действий, наглядности и слова. Вредным является как недостаточное, так и избыточное применение средств наглядности. Их недостаток приводит к формальным знаниям, а избыток может затормозить развитие логического мышления, пространственного представления и воображения.

Роль наглядности в обучении очень велика. Изображение - это основа мышления. Изображение важнее слова - оно быстрее вспоминается. Для того чтобы его узнать не требуется никаких "дополнительных" условий, так как в процессе мышления человек чаще всего создаёт те или иные образы. В то же время слово нуждается в расшифровке. Понятийное мышление требует знания системы для расшифровки кодов. Слово осознаётся, как часть общей словесной конструкции, связанное с другими словами (понятиями) как элемент целого. Образное мышление нелинейно: каждое изображение завершено, представляет собой самостоятельный, независимый фрагмент.

Поэтому, процесс обучения невозможен без обращения к наглядности. Средства наглядности используются на всех этапах процесса обучения: при объяснении нового материала учителем, при закреплении знаний, формировании умений и навыков, при выполнении домашних заданий, при контроле усвоения учебного материала.

Следует отметить, что в условиях технического прогресса и доступности компьютерных средств бесспорное преимущество занимает компьютерная графика и мультимедийные пособия в реализации принципа наглядности.

Одной из актуальных задач в современных условиях является внедрение информационных технологий на всех уровнях образовательной системы и информационное наполнение компьютерных сетей системы образования. В истории информатизации образования выделяют четыре этапа.

Период с начала 50-х и до начала 70-х годов принято считать первым этапом на пути внедрения компьютерных обучающих средств в процесс образования. Компьютеризация в этот период не повысила эффективность обучения, поскольку не изменилась традиционная система организации обучения и отсутствовала возможность персонального доступа обучаемого к компьютеру. Компьютерные программы использовались лишь в качестве тренажеров и контролирующих средств.

Второй этап относится к 70-80 годам и связан с внедрением персональных компьютеров в образовательные системы. Помимо контролирующих программ появляются программы информационного характера, что способствует развитию новых форм обучения.

Третий этап датируется 80-90 годами и характеризуется расширением парка персональных компьютеров. Возрастают возможности индивидуализации и активности обучения. Именно третий этап дает начало инновационному обучению с помощью компьютеров, превосходящему традиционные образовательные технологии. На этом этапе компьютеризация обучения используется в качестве поддержки самостоятельной работы студентов в условиях сокращения количества часов по практически всем дисциплинам учебного плана и как средство для дистанционного обучения.

Начиная с 2000 года можно выделить четвертый этап в развитии информатизации образования. Этот этап связан с активным развитием сетевых технологий доступа к образовательным ресурсам и объединением информационных, обучающих и контролирующих программ в виртуальные курсы, обеспечивающие открытость образовательных процессов.

Выше говорилось о необходимости обращения к визуальному мышлению в процессе обучения. Среди важнейших проблем, составляющих сердцевину научного поиска в рамках концепции визуального мышления - восприятие и интерпретация изображений. Изначально, на заре истории, изображение, созданное человеком, было, прежде всего, неподвижным объектом. А ведь организм, обслуживаемый зрением, естественно, больше интересуют изменения, а не неподвижность. Злободневным симптомом состояния современной культуры является явное предпочтение, оказываемое ныне потоку динамических изображений по сравнению с изображениями статическими - это уже не количественная, статистическая, а качественная характеристика культуры.

Перспективы использования компьютерной графики в преподавании математики связаны, прежде всего, с эффективной реализацией общедидактического принципа наглядности в обучении. Его воплощение в обучении различным предметам, наряду с другими принципами дидактики, является одним из ведущих факторов обучения и развития.

Опыт широкого использования компьютерной графики в обучении математике позволяет выделить, по крайней мере, два направления повышения роли наглядности в формировании многих математических понятий. Первое - это непосредственное использование компьютера как специального средства, реализующего принцип наглядности. Второе - опосредованное формирование математических понятий в процессе обучения информатике, через призму ее собственных понятий и приемов работы с компьютером. В последнем случае необходимо еще специально акцентировать внимание на межпредметных связях курсов информатики и математики.

Как правило, учителя с опаской и осторожностью относятся к активному вмешательству компьютерной техники в привычный ход урока. Преподавателям свойственно противиться всему новому, "разрушающему" выстроенную годами методику изложения материала. С одной стороны, такой консерватизм вполне понятен и даже в некоторой степени полезен для людей этой профессии, но с другой - нет предела совершенству, и не разумно противиться процессу, направленному на развитие качеств ума учащихся, увеличение набора форм работ и облегчения нелегкого учительского труда.

