Основы электротехники
Электрическая цепь, её элементы и параметры. Расчет сложных цепей с помощью законов Кирхгофа. Простые цепи постоянного тока. Методы расчета нелинейных цепей. Индуктивный элемент в цепи синусоидального тока. Классификация и устройства трансформаторов.
Рубрика | Физика и энергетика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 27.03.2015 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Классификация трансформаторов по конструкции
По конструкции силовые трансформаторы делят на два основных типа -- масляные и сухие.
В масляных трансформаторах магнитопровод с обмотками находится в баке, заполненном трансформаторным маслом, которое является хорошим изолятором и охлаждающим агентом.
Сухие трансформаторы охлаждаются воздухом. Они применяются в жилых и промышленных помещениях, в которых эксплуатация масляного трансформатора является нежелательной. Трансформаторное масло является горючим, и при нарушении герметичности бака масло может повредить другое оборудование.
Автротрансформаторы
Наряду с трансформаторами широко применяются автотрансформаторы, в которых имеется электрическая связь между первичной и вторичной обмотками. При этом мощность из одной обмотки автотрансформатора в другую передается как магнитным полем, так и за счет электрической связи. Автотрансформаторы строятся на большие мощности и высокие напряжения и применяются в энергосистемах, а также используются для регулирования напряжения в установках небольшой мощности.
Номинальные данные трансформаторов
Номинальные данные трансформатора, на которые он рассчитан с заводской гарантией на 25 лет указываются в паспортной табличке трансформатора:
· номинальная полная мощность Sном, КВ-А,
· номинальное линейное напряжение Uл.ном, В или кВ,
· номинальный линейный ток Iл.ном. А,
· номинальная частота f, Гц,
· число фаз,
· схема и группа соединения обмоток,
· напряжение короткого замыкания Uк, %,
· режим работы,
· способ охлаждения.
В табличке приводятся также данные, необходимые для монтажа: полная масса, масса масла, масса выемной (активной) части трансформатора. Указываются тип трансформатора в соответствии с ГОСТ на марки трансформаторов и завод-изготовитель.
Номинальная мощность однофазного трансформатора Sном=U1ном I1ном, a трехфазного
где U1лном, U1фном, I1лном и I1фном -- соответственно номинальные линейные и фазные значения напряжений и токов.
Номинальными напряжениями трансформатора являются линейные напряжения при холостом ходе на первичной и вторичной обмотках трансформатора. За номинальные токи первичной и вторичной обмоток трансформатора принимаются токи, рассчитанные по номинальной мощности при номинальных первичных и вторичных напряжениях.
Ввиду общности конструкции и методов расчета к трансформаторам могут быть отнесены реакторы, дроссели насыщения и сверхпроводящие индуктивные накопители.
23. Принцип действия трансформатора
Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемойвторичной, подключают потребители (непосредственно или через выпрямитель).
При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.
Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока. Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков ?1 и ?2 этих обмоток, т. е.
E1/E2 = 1/ 2.
Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,
n = Евн / Eнн = вн / нн.
Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2--5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.
U1/U2 1/ 2
Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.
В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.
Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.
При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.
Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 U2/U1или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 2/1. Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной. Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.
24. Автотрансформаторы и трехфазные трансформаторы
Автотрансформатор. В случае когда вторичное напряжение не сильно отличается от первичного (при коэффициенте трансформации, близком к единице), вместо обычного двухобмоточного трансформатора выгодно применять автотрансформатор, отличающийся от обычного тем, что его обмотка низшего напряжения составляет часть обмотки высшего напряжения (рис. 226, а). Иными словами, он имеет вместо двух обмоток одну, разделенную на две части. Участок 1--3 образует обмотку высшего напряжения, участок 2--3 -- обмотку низшего напряжения. По участку 2--3 протекает разность токов i2 -- i1.
В автотрансформаторе потери мощности меньше, чем в двух-обмоточном трансформаторе, при одинаковой номинальной мощности. Это объясняется тем, что в двухобмоточном трансформаторе вся мощность S2=U2I2 передается из первичной цепи во вторичную электромагнитным путем, а в автотрансформаторе электромагнитным путем передается только часть этой мощности S2 (1 - 1/n) (здесь n -- коэффициент трансформации). Остальная часть S2/n передается непосредственно из первичной во вторичную цепь в результате электрической связи между ними, поэтому рассчитывать автотрансформатор на эту мощность не требуется. Чем ближе коэффициент трансформации к единице, тем меньше часть мощности S2 передается электромагнитным путем, следовательно, тем меньше масса и габаритные размеры автотрансформатора. Например, при n = 2 электромагнитным путем во вторичную цепь передается половина мощности S2, а при n = 3 -- уже 2/3 этой мощности. Следовательно, преимущества автотрансформаторов проявляются только при небольших коэффициентах трансформации, когда разность токов i2 -- i1 мала и участок 2--3 включает в себя значительную часть всех имеющихся в трансформаторе витков. При больших коэффициентах трансформации выгоды от применения автотрансформаторов практически нет.
