Теплотехника и энергосберегающие технологии

Термодинамические процессы идеальных газов в закрытых системах. Основные закономерности течения газа в соплах и диффузорах. Циклы поршневых двигателей внутреннего сгорания и газотурбинных установок. Теплоотдача при естественной конвекции и конденсации.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 26.11.2013
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рисунок 3.2 - Графическое изображение теплоты в T, s - координатах

Понятие энтропии позволяет ввести чрезвычайно удобную для термодинамических расчетов Т, s-диаграмму, на которой (как и на p,v -диаграмме) состояние термодинамической системы изображается точкой, а равновесный термодинамический процесс линией (Рисунок 3.2).

В равновесном процессе

;

.

Очевидно, что в Т, s-диаграмме элементарная теплота процесса изображается элементарной площадкой с высотой Т и основанием ds, а площадь, ограниченная линией процесса, крайними ординатами и осью абсцисс, эквивалентна теплоте процесса.

Формула

показывает, что ds и имеют одинаковые знаки, следовательно, по характеру изменения энтропии в равновесном процессе можно судить о том, в каком направлении происходит теплообмен. При подводе теплоты к телу (>0) его энтропия возрастает (ds>0), а при отводе теплоты (<0) - убывает (ds<0).

Лекция 4. Общая формулировка второго закона

Из первого закона термодинамики следует, что взаимное превращение тепловой и механической энергии в двигателе должно осуществляться в строго эквивалентных количествах. Двигатель, который позволял бы получать работу без энергетических затрат, называется вечным двигателем первого рода. Ясно, что такой двигатель не возможен, ибо он противоречит первому закону термодинамики. Поэтому первый закон можно сформулировать в виде следующего утверждения: вечный двигателя первого рода невозможен.

В 1755 г. французская Академия наук "раз и навсегда" объявила, что не будет больше принимать на рассмотрение какие-либо проекты вечных двигателей.

Рисунок 4.1 - Термодинамическая схема теплового двигателя

Несмотря на эквивалентность теплоты и работы, процессы их взаимного превращения неравнозначны. Опыт показывает, что механическая энергия может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в механическую энергию в периодически повторяющемся процессе нельзя. Многолетние попытки осуществить такой процесс не увенчались успехом. Это связано с существованием фундаментального закона природы, называемого вторым законом термодинамики. Чтобы выяснить его сущность, обратимся к принципиальной схеме теплового двигателя.

Как показал опыт, все без исключения тепловые двигатели должны иметь горячий источник теплоты, рабочее тело, совершающее замкнутый процесс - цикл, и холодный источник теплоты.

'Практически в существующих тепловых двигателях горячими источниками служат химические реакции сжигания топлива или внутриядерные реакции, а в качестве холодного источника используется окружающая среда - атмосфера. В качестве рабочих тел, как отмечалось выше, применяются газы или пары.

Рисунок 4.2 - Круговой процесс (цикл) в р, v и Т, s-координатах

Работа двигателя осуществляется следующим образом. Расширяясь по линии 1B2, рабочее тело совершает работу, равную площади 1B22ґ1ґ. В непрерывно действующей тепловой машине этот процесс должен повторяться многократно. Для этого нужно уметь возвращать рабочее тело в исходное состояние. Такой переход можно осуществить в процессе 2В 1, но при этом потребуется совершить над рабочим телом ту же самую работу. Ясно, что это не имеет смысла, так как суммарная работа - работа цикла - окажется равной нулю.

Для того чтобы двигатель непрерывно производил механическую энергию, работа расширения должна быть больше работы сжатия. Поэтому кривая сжатия 2A1 должна лежать ниже кривой расширения. Затраченная в процессе 2A1 работа изображается площадью 2A11ґ2ґ. В результате каждый килограмм рабочего тела совершает за цикл полезную работу lц, эквивалентную площади 1В 2А 1, ограниченной контуром цикла. Цикл можно разбить на два участка: A1B, на котором происходит подвод теплоты q1, и B2A, на котором происходит отвод теплоты q2. В точках А и В нет ни подвода, ни отвода теплоты, и в этих точках поток теплоты меняет знак. Таким образом, для непрерывной работы двигателя необходим циклический процесс, в котором к рабочему телу от горячего источника подводится теплота q1 и отводится от него к холодному теплота q2. B T,s-диаграмме теплота q1 эквивалентна площади AґA1BBґ, a q2 - площади AґA2BBґ.

Применим первый закон термодинамики к циклу, который совершает 1 кг рабочего тела:

.

Здесь означает интегрирование по замкнутому контуру 1В 2А 1.

Внутренняя энергия системы является функцией состояния. При возвращении рабочего тела в исходное состояние она также приобретает исходное значение. Поэтому , и предыдущее выражение превращается в равенство

, (4.1)

где

представляет собой ту часть теплоты горячего источника, которая превращена в работу. Это - теплота, полезно использованная в цикле, она равна разности теплот и эквивалентна площади, ограниченной контуром цикла в T,s-диаграмме.

Отношение работы, производимой двигателем за цикл, к количеству теплоты, подведенной за этот цикл от горячего источника, называется термическим коэффициентом полезного действия (КПД) цикла:

.

Коэффициент полезного действия оценивает степень совершенства цикла теплового двигателя. Чем больше КПД, тем большая часть подведенной теплоты превращается в работу.

Соотношение (4.1) является математическим выражением принципа эквивалентности тепловой и механической энергии.

Отметим, что если исключить из схемы теплового двигателя холодный источник, то формально принцип эквивалентности не будет нарушен. Однако, как показывает опыт и как следует из проведенного выше анализа работы двигателя, такой двигатель работать не будет.

Тепловой двигатель без холодного источника теплоты, т. е. двигатель, полностью превращающий в работу всю полученную от горячего источника теплоту, называется вечным двигателем второго рода.

Таким образом, второй закон термодинамики можно сформулировать в виде следующего утверждения: "Вечный двигатель второго рода невозможен". В более расшифрованном виде эту формулировку в 1851 г. дал В. Томсон: "Невозможна периодически действующая тепловая машина, единственным результатом действия которой было бы получение работы за счет отнятия теплоты от некоторого источника".