Несмотря на то, что никто из специалистов не утверждает, что компьютер может полностью заменить учителя, время от времени в печати появляются материалы, авторы которых доказывают, что преподаватель незаменим. При этом в пылу полемики, утверждает кандидат психологических наук Е.И. Машбиц, они зачастую оперируют больше эмоциями, чем фактами. Е.И. Машбиц выступает в защиту компьютерного обучения. Приведем некоторые из высказываний оппозиции и замечания Е.И. Машбица.

1. Компьютер - суррогат учителя, немыслящий помощник, который может натаскивать, поощрять и упражнять обучаемого при выполнении только рутинных заданий. Учитель даже в большом классе значительное лицо; он незаменим.

Однако, как отмечалось выше, в настоящее время не ставится вопрос о том, чтобы заменить учителя. Альтернативе учитель или компьютер противопоставляется другая: учитель с компьютером или учитель без него. При такой постановке вопроса ответ однозначен. Утверждение же о том, что компьютер может использоваться при выполнении только рутинных заданий, нетрудно опровергнуть. К настоящему времени накоплен большой опыт, свидетельствующий о возможности применения компьютера при решении творческих задач.

2. Компьютеризация - зло, которое приводит к дегуманизации преподавателя, учащихся и учения. Занятия обезличиваются, обучающий утрачивает возможность преподносить материал так, как считает необходимым, а обучаемые не могут проявить свою индивидуальность.

Эта точка зрения также несостоятельна. Проанализировав все доводы за и "против", психолог Л.Н. Проколиенко убедительно показала, что компьютер создает исключительно большие возможности для самовыражения учащегося, становления его личности.

3. Нет очевидных доказательств того, что компьютерное обучение более эффективно, чем традиционное. Приводятся многочисленные сведения о том, что некоторые программы отнюдь не обеспечивают достижения педагогических целей, вызывают у учащихся скуку.

Тут надо сказать, что многочисленные факты выпуска на рынок западных стран малоэффективных программ - лишь свидетельство издержек начального периода использования компьютера. Так в США и Великобритании (за исключением относительно небольшого числа научных центров, которые созданы при крупных компьютерных фирмах и в университетах) составлением обучающих программ нередко занимаются люди, не имеющие серьезной подготовки в области психологии обучения и дидактики, а иногда и методики обучения.

Исключительно важен вопрос, какую роль будет играть преподаватель при компьютерном обучении. Останется ли он центральной фигурой учебного процесса, если будет использовать компьютер? Ответить на это можно так. От того, что преподаватель пользуется учебником, написанным специалистами, учебными пособиями и техническими средствами, изготовленными также не им самим, его роль не уменьшается. И в компьютерном обучении от преподавателя зависит, когда и как использовать обучающую программу, как приспособить ее к определенному контингенту учащихся или применить без изменений и т.д.

Работа преподавателя с выбранной компьютерной программой не предполагает следование четкой инструкции ее использования. Преподаватель волен в своем творчестве. Он имеет право использовать фрагменты программы, в соответствии с конструированием занятий по своей методике. В разделе "Особенности методики" мы подробнее рассмотрим возможности работы преподавателя с применением компьютерных средств.

Основу компьютеризации обучения составляют два направления:

- овладение компьютерной грамотностью;

- применение компьютера, как средства обучения.

Компьютеризация по второму направлению призвана повысить эффективность учебного процесса, уменьшить разрыв между требованиями, которые общество предъявляет подрастающему поколению, и тем, что действительно дает обучение.

Одно из наиболее плодотворных применений компьютера в образовании - использование его как средства управления учебной деятельностью учащихся. Именно в этом качестве он может наиболее существенно повысить эффективность обучения.

Известно, как важна индивидуализация обучения. Но при традиционной классно-урочной системе возможности индивидуализации обучения очень ограничены: предоставить каждому учащемуся персонального преподавателя ни одно общество не в состоянии. На практике же выходит, что то объяснение, которое доступно для одних учащихся, для других - недостаточно, а третьим, наоборот, кажется до скучного подробным. Поэтому и получается, что слабоуспевающие в решении задач не всегда получают помощь в необходимом объеме, а более способных нередко приходиться "притормаживать".

Между тем компьютер может обеспечить индивидуализацию обучения в массовом порядке, да еще при выборе обучающего воздействия (объяснение, подсказка, похвала), учесть историю обучения каждого конкретного ученика. Компьютер осуществляет, так называемое, рефлексивное управление, то есть строит модель учащегося, которая учитывает особенности его познавательных процессов - восприятия, мышления, памяти, и оказывает помощь учащемуся с учетом его индивидуальных возможностей.