Основным недостатком автотрансформаторов является то, что у них вторичная цепь электрически связана с первичной и должна поэтому иметь одинаковую с ней изоляцию по отношению к земле.
Рис. 226. Схемы автотрансформатора (а) и трехфазного трансформатора (б)
По этой причине, а также по условиям техники безопасности применение автотрансформаторов для связи цепей высокого и низкого напряжения недопустимо.
Трехфазный трансформатор. Схемы соединения обмоток. Трехфазное напряжение обычно преобразуют трехстержне-выми трехфазными трансформаторами (рис. 226,б), в которых первичная и вторичная обмотки каждой фазы расположены на общем стержне. Только при очень больших мощностях (более 10 MB*А в фазе) для этой цели применяют три однофазных трансформатора, так как для транспортирования и монтажа они более удобны. Первичная и вторичная обмотки трехфазных трансформаторов могут быть соединены «звездой» (символ Y). «звездой с выведенной нулевой точкой» (символ Yн) или «треугольником» (символ ?).
В трансформаторах, предназначенных для выпрямительных установок, вторичную обмотку иногда соединяют по схеме «зигзаг с выведенной нулевой точкой».
Обычно обмотку высшего напряжения (ВН) соединяют по схеме «звезда», что позволяет при заданном линейном напряжении иметь меньшее число витков в фазе и снижает требования к изоляции обмоток, так как фазное напряжение в схеме «звезда» в ?З раз меньше линейного. Зажимы обмоток ВН обозначают буквами: начала -- А, В, С, концы -- X, Y, Z; зажимы обмоток низшего напряжения (НН); начала -- a, b, c, концы -- x, у, Z.
При соединении обмоток трансформатора по схеме Y/Y и ?/? отношение линейных напряжений Uл.вн/Uл.нн при холостом ходе равно отношению BH/Hн = n. При соединении по схеме Y/ отношение этих напряжений будет В Зn, а при /Y -- n/3.
В каждой фазе трехфазного трансформатора происходят те же процессы, что и в однофазном трансформаторе, поэтому в нем сохраняются те же соотношения между напряжениями, токами и числами витков обмоток.
Группы соединений обмоток. В зависимости от схемы соединения первичной и вторичной обмоток, направления намотки и маркировки выводов трехфазного трансформатора его линейные первичные и вторичные напряжения могут быть сдвинуты по фазе на различный угол. Для облегчения практического включения трансформаторов на параллельную работу приходится разделять их на группы в зависимости от сдвига по фазе между линейными напряжениями, измеренными на одноименных зажимах.
Рис. 227. Электрические схемы и векторные диаграммы напряжений трансформаторов с соединением обмоток по схемам Y/Y и Y/?
Группы соединений обозначают целыми числами от 0 до 11. Номер группы определяется углом между векторами первичного и вторичного линейных напряжений, поделенным на 30°, при этом угол отсчитывают от вектора линейного напряжения обмотки ВН по часовой стрелке (в сторону отставания векторов).
Трансформаторы, соединенные по схеме «звезда -- звезда», имеют нулевую группу и обозначаются Y/Y-0 или Y/Yн-0. При этом векторы линейных напряжений UАВ и Uаb совпадают по фазе, т. е. угол между ними равен нулю (рис. 227, а). Трансформаторы, соединенные по схеме «звезда -- треугольник» или «треугольник -- звезда», имеют одиннадцатую группу и обозначаются Y/?-11 или ?/Y-11. В этом случае вектор Uab обмотки НН отстает от вектора UАB обмотки ВН на угол 330° (рис. 227,б).
Однофазные трансформаторы также разделяются на группы, но у них в зависимости от направления намотки и маркировки выводов напряжения первичной и вторичной обмоток при холостом ходе могут совпадать по фазе либо быть свинуты на 180°. В соответствии с этим они могут принадлежать к нулевой или шестой группе.