Проблема создания вечного двигателя привлекала исследователей на протяжении длительного времени. Человечество овладело бы неисчерпываемыми запасами внутренней энергии тел, будь построен вечный двигатель второго рода. Действительно, количество теплоты, выделяющейся при охлаждении, например, земного шара всего на 1 К (масса земного шара равна кг, его удельную теплоемкость примем равной 840 Дж/(кг-К), равно Дж. Для сравнения следует указать, что в 2000 г. мировое потребление всех энергоресурсов мира не превысит Дж, т. е. будет в 10 миллионов раз меньше.

4.1 Прямой цикл Карно

Итак, для превращения теплоты в работу в непрерывно действующей машине нужно иметь, по крайней мере, тело или систему тел, от которых можно было бы получить теплоту (горячий источник); рабочее тело, совершающее термодинамический процесс, и тело, или систему тел, способную охлаждать рабочее тело, т. е. забирать от него теплоту, не превращенную в работу (холодный источник).

Рассмотрим простейший случай, когда имеется один горячий с температурой T1 и один холодный с температурой T2 источники теплоты. Теплоемкость каждого из них столь велика, что отъем рабочим телом теплоты от одного источника и передача ее другому практически не меняет их температуры. Хорошей иллюстрацией могут служить земные недра в качестве горячего источника и атмосфера в качестве холодного.

Единственная возможность осуществления в этих условиях цикла, состоящего только из равновесных процессов, заключается в следующем. Теплоту от горячего источника к рабочему телу нужно подводить изотермически. В любом другом случае температура рабочего тела будет меньше температуры источника T1, т. е. теплообмен между ними будет неравновесным. Равновесно охладить рабочее тело от температуры горячего до температуры холодного источника T2, не отдавая теплоту другим телам (которых по условию нет), можно только путем адиабатного расширения с совершением работы. По тем же соображениям процесс теплоотдачи от рабочего тела к холодному источнику тоже должен быть изотермическим, а процесс повышения температуры рабочего тела от T1 до T2 - адиабатным сжатием с затратой работы. Такой цикл, состоящий из двух изотерм и двух адиабат, носит название цикла К а р н о, поскольку именно с его помощью С. Карно в 1824 г. установил основные законы превращения тепловой энергии в механическую.

Осуществление цикла Карно в тепловой машине можно представить следующим образом. Газ (рабочее тело) с начальными параметрами, характеризующимися точкой а, помещен в цилиндр под поршень, причем боковые стенки цилиндра и поршень абсолютно нетеплопроводны, так что теплота может передаваться только через основание цилиндра.

Рисунок 4.3 - Прямой цикл Карно

Вводим цилиндр в соприкосновение с горячим источником теплоты. Расширяясь изотермически при температуре от объема va до объема vb, газ забирает от горючего источника теплоту

.

В точке b подвод теплоты прекращаем и ставим цилиндр на теплоизолятор. Дальнейшее расширение рабочего тела происходит адиабатно. Работа расширения совершается при этом только за счет внутренней энергии, в результате чего температура газа падает до T2.

Теперь возвратим тело в начальное состояние. Для этого сначала поместим цилиндр на холодный источник с температурой T2 и будем сжимать рабочее тело по изотерме cd, совершая работу l2 и отводя при этом к нижнему источнику от рабочего тела теплоту

.

Затем снова поставим цилиндр на теплоизолятор и дальнейшее сжатие проведем в адиабатных условиях. Работа, затраченная на сжатие по линии da, идет на увеличение внутренней энергии, в результате чего температура газа увеличивается до T1.

Таким образом, в результате цикла каждый килограмм газа получает от горячего источника теплоту q1, отдает холодному теплоту q2 и совершает работу lц.

Подставив в формулу

,

справедливую для любого цикла, выражения для q1 и q2, получим, что термический КПД цикла Карно определяется формулой

.

Из нее видно, что термический КПД цикла Карно зависит только от абсолютных температур горячего и холодного источников. Увеличить КПД цикла можно либо за счет увеличения температуры горячего источника, либо за счет уменьшения температуры холодного, причем влияние температур и на значение различно:

,

,

а так как

.

Таким образом, увеличение температуры горячего источника в меньшей степени повышает КПД цикла Карно, чем такое же (в Кельвинах) уменьшение температуры холодного.

Являясь следствием второго закона термодинамики, формула для КПД цикла Карно, естественно, отражает его содержание. Из нее видно, что теплоту горячего источника можно было бы полностью превратить в работу, т. е. получить КПД цикла, равный единице, лишь в случае, когда либо . Оба значения температур недостижимы. (Недостижимость абсолютного нуля температур следует из третьего начала термодинамики).

При T1=T2 термический КПД цикла равен нулю.

Это указывает на невозможность превращения теплоты в работу, если все тела системы имеют одинаковую температуру, т. е. находятся между собой в тепловом равновесии. Для ориентировки приводим значения термического КПД цикла Карно при различных температурах горячего источника и при температуре холодного источника, равной 10 °С.

t,°С

200

400

600

800

1000

1200

1400

1600

0,40

0,58

0,68

0,74

0,78

0,81

0,83

0,85

Приведенные цифры дают КПД идеального цикла. Коэффициент полезного действия реального теплового двигателя, конечно, ниже.

4.2 Обратный цикл Карно

Осуществим цикл Карно в обратном направлении. Рабочее тело с начальными параметрами точки а расширяется адиабатно, совершая работу расширения за счет внутренней энергии, и охлаждается от температуры Т 1 до температуры T2 Дальнейшее расширение происходит по изотерме, и рабочее тело отбирает от нижнего источника с температурой T2 теплоту q2. Далее газ подвергается сжатию сначала по адиабате, и его температура от Т 2 повышается до T1, а затем - по изотерме (T1=const). При этом рабочее тело отдает верхнему источнику с температурой T1 количество теплоты q1.

Рисунок 4.4 - Обратный цикл Карно в р,v- и T, s-диаграммах

Рисунок 4.5 - Термодинамическая схема холодильной машины

Поскольку в обратном цикле сжатие рабочего тела происходит при более высокой температуре, чем расширение, работа сжатия, совершаемая внешними силами, больше работы расширения на величину площади abcd, ограниченной контуром цикла. Эта работа превращается в теплоту и вместе с теплотой q2 передается верхнему источнику. Таким образом, затратив на осуществление обратного цикла работу lц, можно перенести теплоту от источника с низкой температурой к источнику с более высокой температурой, при этом нижний источник отдаст количество теплоты q2, а верхний получит количество теплоты

ql = q2lц.