Исключительно огромны возможности компьютера в проблемном обучении, при котором учащийся выступает, как исследователь, самостоятельно открывающий нечто новое. При этом оттачиваются ум и воля, он учится преодолевать трудности, принимать нешаблонные решения.

Компьютер помогает активизации учащихся. Это происходит отчасти благодаря тому, что современная техника открывает большие возможности наглядности (сочетание зрительной наглядности со слуховой, применение мультипликации и т.д.). Вместе с тем появляются принципиально новые возможности, позволяющие учитывать уровень развития познавательных процессов учащихся при постановке учебных задач и вопросов, при оказании им помощи.

Е.И. Машбиц выделяет следующие сильные стороны использования компьютера в процессе обучения:

- новизна работы с компьютером вызывает у учащихся повышенный интерес к работе с ним и усиливает мотивацию учения;

- цвет, мультипликация, музыка, звуковая речь расширяют возможности представления информации;

- компьютер позволяет строить индивидуализированное обучение на основе модели учащегося, учитывающей историю его обучения и индивидуальные особенности памяти, восприятия, мышления;

- с помощью компьютера может быть реализована личностная манера общения, что создает более благоприятную обстановку; это особенно важно для учащихся с замедленным темпом обучения;

- компьютер активно включает учащихся в учебный процесс, позволяет им сосредоточить внимание на наиболее важных аспектах изучаемого материала, не торопит с решением; у него всегда хватит терпения, он никогда не повышает голоса;

- намного расширяются наборы применяемых учебных задач, используются задачи на моделирование различных ситуаций, постановку диагноза; компьютер дает учащимся возможность наглядно убедиться в том, к чему приводят его решения;

- возможность пользоваться большим объемом ранее недоступной информации.

Подводя итог вышесказанному, очевидны преимущества использования компьютерных средств в обучении. Во-первых, это способствует увеличению скорости передачи информации, что очень важно в условиях постоянного увеличения объема информации, передаваемой обучающимся в процессе образования; во-вторых, это автоматизация рутинной работы учителя по обслуживанию процесса обучения, такой как передача информации по организации и сопровождению учебного процесса, учет, контроль и анализ знаний учащихся; в-третьих, это демонстрация и моделирование различных процессов и объектов, которые невозможно воспроизвести в реальных условиях, активизация интереса к процессу обучения, что улучшает его качество за счет повышения уровня восприятия учащимися изучаемого материала и добавления нового средства в дидактический процесс, который изменяет традиционную схему обучения по отдельному предмету "ученики - учебник - учитель" на "ученики - учебник - компьютерные средства (КС) - учитель". Новый элемент в цепочке традиционного обучения является вспомогательным ресурсом. И в заключение, это организация самостоятельной работы учащегося при самоподготовке и выполнении домашних заданий. В этом случае компьютерные средства дополняют функции учебника и выполняют роль компьютерных средств обучения (КСО). Используемые в КСО дидактика и методическое обеспечение учебного процесса должны и могут способствовать более эффективному и мотивированному усвоению учебного материала по сравнению с традиционными (печатными) изданиями. Компьютерные средства обучения должны формировать активную познавательную деятельность, развивать позитивное отношение к обучению и предоставлять рациональный поэтапный контроль усвоения изученного материала.

Место компьютера в учебном процессе во многом определяется типом обучающей программы. Некоторые предназначены преимущественно для закрепления умений и навыков. Место таких программ определить не трудно: их можно использовать после усвоения определенного теоретического материала в рамках традиционной методики обучения.

Другие программы ориентированы преимущественно на усвоение новых понятий в режиме, близком к программированному обучению. Большинство их обладает относительно ограниченными дидактическими возможностями. Компьютер здесь используется как средство программированного обучения, несколько более совершенное, чем простейшее обучающее устройство, но не допускающее развернутого диалога, содержащее, как правило, фиксированный набор обучающих воздействий.

Большими возможностями обладают обучающие программы, которые реализуют проблемное обучение, особенно "интеллектуальные" обучающие программы (своим названием они обязаны тому, что при их разработке используются идеи "искусственного интеллекта"). Многие из них генерируют обучающие воздействия (учебные тесты, задачи, вопросы, подсказки). Такие системы, как правило, учитывают не только правильность ответа, но и способ решения, могут его оценивать, а некоторые - совершенствовать стратегию обучения с учетом накапливаемого опыта. Имеются системы, которые могут обсуждать с учащимися не только правильность решения, но и выбор стратегии решения, причем в языке, близком к естественному. По мнению педагогов и психологов, знакомившихся с протоколами диалогов, создается такое впечатление, что общались ученик и учитель.

Следующий тип обучающей программы предполагает моделирование и анализ конкретных ситуаций. Такие программы особенно полезны в трудовом и профессиональном обучении, поскольку способствуют формированию умений принимать решения в различных ситуациях, в том числе в экстремальных.