Обратный цикл Карно является идеальным циклом холодильных установок и так называемых тепловых насосов.

В холодильной установке рабочими телами служат, как правило, пары легкокипящих жидкостей - фреона, аммиака и т.п. Процесс "перекачки теплоты" от тел, помещенных в холодильную камеру, к окружающей среде происходит за счет затрат электроэнергии.

Эффективность холодильной установки оценивается холодильным коэффициентом, определяемым как отношение количества теплоты, отнятой за цикл от холодильной камеры, к затраченной в цикле работе:

.

Для обратного цикла Карно

.

Заметим, что чем меньше разность температур между холодильной камерой и окружающей средой, тем меньше нужно затратить энергии для передачи теплоты от холодного тела к горячему и тем выше холодильный коэффициент.

Холодильную установку можно использовать в качестве теплового насоса. Если, например, для отопления помещения использовать электронагревательные приборы, то количество теплоты, выделенное в них, будет равно расходу электроэнергии. Если же это количество электроэнергии использовать в холодильной установке, горячим источником, т. е. приемником теплоты, в которой является отапливаемое помещение, а холодным - наружная атмосфера, то количество теплоты, полученное помещением,

где q2 - количество теплоты, взятое от наружной атмосферы, а - расход электроэнергии. Понятно, что q1>, т. е. отопление с помощью теплового насоса выгоднее простого электрообогрева.

Используя обратный цикл Карно, рассмотрим еще одну формулировку второго закона термодинамики, которую в то же время, что и В. Томсон, предложил Р. Клаузиус: теплота не может самопроизвольно (без компенсации) переходить от тел с более низкой к телам с более высокой температурой.

Эта формулировка интуитивно следует из нашего повседневного опыта, который показывает, что самопроизвольно теплота переходит только от тел с более высокой к телам с более низкой температурой, а не наоборот. Можно доказать, что формулировка Р. Кдаузиуса эквивалентна формулировке В. Томсона.

Действительно, если бы теплота q2, полученная за цикл холодным источником, могла самопроизвольно перейти к горячему источнику, то за счет нее снова можно было бы получить какую-то работу - вечный двигатель второго рода, таким образом, был бы возможным.

Из рассмотрения обратного цикла Карно следует, что передача теплоты от тела менее нагретого к телу более нагретому возможна, но этот "неестественный" (точнее - несамопроизвольный) процесс требует соответствующей энергетической компенсации в системе. В обратном цикле Карно в качестве такой компенсации выступала затраченная работа, но это может быть и затрата теплоты более высокого потенциала, способной совершить работу при переходе на более низкий потенциал.

4.3 Изменение энтропии в неравновесных процессах

Рассмотрим принципиальные отличия неравновесных процессов от равновесных на примере расширения газа в цилиндре под поршнем, получающего теплоту от источника с температурой T1 и совершающего работу против внешней силы Р, действующей на поршень.

Расширение будет равновесным только в случае, если температура газа Т равна температуре источника (Т=Т 1), внешняя сила Р равна давлению газа на поршень (P=pF) и при расширении газа нет ни внешнего, ни внутреннего трения. Работа расширения газа в этом случае равна

,

а изменение энтропии рабочего тела в таком процессе

.

Невыполнение хотя бы одного из указанных условий делает расширение газа неравновесным. Если неравновесность вызвана трением поршня о стенки цилиндра, то работа , совершаемая против внешней силы Р, оказывается меньше, чем pdv, так как часть ее затрачивается на преодоление трения и переходит в теплоту . Она воспринимается газом вместе с подведенной теплотой q, в результате чего возрастание энтропии газа в неравновесном процессе оказывается больше, чем в равновесном при том же количестве подведенной от источника теплоты .

Рисунок 4.6 - К определению изменения энтропии в неравновесных процессах

Если неравновесность вызвана отсутствием механического равновесия (P<pF), поршень будет двигаться ускоренно. Быстрое движение поршня вызывает появление вихрей в газе, затухающих под действием внутреннего трения, в результате чего часть работы расширения опять превращается в теплоту . Работа против внешней силы снова получается меньше, а возрастание энтропии - больше, чем в равновесном процессе с тем же количеством теплоты .

Если неравновесность вызвана теплообменом при конечной разности температур (температура газа Т меньше температуры источника T1), то возрастание энтропии рабочего тела

оказывается больше, чем

в равновесном процессе из-за снижения температуры газа. При том же положении поршня, т. е. заданном удельном объеме v, меньшей температуре газа соответствует меньшее его давление р. Соответственно меньше должна быть и уравновешивающая сила Р':

Р'=p'F<P=pF.

Работа расширения против этой силы

.

Итак, неравновесность всегда приводит к увеличению энтропии рабочего тела при том же количестве подведенной теплоты и к потере части работы. В общем виде это можно записать следующим образом:

; ,

Причем и всегда положительны.

Ранее было показано, что для равновесных процессов справедливо соотношение

.

Разобранный пример достаточно наглядно показывает, что в неравновесных процессах , если - количество подведенной к системе или отведенной от нее теплоты, а T - температура источника теплоты. Обе записи являются аналитическими выражениями второго закона термодинамики:

-- в равновесных процессах;

-- в неравновесных процессах.

Для изолированных систем, которые по определению не обмениваются теплотой с окружающей средой , эти выражения приобретают вид .

Если в адиабатно-изолированной системе осуществляются равновесные процессы, то энтропия системы остается постоянной.

Самопроизвольные (а значит, и неравновесные) процессы в изолированной системе всегда приводят к увеличению энтропии. Это положение представляет собой наиболее общую формулировку второго начала термодинамики для неравновесных процессов, известную под названием принципа возрастания энтропии.

Следует подчеркнуть, что последнее неравенство применимо только к изолированным системам. Если от системы отводится теплота, то ее энтропия может убывать, однако суммарное изменение энтропии системы и энтропии внешних тел всегда положительно (либо равно нулю, если в системе протекают равновесные процессы).