Наконец, программы, обучение по которым строится в виде игры. Они способствуют повышению мотивации учения (хотя следует отметить, что соревновательные мотивы, желание, во что бы то ни стало, победить иногда преобладает тут над познавательными мотивами, что вряд ли педагогически оправдано). Игра стимулирует инициативу и творческое мышление, способствует формированию умений совместно действовать (особенно, в кооперативных играх), подчинить свои интересы общим целям. Кроме того, игра позволяет выйти за рамки определенного учебного предмета, побуждая учащихся к приобретению знаний в смежных областях и практической деятельности. Игры создают предпосылки для формирования у обучаемых всевозможных стратегий решения задач и структуры знаний, которые могут быть успешно применены в различных областях. Немаловажно и то, что обучаемый может свободно принимать решения - как правильные, так и неправильные - и при этом видеть, к чему это приводит. Но необходимо воспитывать и волевые усилия, готовность к выполнению даже малоинтересных, но необходимых функций.

При характеристике различных обучающих программ необходимо учитывать, какие именно функции обучающего и обучающегося автоматизируются. Н.Ф. Талызина и Т.В. Габай выделили следующие типы таких функций:

1) создание положительных мотивов, объяснение, показ и фиксация формируемой деятельности и входящих в нее знаний;

2) организация и контроль деятельности учащихся;

3) передача машине рутинной части учебной деятельности;

4) составление и предъявление учебных заданий, соответствующих различным этапам процесса усвоения, а также индивидуальным особенностям ученика и состоянию его деятельности в данный момент.

Таким образом, существующие на современном этапе компьютерные средства обучения по сложности реализации можно классифицировать на следующие виды: электронные версии печатных изданий, информационно-справочные, контролирующие, обучающие, интегрированные. Применение информационных технологий и компьютерных средств позволяет улучшить качество образования, как процесса за счет:

1. сокращения времени доступа к информационным ресурсам, сопровождающим обучение;

2. повышения надежности, объективности и скорости средств контроля и анализа знаний учащихся;

3. активизация восприятия учащимися изучаемого материала и добавления компьютерного моделирования и демонстрации в дидактический процесс.

4. улучшение качества самоподготовки;

5. совершенствование стратегий и технологий образовательного процесса.

Появление компьютера делает возможным обучение на дому. Вряд ли было бы оправданно игнорировать такую возможность, особенно учитывая вечернюю и заочную формы обучения.

Наибольший эффект имеют в обучении математике демонстрационные программы и программы - тренажеры, в которых образная составляющая понятий выдвинута на первый план. Подобные программные продукты дают, во-первых, возможность интерактивной работы, когда обучаемый сам становится участником события. Во вторых, в процессе обучения программированию учащиеся создают наглядные образы геометрических понятий (точка, фигура, преобразование и т.п.). При этом многие понятия, известные из математики или представляемые пока интуитивно, более глубоко раскрывают свою сущность и становятся понятными именно на основе своего образного восприятия. Формирование математических понятий, таким образом, возможно проводить и по такой схеме: интуитивное представление - программа - графическое отображение (построение) - математический термин.

Компьютерные средства обучения называются интерактивными, если они обладают способностью "откликаться" на действия учащегося и преподавателя, "вступать" с ними в диалог. Компьютер можно использовать на всех этапах процесса обучения: при объяснении (введении) нового материала, закреплении, повторении, контроле знаний, умений и навыков. При этом на различных этапах урока он выполняет различные функции: преподавателя, рабочего инструмента, объекта обучения, сотрудничающего коллектива, досуговой (игровой) среды.

В функции преподавателя компьютер представляет:

- источник учебной информации (частично или полностью заменяющий преподавателя);

- наглядное пособие нового уровня с возможностями мультимедиа и телекоммуникациями);

- индивидуальное информационное пространство;

- тренажер;

- средство диагностики и контроля.

В функции рабочего инструмента компьютер выступает как:

- средство подготовки тестов, их хранение;

- текстовой редактор;

- графопостроитель, графический редактор;

- вычислительная машина больших возможностей;

- средство моделирования.

Функцию объекта обучения компьютер выполняет при:

- программировании, обучении компьютера заданным процессам;

- создании программных продуктов;

- применении различных информационных сред.

Сотрудничающий коллектив воссоздается компьютером как следствие коммуникации с широкой аудиторией (компьютерные сети), телекоммуникации в Internet.

Досуговая среда организуется с помощью:

- игровых программ;

- компьютерных игр по сети;

- компьютерного видео.