Когда изолированная система находится в состоянии с максимальной энтропией, то в ней не могут протекать никакие самопроизвольные процессы, потому что любой самопроизвольный процесс неравновесен и сопровождается увеличением энтропии. Поэтому состояние изолированной системы с максимальной энтропией является состоянием ее устойчивого равновесия, и самопроизвольные процессы могут протекать в изолированной системе лишь до тех пор, пока она не достигнет состояния равновесия.

Лекция 5. Термодинамические процессы идеальных газов в закрытых системах

Основными процессами, весьма важными и в теоретическом, и в прикладном отношениях, являются: изохорный, протекающий при постоянном объеме; изобарный, протекающий при постоянном давлении; изотермический, происходящий при постоянной температуре; адиабатный - процесс, при котором отсутствует теплообмен с окружающей средой, и политропный, удовлетворяющий уравнению .

Метод исследования процессов, не зависящий от их особенностей и являющийся общим, состоит в следующем:

выводится уравнение процесса, устанавливающее связь между начальными и конечными параметрами рабочего тела в данном процессе;

вычисляется работа изменения объема газа;

определяется количество теплоты, подведенной (или отведенной) к газу в процессе;

определяется изменение внутренней энергии системы в процессе;

определяется изменение энтропии системы в процессе.

Изохорный процесс. При изохорном процессе выполняется условие dv=0 или v=const. Из уравнения состояния идеального газа следует, что

p/T=R/v=const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

.

Рисунок 5.1 - Изображение изохорного процесса в р,v- и T, s-координатах

Работа расширения в этом процессе равна нулю, так как dv= 0.

Количество теплоты, подведенной к рабочему телу в процессе 12 при , определяется как:

При переменной теплоемкости

,

где - средняя массовая изохорная теплоемкость в интервале температур от t1 до t2.

Так как 1= 0, то в соответствии с первым законом термодинамики

и

Поскольку внутренняя энергия идеального газа является функцией только его температуры, то полученные формулы справедливы для любого термодинамического процесса идеального газа.

Изменение энтропии в изохорном процессе определяется по формуле

,

т. е. зависимость энтропии от температуры на изохоре при сv = const имеет логарифмический характер.

Изобарный процесс. Из уравнения состояния идеального газа при р=const находим

,

или

,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре (закон Гей-Люссака, 1802 г.). На рисунке изображен график процесса.

Рисунок 5.2 - Изображение изобарного процесса в p,v- и T,s-координатах

Из выражения

следует, что

.

Так как

и ,

то одновременно

Количество теплоты, сообщаемое газу при нагревании (или отдаваемое им при охлаждении):

,

где -- средняя массовая изобарная теплоемкость в интервале температур от t1 до t2 при = const

.

Изменение энтропии при ср = const согласно равно

,

т. е. температурная зависимость энтропии при изобарном процессе тоже имеет логарифмический характер, но поскольку ср>сv, то изобара в Т,s-диаграмме идет более полого, чем изохора.

Изотермический процесс. При изотермическом процессе температура постоянна, следовательно,

pv = RT = const,

или

,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении - падает (закон Бойля - Мариотта, 1662 г.).

Графиком изотермического процесса в р,v -координатах является равнобокая гипербола, для которой координатные оси служат асимптотами.

Работа процесса:

.

Так как температура не меняется, то внутренняя энергия идеального газа в данном процессе остается постоянной () и вся подводимая к газу теплота полностью превращается в работу расширения:

Рисунок 5.3 - Изображение изотермического процесса в р, v- и T, s-координатах.

При изотермическом сжатии от газа отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии в изотермическом процессе выражается формулой

.

Адиабатный процесс. Процесс, происходящий без теплообмена с окружающей средой, называется адиабатным, т. е.. Для того чтобы осуществить такой процесс, следует либо теплоизолировать газ, т. е. поместить его в адиабатную оболочку, либо провести процесс настолько быстро, чтобы изменение температуры газа, обусловленное его теплообменом с окружающей средой, было пренебрежимо мало по сравнению с изменением температуры, вызванным расширением или сжатием газа. Как правило, это возможно, ибо теплообмен происходит значительно медленнее, чем сжатие или расширение газа.

Уравнения первого закона термодинамика для адиабатного процесса принимают вид:

.

Поделив первое уравнение на второе, получим

Интегрируя последнее уравнение при условии, что k =cp/cv=const, находим

После потенцирования имеем

. *

Это и есть уравнения адиабаты идеального газа при постоянном отношении теплоемкостей (k = const). Величина

называется показателем адиабаты. Подставив cp = cv-R, получим k. Согласно классической кинетической теории теплоемкость газов не зависит от температуры, поэтому можно считать, что величина k также не зависит от температуры и определяется числом степеней свободы молекулы. Для одноатомного газа k=1,66 для двухатомного k=1,4, для трех- и многоатомных газов k=l,33.

Поскольку k>1, то в координатах р,v линия адиабаты идет круче линии изотермы: при адиабатном расширении давление понижается быстрее, чем при изотермическом, так как в процессе расширения уменьшается температура газа.

Рисунок 5.4 - Изображение адиабатного процесса в р, v- и Т, s-координатах

Определив из уравнения состояния, написанного для состояний 1и 2, отношение объемов или давлений, получим уравнение адиабатного процесса в форме, выражающей зависимость температуры от объема или давления:

;

.

Работа расширения при адиабатном процессе согласно первому закону термодинамики совершается за счет уменьшения внутренней энергии и может быть вычислена по одной из следующих формул:

.

Так как

и ,

то

.

В данном процессе теплообмен газа с окружающей средой исключается, поэтому q=0. Выражение

показывает, что теплоемкость адиабатного процесса равна нулю.

Поскольку при адиабатном процессе = 0, энтропия рабочего тела не изменяется (ds=0 и s=const). Следовательно, на Т,s-диаграмме адиабатный процесс изображается вертикалью.

Политропный процесс и его обобщающее значение. Любой произвольный процесс можно описать в р,v-координатах (по крайней мере на небольшом участке) уравнением

,

подбирая соответствующее значение п. Процесс, описываемый таким уравнением, называется политропным. Показатель политропы n может принимать любое численное значение в пределах от , но для данного процесса он является величиной постоянной.

Из уравнения Клапейрона нетрудно получить выражения, устанавливающие связь между р, v и Т в любых двух точках на политропе, аналогично тому, как это было сделано для адиабаты:

; ; . (5.1)

Работа расширения газа в политропном процессе имеет вид

.

Так как для политропы в соответствии с (5.1)

,

то

(5.2)

Уравнение (5.1) можно преобразовать к виду:

Количество подведенной (или отведенной) в процессе теплоты можно определить с помощью уравнения первого закона термодинамики:

.

Поскольку

,

то

,

где

представляет собой теплоемкость идеального газа в политропном процессе. При постоянных cv, k и п теплоемкость сn = const, поэтому политропный процесс иногда определяют как процесс с постоянной теплоемкостью.

Изменение энтропии

.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов. Ниже приведены характеристики термодинамических процессов.

Процесс

п

cn

Изохорный

cv

Изобарный

0

cp

Изотермический

1

Адиабатный

k

0

На рисунке показано взаимное расположение на р, V- и Т, s-диаграммах политропных процессов с разными значениями показателя политропы. Все процессы начинаются в одной точке ("в центре").

Рисунок 5.5 - Изображение основных термодинамических процессов идеального газа в р, v- и Т, s-координатах

Изохора (п= ±) делит поле диаграммы на две области: процессы, находящиеся правее изохоры, характеризуются положительной работой, так как сопровождаются расширением рабочего тела; для процессов, расположенных левее изохоры, характерна отрицательная работа.

Процессы, расположенные правее и выше адиабаты, идут с подводом теплоты к рабочему телу; процессы, лежащие левее и ниже адиабаты, протекают с отводом теплоты.

Для процессов, расположенных над изотермой (= 1), характерно увеличение внутренней энергии газа; процессы, расположенные под изотермой, сопровождаются уменьшением внутренней энергии.

Процессы, расположенные между адиабатой и изотермой, имеют отрицательную теплоемкость, так как и du (а следовательно, и dT), имеют в этой области противоположные знаки. В таких процессах , поэтому на производство работы при расширении тратится не только подводимая теплота, но и часть внутренней энергии рабочего тела.

5.1 Эксергия

Основываясь на втором начале термодинамики, установим количественное соотношение между работой, которая могла бы быть совершена системой при данных внешних условиях в случае протекания в ней равновесных процессов, и действительной работой, производимой в тех же условиях, при неравновесных процессах.

Рассмотрим изолированную систему, состоящую из горячего источника с температурой Ti, холодного источника (окружающей среды) с температурой То и рабочего тела, совершающего цикл.

Работоспособностью (или эксергией) теплоты Q1, отбираемой от горячего источника с температурой Т 1, называется максимальная полезная работа, которая может быть получена за счет этой теплоты при условии, что холодным источником является окружающая среда с температурой То.

Из предыдущего ясно, что максимальная полезная работа L'макс теплоты Q1 представляет собой работу равновесного цикла Карно, осуществляемого в диапазоне температур T1 -T0.

,

где

.

Таким образом, эксергия теплоты Q1

,

т. е. работоспособность теплоты тем больше, чем меньше отношение . При она равна нулю.

Полезную работу, полученную за счет теплоты Q1 горячего источника, можно представить в виде

,

где - теплота, отдаваемая в цикле холодному источнику (окружающей среде) с температурой .

Если через обозначить приращение энтропии холодного источника, то

,

тогда

. (5.3)

Если бы в рассматриваемой изолированной системе протекали только равновесные процессы, то энтропия системы оставалась бы неизменной, а увеличение энтропии холодного источника равнялось бы уменьшению энтропии горячего. В этом случае за счет теплоты Q1 можно было бы получить максимальную полезную работу

что следует из уравнения (5.3).

Действительное количество работы, произведенной в этих же условиях, но при неравновесных процессах, определяется уравнением (5.3).

Таким образом, потерю работоспособности теплоты можно записать как

,

но разность представляет собой изменение энтропии рассматриваемой изолированной системы, поэтому

. (5.4)

Величина определяет потерю работы, обусловленную рассеиванием энергии вследствие неравновесности протекающих в системе процессов. Чем больше неравновесность процессов, мерой которой является увеличение энтропии изолированной системы , тем меньше производимая системой работа.

Уравнение (5.4) называют уравнением Гюи - Стодолы по имени французского физика М. Гюи, получившего это уравнение в 1889 г., и словацкого теплотехника А. Стодолы, впервые применившего это уравнение.

Лекция 6. Термодинамические процессы реальных газов

В качестве реального газа рассмотрим водяной пар, который широко используется во многих отраслях техники, и прежде всего в теплоэнергетике, где он является основным рабочим телом. Поэтому исследование термодинамических свойств воды и водяного пара имеет большое практическое значение.

Процесс парообразования. Основные понятия и определения. Рассмотрим процесс получения пара. Для этого 1 кг воды при температуре 0°С поместим в цилиндр с подвижным поршнем. Приложим к поршню извне некоторую постоянную силу Р. Тогда при площади поршня F давление будет постоянным и равным

p=P/F.

Изобразим процесс парообразования, т. е. превращения вещества из жидкого состояния в газообразное, в р,v-диаграмме

Начальное состояние воды, находящейся под давлением р и имеющей температуру 0°С, изобразится на диаграмме точкой a0. При подводе теплоты к воде ее температура постепенно повышается до тех пор, пока не достигнет температуры кипения ts, соответствующей данному давлению. При этом удельный объем жидкости сначала уменьшается, достигает минимального значения при t=4°С, а затем начинает возрастать. (Такой аномалией - увеличением плотности при нагревании в некотором диапазоне температур - обладают немногие жидкости. У большинства жидкостей удельный объем при нагревании увеличивается монотонно). Состояние жидкости, доведенной до температуры кипения, изображается на диаграмме точкой а'.

При дальнейшем подводе теплоты начинается кипение воды с сильным увеличением объема. В цилиндре теперь находится двухфазная среда - смесь воды и пара, называемая влажным насыщенным паром. По мере подвода теплоты количество жидкой фазы уменьшается, а паровой - растет. Температура смеси при этом остается неизменной и равной ts, так как вся теплота расходуется на испарение жидкой фазы. Следовательно - процесс парообразования на этой стадии является изобарно-изотермическим. Наконец, последняя капля воды превращается в пар, и цилиндр оказывается заполненным только паром, который называется сухим насыщенным. Состояние его изображается точкой а".