Работа учителя с компьютерными технологиями включает следующие функции:

- организация учебного процесса на уровне группы в целом, предмета в целом (график учебного процесса, внешняя диагностика, итоговый контроль);

- организация внутригрупповой активизации и координации (расстановка рабочих мест, инструктаж, управление внутригрупповой сетью и т.п.);

- индивидуальное наблюдение за учащимися, оказание индивидуальной помощи, индивидуальный "человеческий" контакт с учащимся. С помощью компьютера достигаются идеальные варианты индивидуального обучения, использующие визуальные и слуховые образы;

- подготовка компонентов информационной среды (различные виды учебного, демонстрационного оборудования, программные средства и системы, учебно-наглядные пособия и т.д.), связь их с предметным содержанием определенного учебного курса.

Один из остро дискуссионных вопросов касается того, в каких учебных предметах и на каких этапах обучения целесообразно использовать компьютер. Уместен вопрос: нужно ли это учащимся? Вряд ли можно дать однозначный ответ, однако напомним скептикам: было время, когда умножение и деление изучали не в школе, а только в университете, да и то не в любом.

Теоретическим фундаментом для построения эффективного компьютерного обучения в нашей стране могут стать психологические теории и концепции советских ученых П.Я. Гальперина и Н.Ф. Талызиной, Д.Б. Эльконина и В.В. Давыдова, А.М. Матюшкина и Т.В. Кудрявцева и др. Разумеется существующие теории строились безотносительно к компьютерному обучению и нуждаются в определенной доработке. Передача обучающих функций машине требует более глубокого исследования этих функций.

Наиболее разработана теория П.Я. Гальперина и Н.Ф. Талызиной, авторы которой уделяли внимание проблемам автоматического управления учебной деятельностью.

В связи с компьютеризацией обучения многие положения и понятия педагогической психологии и дидактики требуют уточнения. Так, для компьютерного обучения необходима такая трактовка метода обучения, которая допускает его операциональное описание и тем самым его технологизацию. Метод обучения реализуется, прежде всего: а) в системе обучающих воздействий; б) в способе включения учащихся в учебную деятельность; в) в "поле самостоятельности" учащегося (что характеризуется допустимыми отклонениями от нормативного способа решения учебных задач, при которых учащимся не оказывается помощь; г) в организационных формах обучения и модальности обмена информацией между обучающим (обучающим устройством) и обучаемым.

Возьмем для примера такой этап обучения, который, по мнению разработчиков обучающих программ, наиболее прост: изложение учебного материала. Но эта простота мнимая. Здесь недостаточно, как это часто делается, переложить текст учебника, снабдив его примерами и иллюстрациями, разбив на части и выделив основные положения. Чтобы успешно реализовать данный этап, необходимо, во-первых, проанализировать деятельность обучающего и обучаемого в их взаимодействии и, во-вторых, выявить то новое, что вносит компьютер во взаимодействие между ними. Анализ в терминах "говорит", "показывает" (применительно к деятельности учителя) и "смотрит", "слушает", "запоминает" (применительно к деятельности учащегося) малопродуктивен. Он не открывает пути организации взаимодействия учащегося с компьютером. Представляется плодотворной трактовка изложения учебного материала как педагогически направленного (то есть с учетом возрастных и индивидуальных особенностей обучаемых) осуществления (развертывания перед учащимися, воспроизведения) фрагмента учебной деятельности с включением (явным или неявным) учащихся в эту деятельность.

Воспроизведение учебной деятельности характеризуется следующими параметрами:

а) уровнем воспроизведения (предметно-содержательный, предметно-операциональный, рефлексивный); третий уровень - рефлексивный - не ограничивается изложением содержания изучаемых объектов и способов оперирования ими; он раскрывает, как бы выносит наружу процесс выработки основных интеллектуальных средств - гипотез, приемов анализа условий, поиска решения, способов контроля своих действий; для этого уровня характерно воспроизведение двух относительно самостоятельных деятельностей: предметной и деятельности, объектом которой является собственная деятельность;

б) содержанием, дополнительным к содержанию учебных курсов;

в) умственными действиями, необходимыми для усвоения содержания учебной деятельности;

г) включенностью учащихся в процесс воспроизведения учебной деятельности (имеется в виду также характер включенности: явная или неявная).

На этапе изложения учебного материала компьютер представляет собой мультимедийный источник учебной информации, частично или полностью заменяющий учителя. [8]

Применение компьютера на данном этапе эффективно, потому что:

1. Во первых, любая информация, представленная на компьютере воспринимается учащимися с огромным интересом. Это позволяет активизировать познавательную деятельность учащихся.

2. Во вторых, объяснение нового материала на компьютере происходит индивидуально для каждого учащегося. При желании он может вернуться на несколько шагов назад и просмотреть объяснение заново.