Рисунок 6.1 - р,v-диаграмма водяного пара

Насыщенным называется пар, находящийся в термическом и динамическим равновесии с жидкостью, из которой он образуется. Динамическое равновесие заключается в том, что количество молекул, вылетающих из воды в паровое пространство, равно количеству молекул, конденсирующихся на ее поверхности. В паровом пространстве при этом равновесном состоянии находится максимально возможное при данной температуре число молекул. При увеличении температуры количество молекул, обладающих энергией, достаточной для вылета в паровое пространство, увеличивается. Равновесие восстанавливается за счет возрастания давления пара, которое ведет к увеличению его плотности и, следовательно, количества молекул, в единицу времени конденсирующихся на поверхности воды. Отсюда следует, что давление насыщенного пара является монотонно возрастающей функцией его температуры, или, что то же самое, температура насыщенного пара есть монотонно возрастающая функция его давления.

При увеличении объема над поверхностью жидкости, имеющей температуру насыщения, некоторое количество жидкости переходит в пар, при уменьшении объема "излишний" пар снова переходит в жидкость, но в обоих случаях давление пара остается постоянным.

Насыщенный пар, в котором отсутствуют взвешенные частицы жидкой фазы, называется сухим насыщенным паром. Его удельный объем и температура являются функциями давления. Поэтому состояние сухого пара можно задать любым из параметров - давлением, удельным объемом или температурой.

Двухфазная смесь, представляющая собой пар со взвешенными в нем капельками жидкости, называется влажным насыщенным паром. Массовая доля сухого насыщенного пара во влажном называется степенью сухости пара и обозначается буквой х. Массовая доля кипящей воды во влажном паре, равная 1-х, называется степенью влажности. Для кипящей жидкости х=0, а для сухого насыщенного пара х=1. Состояние влажного пара характеризуется двумя параметрами: давлением (или температурой насыщения ts, определяющей это давление) и степенью сухости пара.

При сообщении сухому пару теплоты при том же давлении его температура будет увеличиваться, пар будет перегреваться. Точка а изображает состояние перегретого пара ив зависимости от температуры пара может лежать на разных расстояниях от точки а". Таким образом, перегретым называется пар, температура которого превышает температуру насыщенного пара того же давления.

Так как удельный объем перегретого пара при том же давлении больше, чем насыщенного, то в единице объема перегретого пара содержится меньшее количество молекул, значит, он обладает меньшей плотностью. Состояние перегретого пара, как и любого газа, определяется двумя любыми независимыми параметрами.

Если рассмотреть процесс парообразования при более высоком давлении, то можно заметить следующие изменения. Точка a0, соответствующая состоянию 1 кг воды при 0°С и новом давлении, остается почти на той же вертикали, так как вода практически несжимаема. Точка а' смещается вправо, ибо с ростом давления увеличивается температура кипения, а жидкость при повышении температуры расширяется. Что же касается пара (точка а"), то, несмотря на увеличение температуры кипения, удельный объем пара все-таки падает из-за более сильного влияния растущего давления.

Поскольку удельный объем жидкости растет, а пара падает, то при постоянном увеличении давления мы достигнем такой точки, в которой удельные объемы жидкости и пара сравняются. Эта точка называется критической. В критической точке различия между жидкостью и паром исчезают. Для воды параметры критической точки К составляют: ркр=221,29·105 Па; tкр = 374,15 °С; vкр = 0,00326 мі/кг.

Критическая температура - это максимально возможная температура сосуществования двух фаз: жидкости и насыщенного пара. При температурах, больших критической, возможно существование только одной фазы. Название этой фазы (жидкость или перегретый пар) в какой-то степени условно и определяется обычно ее температурой. Все газы являются сильно перегретыми сверх Tкр парами. Чем выше температура перегрева (при данном давлении), тем ближе пар по своим свойствам к идеальному газу.

Наименьшим давлением, при котором еще возможно равновесие воды и насыщенного пара, является давление, соответствующее тройной точке. Под последней понимается то единственное состояние, в котором могут одновременно находиться в равновесии пар, вода и лед (точка А' на рисунке). Параметры тройной точки для воды: р 0 = 611 Па; t0 = 0,01 °С; v0=0,00100 мі/кг. Процесс парообразования, происходящий при абсолютном давлении р 0=611 Па, показан на диаграмме изобарой А'А", которая практически совпадает с осью абсцисс. При более низких давлениях пар может сосуществовать лишь в равновесии со льдом. Процесс образования пара непосредственно из льда называется сублимацией.

Если теперь соединить одноименные точки плавными кривыми, то получим нулевую изотерму I, каждая точка которой соответствует состоянию 1 кг воды при 0°С и давлении р, нижнюю пограничную кривую II, представляющую зависимость от давления удельного объема жидкости при температуре кипения, и верхнюю пограничную кривую III, дающую зависимость удельного объема сухого насыщенного пара от давления.

Все точки горизонталей между кривыми II и III соответствуют состояниям влажного насыщенного пара, точки кривой II определяют состояние кипящей воды, точки кривой III - состояния сухого насыщенного пара. Влево от кривой II до нулевой изотермы лежит область некипящей однофазной жидкости, вправо от кривой III - область перегретого пара. Таким образом, кривые II и III определяют область насыщенного пара, отделяя ее от области воды и перегретого пара, и поэтому называются пограничными. Выше точки К, где пограничных кривых нет, находится область однофазных состояний, в которой нельзя провести четкой границы между жидкостью и паром.

Определение параметров воды и пара. Термодинамические параметры кипящей воды и сухого насыщенного пара берутся из таблиц теплофизических свойств воды и водяного пара. В этих таблицах термодинамические величины со штрихом относятся к воде, нагретой до температуры кипения, а величины с двумя штрихами - к сухому насыщенному пару.

Поскольку для изобарного процесса подведенная к жидкости теплота

,

то, применив это соотношение к процессу а'а", получим

.

Величина r называется теплотой парообразования и определяет количество теплоты, необходимое для превращения одного килограмма воды в сухой насыщенный пар той же температуры.

Приращение энтропии в процессе парообразования определяется формулой

.

За нулевое состояние, от которого отсчитываются величины s', принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насыщенного пара определяется только одним параметром, то по известному давлению или температуре из таблиц воды и водяного пара берутся значения v', v", h', h",s', s", r.