3. При чтении электронного учебника встречаются термины, понятия, выделенные цветом, так называемые гиперссылки. Гиперссылки - это прямая связь между различными частями информационного ресурса. Если ученик встретил незнакомое понятие, термин, теорему, то ему не нужно обращаться к справочнику или к дополнительной литературе, достаточно щёлкнуть кнопкой "мыши" на выделенном фрагменте. При этом происходит открытие того раздела учебника или справочника, в котором эти понятия даются более широко. Этот механизм является самым важным отличием электронных изданий от полиграфических.

4. Во многих электронных учебниках присутствует анимация (интерактивная модель). Она представляет собой картинку, которая "оживает" при нажатии на соответствующую кнопку мыши. Анимация позволяет более наглядно продемонстрировать теорему, понятие, свойство. Она дает возможность ученику увидеть то, что без компьютера он мог только представить, вообразить.

Очевидно, что компьютер обеспечивает разгрузку учителя от рутинных операций, создает реальные возможности для сосредоточения на творческих аспектах деятельности. Учитель, избавленный от необходимости контролировать каждый шаг в решении разнообразных учебных задач и в то же время получивший доступ к данным, которые раскрывают историю обучения каждого ученика, может больше внимания уделить индивидуальной работе с учащимися - как с отстающими, так и с особо одаренными, а также воспитательной работе.

Использование технологии Flash.

Технология Flash в последнее время сильно набрала популярность в областях отличных от WEB-дизайна, и часто не имеющих к WEB вообще никакого отношения. Одна из таких областей - разработка учебных пособий и демонстраций.

Сначала несколько слов об особенностях технологии Flash, которые позволяют рекомендовать ее в качестве инструмента оформления учебных материалов.

Технология Flash, прежде всего, - это технология векторной анимации. Такой подход дает большие преимущества перед традиционной покадровой анимацей (avi, mpeg). Векторная графика - чистое математическое описание каждого объекта на экране - в отличие от растровой графики, которая представляет собой, в простейшем, не сжатом виде, массив из точек разного цвета, очень нетребовательна к ресурсам для воспроизведения, занимает очень мало места, не искажается при масштабировании и поворотах. Анимация выполняется не в каждом кадре, а только в ключевых. Недостающие кадры не хранятся непосредственно в файле, а дорисовываются компьютером по заранее заданному закону. Это позволяет достичь невероятно малого размера результирующих файлов. Кроме того, фирма Macromedia (или сторонние производители) выпускает программные проигрыватели *.swf файлов почти для всех известных платформ и операционных систем.

В отличие от традиционных векторных редакторов и форматов векторной графики, Flash изначально ориентирован на экранный просмотр, а не на печать (сглаженные линии, округлый текст, плавные цветовые переходы). И это приближает качество картинки к фотографическому. Но главные козыри у Flash скрыты от глаз, просматривающих Flash-ролики.

Это собственный язык программирования. Этот язык - фирменная разработка Macromedia и носит название Action Script. Это объектно-ориентированная среда программирования, которая, поддерживает почти все нововведения объектно-ориентированного подхода. Средствами этого языка можно управлять любым элементом ролика и менять любые его свойства. Следствием внедрения в ролики языка программирования стала интерактивность, т.е. возможность ролика меняться в зависимости от действий пользователя.

Итак, перейдем к использованию Flash в создании учебных материалов по различным предметам, отличным от информатики.

В частности, Flash целесообразно использовать на занятиях по математики при обучении исследованию функций. На занятиях, посвященных исследованию функций преподавателю, как правило, приходится рисовать на доске множество различных графиков и дополнительных построений к ним. Это занимает много времени и достаточно утомительно. Применение Flash в таких случаях экономит время на уроке. Векторный подход к рисованию может повысить точность изображения (графики функций, касательные, площади криволинейных трапеций и пр.). Повысить наглядность позволяет анимация. В нужное время масштабируемый и динамично прорисовывающийся график гораздо наглядней статичной картинки на доске. При помощи интерактивности и Action Script появляется возможность варьировать параметры кривых и других элементов чертежа.

Трудно переоценить преимущества векторной графики в занятиях геометрией. Снова экономиться время за счёт готовых чертежей, демонстрируемых с компьютера. Анимация особенно пригодиться при изучении преобразований, в стереометрии. Решение задач на построения становится более наглядным.