Удельный объем vx, энтропия sx и энтальпия hx влажного насыщенного пара определяются по правилу аддитивности. Поскольку в 1 кг влажного пара содержится x кг сухого и кг кипящей воды, то

.

Аналогично

;

;

Непосредственно из таблиц взять параметры влажного пара нельзя. Их определяют по приведенным выше формулам по заданному давлению (или температуре) и степени сухости.

Однофазные состояния некипящей воды и перегретого пара задаются двумя параметрами. По заданным давлению и температуре из таблиц воды и перегретого пара находят значения v, h, s.

Т, s-диаграмма водяного пара. Для исследования различных процессов с водяным паром кроме таблиц используется Т, s-диаграмма. Она строится путем переноса числовых данных таблиц водяного пара в Т, s-координаты.

Рисунок 6.2 - T, s-диаграмма водяного пара

Состояние воды в тройной точке (s0 = 0; T0 = 273,16 К) изображается в диаграмме точкой А'. Откладывая на диаграмме для разных температур значения s' и s", получим нижнюю и верхнюю пограничные кривые. Влево от нижней пограничной кривой располагается область жидкости, между пограничными кривыми - двухфазная область влажного насыщенного пара, вправо и вверх от верхней пограничной кривой - область перегретого пара.

На диаграмму наносят изобары, изохоры и линии постоянной степени сухости, для чего каждую изобару а'а" делят на одинаковое число частей и соединяют соответствующие точки линиями x = const. Область диаграммы, лежащая ниже нулевой изотермы, отвечает различным состояниям смеси пар+лед.

h, s-диаграмма водяного пара. Если за независимые параметры, определяющие состояние рабочего тела, принять энтропию s и энтальпию h, то каждое состояние можно изобразить точкой на л, s-диаграмме.

На рисунке 6.3 изображена h, s-диаграмма для водяного пара, которая строится путем переноса числовых данных таблиц водяного пара в h, s-координаты.

За начало координат принято состояние воды в тройной точке. Откладывая на диаграмме для различных давлений значения s' и h'' для воды при температуре, кипения, а также s" и h" для сухого насыщенного пара, получаем нижнюю и верхнюю пограничные кривые.

Рисунок 6.3 - h, s-диаграмма водяного пара

Изобары в двухфазной области влажного пара представляют собой пучок расходящихся прямых. Действительно, в процессе р=const

,

или

,

т.е. тангенс угла наклона изобары в h, s-координатах численно равен абсолютной температуре данного состояния. Так как в области насыщения изобара совпадает с изотермой, тангенс угла наклона постоянен и изобара является прямой. Чем выше давление насыщения, тем выше температура, тем больше тангенс угла наклона изобары, поэтому в области насыщения прямые р = const расходятся. Чем больше давление, тем выше лежит изобара. Критическая точка К лежит не на вершине, как это было в р, v- и Т, s-диаграммах, а на левом склоне пограничной кривой.

В области перегрева температура пара (при постоянном давлении) растет с увеличением s примерно по логарифмической кривой и крутизна изобары увеличивается. Аналогичный характер имеют изобары и в области воды, но они идут так близко от пограничной кривой, что практически сливаются с ней.

При низких давлениях и относительно высоких температурах перегретый пар по своим свойствам близок к идеальному газу. Так как в изотермическом процессе энтальпия идеального газа не изменяется, изотермы сильно перегретого пара идут горизонтально. При приближение к области насыщения, т. е. к верхней пограничной кривой, свойства перегретого пара значительно отклоняются от свойств идеального газа и изотермы искривляются.

В h, s-диаграмме водяного пара нанесены также линии v=const, идущие круче изобар.

Обычно всю диаграмму не выполняют, а строят только ее верхнюю часть, наиболее употребительную в практике расчетов. Это дает возможность изображать ее в более крупном масштабе.

Для любой точки на этой диаграмме можно найти р, v, t, h, s, x. Большое достоинство диаграммы состоит в том, что количество теплоты в изобарном процессе равно разности ординат конечной и начальной точек процесса и изображается отрезком вертикальной прямой, а не площадью как в Т, s-диаграмме, поэтому h, s-диаграмма исключительно широко используется при проведении тепловых расчетов.

Основные термодинамические процессы водяного пара. Для анализа работы паросиловых установок существенное значение имеют изохорный, изобарный, изотермический и адиабатный процессы. Расчет этих процессов можно выполнить либо с помощью таблицы воды и водяного пара, либо с помощью h, s-диаграммы. Первый способ более точен, но второй более прост и нагляден.

Общий метод расчета по h, s-диаграмме состоит в следующем. По известным параметрам наносится начальное состояние рабочего тела, затем проводится линия процесса и определяются его параметры в конечном состоянии. Далее вычисляется изменение внутренней энергии, определяются количества теплоты и работы в заданном процессе.

Изохорный процесс. Из диаграммы на рисунке видно, что нагреванием при постоянном объеме влажный пар можно перевести в сухой насыщенный и перегретый. Охлаждением его можно сконденсировать, но не до конца, так как при каком угодно низком давлении над жидкостью всегда находится некоторое количество насыщенного пара. Это означает, что изохора не пересекает нижнюю пограничную кривую.

Рисунок 6.4 - Изохорный процесс водяного пара

Изменение внутренней энергии водного пара при v=const

.

Данная формула справедлива и для всех без исключения остальных термодинамических процессов.

В изохорном процессе работа 1=0, поэтому подведенная теплота расходуется (в соответствии с первым законом термодинамики) на увеличение внутренней энергии пара:

Изобарный процесс. При подводе теплоты к влажному насыщенному пару его степень сухости увеличивается и он (при постоянной температуре) переходит в сухой, а при дальнейшем подводе теплоты - в перегретый пар (температура пара при этом растет). При отводе теплоты влажный пар конденсируется при Ts= const.

Полученная в процессе теплота равна разности энтальпий:

.

Работа процесса подсчитывается по формуле:

.

Рисунок 6.5 - Изобарный процесс водяного пара

Изотермический процесс. Внутренняя энергия водяного пара в процессе T = const не остается постоянной (как у идеального газа), так как изменяется ее потенциальная составляющая. Величина находится по формуле

.

Количество полученной в изотермическом процессе теплоты равно

.