И, в заключение, несколько слов о перспективах. Технология Flash давно вышла за рамки одной программы. Регулярное обновление версий делает Flash современным в любой момент времени. Ее используют в массе инструментальных средств. Одним из таких средств стала программа "Macromedia Director", симбиоз Flash и PowerPoint с уклоном в сторону обучающих средств. Эта программа специально предназначена для разработки именно обучающих средств с использованием инструментария и возможностей Flash. [16]

В последнее время встает вопрос: как использовать компьютерные программные средства в обучении и нужны ли они, ведь раньше спокойно обходились и без них. Но прогресс не стоит на месте, а значит, и отказываться от новых внедрений нецелесообразно. Наиболее значимой чертой формирующейся системы образования XXI века называют применение мультимедийных, информационных технологий в процессе отбора, накопления, систематизации и передачи знаний.

Современные компьютерные технологии предоставляют огромные возможности для развития процесса образования. Еще К.Д. Ушинский отмечал, что детская природа требует наглядности. Сейчас это уже не схемы, таблицы и картинки - они статичны, а более близкая детской природе игра, пусть даже и научно-познавательная. Каждый обучаемый получает возможность самостоятельно работать с учебной информацией, что позволяет ему детально разобрать новый материал по своей схеме, что позволяет реализовывать принципы дифференцированного и индивидуального подхода к обучению.

Мультимедиа - особый вид компьютерной технологии, объединяющей в себе как традиционную статическую (текст, графику), так и динамическую информацию (речь, музыку, видео-фрагменты, анимацию и т.д.).

Используя системы мультимедиа, позволяющие объединить возможности компьютера и знания учителя, стало возможным создание мультимедийных пособий, которые более наглядно, красочно и с мобильным доступом информации предстанут перед учениками. Содержание пособий включает в себя теоретическую часть, изложенную в более компактном варианте и задания для самопроверки.

В обращении пособия просты, что позволяет ученику легко вернуться к той информации, которую он не понял. Нажать кнопки клавиатуры гораздо быстрее и проще, чем перелистывать страницы учебника назад. Такие пособия проявляют у учеников большой интерес к учебе и желание изучать предмет в более углубленной форме, что, несомненно, сказывается на их уровне знаний в лучшую сторону. Учителям мультимедийные технологии открывают возможности отказаться от свойственных традиционному обучению рутинных видов деятельности преподавания.

Благодаря новым мультимедиа технологиям, стало возможным использовать компьютерные программы как иллюстративный материал, проводить тестирования и контрольные работы, решать творческие задачи, участвовать в дистанционных уроках, сочетать традиционные домашние задания с заданиями, для выполнения которых используются компьютеры, также позволяют взглянуть ученику на предмет с другой стороны и проявить себя в новой деятельности.

Внедрение информационных технологий в образование дает возможность выбора оптимального набора технологий для организации учебного процесса. При выборе необходимо учитывать их соответствие индивидуальным качествам обучаемых и специфическим особенностям конкретных предметных областей.

При работе с мультимедийными технологиями учащиеся с самого начала вовлечены в активную познавательную деятельность, так как потоки данных превращаются в изображения, благодаря которым у исследователя могут неожиданно возникать новые решения. Не всегда есть возможность провести эксперимент с реальными объектами или даже с их моделями. Тогда встает необходимость оперировать с образами, то есть проводить мысленный эксперимент, который характеризуется логической корректностью и активностью воображения. Графические средства не только отражают этапы мысленного экспериментирования, но и существенно облегчают процесс его протекания, так как создаются особые условия для формирования образов. Следовательно, компьютерная графика служит средством поддержки и развития мысленного экспериментирования.

Рассмотрим технологию Flash, которая и позволяет создавать мультимедийные пособия подобного рода. Она является сравнительно молодой и стремительно развивающейся, именно поэтому сочетает в себе большинство современных инструментов и механизмов, используемых при создании анимации. С появлением этой технологии, появилась возможность значительно повысить уровень эффективности преподавания за счет использования его простого и удобного интерфейса и, в принципе, ни чем не ограниченных возможностей в области анимации при разработке учебных пособий.

Flash работает с компактной векторной графикой, позволяя рисовать, оживлять и озвучивать любое действие, персонажа, программу. Непоколебимыми плюсами векторной графики являются простота, независимость от разрешения, малый объем конечного файла.

Целесообразно использовать Flash в создании учебных пособий к урокам геометрии при изучении темы "Движение". На занятиях, посвященных изучению понятия движения и его видов учителю, как правило, приходится рисовать на доске множество различных фигур и пытаться изобразить процесс их преобразования. Применение Flash в таких случаях экономит время на уроке, предоставляя готовые чертежи, повышает наглядность по сравнению со статичной картинкой на доске.

Таким образом, при помощи технологии Flash и было разработано мультимедийное пособие для учащихся 8-9 классов по теме "Движение".