Работа расширения определяется из первого закона термодинамики:

.

Рисунок 6.6 - Изотермический процесс водяного пара

...

Подобные документы

  • Термодинамические циклы поршневых двигателей внутреннего сгорания. Прямые газовые изохорные и изобарные циклы неполного расширения. Термодинамические циклы газотурбинных установок и реактивных двигателей. Процессы, происходящие в поршневых компрессорах.

    реферат [1,5 M], добавлен 01.02.2012

  • Описание идеальных и реальных циклов двигателей внутреннего сгорания. Рассмотрение термодинамических процессов, происходящих в циклах. Изучение основных формул для расчета энергетических характеристик циклов и параметров в их характерных точках.

    курсовая работа [388,1 K], добавлен 13.06.2015

  • Принцип работы тепловой электростанции. Идеальный и реальный термодинамический цикл. Изменение давления в зависимости от времени в камере сгорания. Обратимые термодинамические циклы газотурбинных двигателей. ГТУ с подводом теплоты при постоянном объеме.

    контрольная работа [754,8 K], добавлен 30.11.2011

  • Нахождение работы в обратимых термодинамических процессах. Теоретический цикл поршневого двигателя внутреннего сгорания с комбинированным подводом теплоты. Работа расширения и сжатия. Уравнение состояния газа. Теплоотдача при свободной конвекции.

    контрольная работа [1,8 M], добавлен 22.10.2011

  • Термодинамический анализ работы теплового двигателя. Основные понятия, используемые в термодинамическом анализе работы ядерных энергетических установок. Промежуточная сепарация и промежуточный перегрев пара в идеальных циклах паротурбинных установок.

    контрольная работа [855,1 K], добавлен 14.03.2015

  • Газовые смеси, теплоемкость. Расчет средней молярной и удельной теплоемкости. Основные циклы двигателей внутреннего сгорания. Термический коэффициент полезного действия цикла дизеля. Водяной пар, паросиловые установки. Общее понятие о цикле Ренкина.

    курсовая работа [396,8 K], добавлен 01.11.2012

  • Задачи и их решения по теме: процессы истечения водяного пара. Дросселирование пара под определенным давлением. Прямой цикл – цикл теплового двигателя. Нагревание и охлаждение. Паротурбинные установки. Холодильные циклы. Эффективность цикла Ренкина.

    реферат [176,7 K], добавлен 25.01.2009

  • Уравнение Менделеева–Клапейрона - самое простое, надежное и известное уравнение состояния идеального газа. Межмолекулярное взаимодействие в реальных газах, приводящее к конденсации (образование жидкости). Среднее значение его потенциальной энергии.

    презентация [1,2 M], добавлен 13.02.2016

  • Первый закон термодинамики. Обратимые и необратимые процессы. Термодинамический метод их исследования. Изменение внутренней энергии и энтальпии газа. Графическое изображение изотермического процесса. Связь между параметрами газа, его теплоемкость.

    лекция [438,5 K], добавлен 14.12.2013

  • Определение показателя политропы, начальных и конечных параметров, изменения энтропии для данного газа. Расчет параметров рабочего тела в характерных точках идеального цикла поршневого двигателя внутреннего сгорания с изохорно-изобарным подводом теплоты.

    контрольная работа [1,1 M], добавлен 03.12.2011

  • Понятие о смесеобразовании. Основные классификации двигателей внутреннего сгорания. Смесеобразование и сгорание топлива в цилиндрах дизеля. Фракционный состав топлива, вязкость, температурные характеристики. Задержка самовоспламенения и распыливание.

    курсовая работа [1,9 M], добавлен 11.03.2015

  • Преобразование тепловой энергии в механическую турбинными и поршневыми двигателями. Кривошипный механизм поршневых двигателей внутреннего сгорания. Схема газотурбинной установки. Расчет цикла с регенерацией теплоты и параметров необратимого цикла.

    курсовая работа [201,3 K], добавлен 20.11.2012

  • Теплоотдача при вынужденном движении теплоносителей; естественной конвекции, изменении агрегатного состояния вещества. Движение жидкости около горизонтальной и вертикальной поверхности. Значения коэффициента теплоотдачи для разных случаев теплообмена.

    презентация [1,3 M], добавлен 24.06.2014

  • Уравнение состояния газа Ван-дер-Ваальса, его сущность и краткая характеристика. Влияние сил молекулярного притяжения на стенки сосуда. Уравнение Ван-дер-Ваальса для произвольного числа молей газа. Изотермы реального газа и правило фаз Максвелла.

    реферат [47,0 K], добавлен 13.12.2011

  • Основные типы двигателей: двухтактные и четырехтактные. Конструкция двухтактного двигателя внутреннего сгорания. Принцип зажигания двигателя. История создания и принцип работы электродвигателя. Способы возбуждения электродвигателей постоянного тока.

    реферат [1,1 M], добавлен 11.10.2010

  • Описание двигателя внутреннего сгорания - тепловой машины, в которой химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу. Сравнительная характеристика четырёхтактного и двухтактного двигателей, их применение.

    презентация [9,0 M], добавлен 11.12.2016

  • Рост потребления газа в городах. Определение низшей теплоты сгорания и плотности газа, численности населения. Расчет годового потребления газа. Потребление газа коммунальными и общественными предприятиями. Размещение газорегуляторных пунктов и установок.

    курсовая работа [878,9 K], добавлен 28.12.2011

  • Коэффициент полезного действия теплового двигателя. Основные элементы конструкции и функции газовой турбины. Поршневые двигатели внутреннего сгорания, их классификация. Два основных класса реактивных двигателей и характеризующие их технические параметры.

    презентация [3,5 M], добавлен 24.10.2016

  • Предмет технической термодинамики. Свойства термодинамической системы. Основные термодинамические процессы: изохорный, изотермический, изобарный и адиабатный. Использование таблиц и диаграмм для термодинамических расчетов. Цикл Ренкина на перегретом паре.

    реферат [231,1 K], добавлен 01.02.2012

  • Изучение корпускулярной концепции описания природы, сущность которой в том, что все вещества состоят из молекул - минимальных частиц вещества, сохраняющих его химические свойства. Анализ молекулярно-кинетической теории газа. Законы для идеальных газов.

    контрольная работа [112,2 K], добавлен 19.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.