2. Методика развития интереса к математическому творчеству у учащихся основной школы в процессе обучения подобиям плоскости

2.1 Методика развития интереса к математическому творчеству у учащихся основной школы относительно подобий плоскости в процессе обучения геометрии

Как уже отмечалось, геометрия возникла из практики и находит свое применение на практике, и потому в преподавании геометрии необходимо связывать ее с реальными наглядно представимыми вещами. По мнению Г. Фройденталя, обучение геометрии может иметь смысл, если только используются связи геометрии с привычным пространством. Если педагог упустит это, то он упустит незаменимую возможность: геометрия является одной из лучших возможностей систематизировать реальную действительность.

При традиционном обучении геометрии многие учащиеся испытывают затруднения, цели обучения часто не достигаются, и одной из причин этого, по мнению многих методистов, является преобладание аналитических методов изучения. Психологически обоснованно, что при изучении систематического курса геометрии, особенно на первых этапах, целесообразно опираться на наглядно-действенное мышление и практическую деятельность учащихся и отдавать предпочтение конструктивному подходу в качестве возможного пути совершенствования преподавания систематического курса геометрии. Средством реализации конструктивного подхода может являться система конструктивных задач, обеспечивающая возможность изучения геометрических преобразований и их применения.

Геометрические преобразования отражают общие закономерности явлений природы. Такие преобразования как осевая, центральная симметрия, параллельный перенос, поворот - есть обобщение наблюдаемых в природе явлений. Понятие движения взято из реальной действительности и является отражением свойств реальных предметов. Благодаря этому изучение геометрических преобразований предполагает возможность широкого использования задач прикладного характера и практического содержания.

В школьных учебниках геометрии прикладных задач немного, причем в большинстве своем они рассчитаны на среднего ученика и не учитывают различие стилей мышления учащихся. В нашей работе мы постарались увеличить число прикладных задач и сейчас рассмотрим метод обучения через задачи и как средство изучения и применения геометрических преобразований выбрали систему задач практического содержания. Такой подход позволяет укрепить межпредметные связи геометрии с другими дисциплинами, наполнить содержание предметного материала геометрии реальными образами.

Существенным элементом структуры познавательного педагогического процесса являются методы обучения. Под методом обучения будем понимать упорядоченный способ взаимосвязанной деятельности учителя и учащихся, направленный на достижение целей обучения [26]. Система методов обучения состоит из общих методов обучения, разработанных дидактикой, и из специальных методов обучения математике, отражающих основные методы познания, используемые в математике.

Для обучения учащихся 8-9 классов геометрическим преобразованиям могут быть использованы различные методы обучения. Наиболее целесообразно в классах, непосредственно предшествующих профильным, и профильных классах использовать метод обучения через задачи. Сущность данного метода состоит в том, что математические задачи выступают как средство обучения и позволяют организовать процесс обучения таким образом, чтобы каждому учащемуся, независимо от его интересов и задатков, дать возможность обучаться по своей индивидуальной траектории.

Задачи делятся на воспроизводящие, которые способствуют выработке и закреплению определенного навыка или умения, и творческие, помогающие выявить и развить способности детей. Именно творческие задачи помогают самовыразиться учащимся, реализовать свои индивидуальные задатки.

Целесообразность введения элементов профилирования в 8-9 классах с помощью системы прикладных задач обосновывается тем, что многие учащиеся с гуманитарными наклонностями, встретившись с задачей математического или физического содержания, не проявляют интереса к ее решению. В то же время, задача исторического, художественного или лингвистического содержания может стать для них более интересной и привлекательной. В этом случае учащимся будет легче установить связи между величинами задачи и выразить их на математическом языке.

В соответствии с мнением Я.И. Груденова, изучение математических положений можно подразделить на три этапа: введение, усвоение и закрепление. На этапе введения учащиеся знакомятся с формулировками и доказательствами предложений. При усвоении происходит запоминание материала, и школьники учатся применять математические предложения в простейших случаях. Закрепление сводится к повторению формулировок и отработке навыков применения к решению задач. Проверка знаний по теме может включаться как элемент в перечисленные этапы или выделяться отдельно.

На протяжении всех этапов изучения материала учащиеся решают математические задачи. На вводном этапе задачи играют роль подготовительных упражнений. При усвоении, закреплении и проверке теории они используются в качестве упражнений в применении знании и отработке практических навыков. Например, перед построением отрезков, симметричных относительно оси, учащимся необходимо восстановить в памяти определение построения точек, симметричных друг другу относительно прямой. Упражнение, предназначенное для учащихся, ориентированных на гуманитарные области знаний, может представлять собой тест на знание данного определения: "Чтобы построить две точки, симметричные друг другу относительно прямой, нужно...". Учащимся необходимо вписать в пропуски соответствующий текст.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.