Трехфазные трансформаторы, также как и однофазные, бывают двухобмоточные и многообмоточные. На тяговых подстанциях иногда устанавливают трехобмоточные трансформаторы с двумя вторичными обмотками. Одна из них питает контактную сеть, а другая -- электрические потребители близлежащих районов.
25. Измерительные трансформаторы
Измерительные трансформаторы тока и напряжения предназначены для уменьшения первичных токов и напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Технические характеристики трансформаторов тока
Номинальный первичный и вторичный ток трансформаторов тока
Трансформаторы тока характеризуются номинальным первичным током Iном1 (стандартная шкала номинальных первичных токов содержит значения от 1 до 40000 А) и номинальным вторичным током Iном2, который принят равным 5 или 1 А. Отношение номинального первичного к номинальному вторичному току представляет собой коэффициент трансформации КТА= Iном1/ Iном2
Токовая погрешность трансформаторов тока
Трансформаторы тока характеризуются токовой погрешностью ?I=(I2K-I1)*100/I1 (в процентах) и угловой погрешностью (в минутах). В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Наименование класса точности соответствует предельной токовой погрешности трансформатора тока при первичном токе, равном 1--1,2 номинального. Для лабораторных измерений предназначены трансформаторы тока класса точности 0,2, для присоединений счетчиков электроэнергии -- трансформаторы тока класса 0,5, для присоединения щитовых измерительных приборов -классов 1 и 3.
Нагрузка трансформаторов тока
Нагрузка трансформатора тока -- это полное сопротивление внешней цепи Z2, выраженное в омах. Сопротивления r2 и х2 представляют собой сопротивление приборов, проводов и контактов. Нагрузку трансформатора можно также характеризовать кажущейся мощностью S2 В*А. Под номинальной нагрузкой трансформатора тока Z2ном понимают нагрузку, при которой погрешности не выходят за пределы, установленные для трансформаторов данного класса точности. Значение Z2ном дается в каталогах.
Электродинамическая стойкость трансформаторов тока
Электродинамическую стойкость трансформаторов тока характеризуют номинальным током динамической стойкости Iм.дин. или отношением kдин = Термическая стойкость определяется номинальным током термической стойкости Iт или отношением kт= Iт / I1ном и допустимым временем действия тока термической стойкости tт.
Конструкции трансформаторов тока
По конструкции различают трансформаторы тока катушечные, одновитковые (типа ТПОЛ), многовитковые с литой изоляцией (типа ТПЛ и ТЛМ). Трансформатор типа ТЛМ предназначен для КРУ и конструктивно совмещен с одним из штепсельных разъемов первичной цепи ячейки.
Для больших токов применяют трансформаторы типа ТШЛ и ТПШЛ, у которых роль первичной обмотки выполняет шина. Электродинамическая стойкость таких трансформаторов тока определяется стойкостью шины.
Для ОРУ выпускают трансформаторы типа ТФН в фарфоровом корпусе с бумажно-масляной изоляцией и каскадного типа ТРН. Для релейной защиты имеются специальные конструкции. На выводах масляных баковых выключателей и силовых трансформаторов напряжением 35 кВ и выше устанавливаются встроенные трансформаторы тока. Погрешность их при прочих равных условиях больше, чем у отдельно стоящих трансформаторов.
Технические характеристики измерительных трансформаторов напряжения
Номинальные первичное и вторичное напряжение измерительных трансформаторов напряжения
Трансформаторы напряжения характеризуются номинальными значениями первичного напряжения, вторичного напряжения (обычно 100 В или 100/ ), коэффициента трансформации К=U1ном/U2ном. В зависимости от погрешности различают следующие классы точности трансформаторов напряжения: 0,2;0,5; 1:3.
Нагрузка трансформаторов напряжения
Вторичная нагрузка трансформатора напряжения--это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.
Конструкции трансформаторов напряжения
В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях -- только однофазные. При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ. НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.
Схемы включения трансформаторов напряжения
В зависимости от назначения могут применяться разные схемы включения трансформаторов напряжения. Два однофазных трансформатора напряжения, соединенные в неполный треугольник, позволяют измерять два линейных напряжения. Целесообразна такая схема для подключения счетчиков и ваттметров. Для измерения линейных и фазных напряжений могут быть использованы три однофазных трансформатора (ЗНОМ, ЗНОЛ), соединенные по схеме «звезда -- звезда», или трехфазный типа НТМИ. Так же соединяются в трехфазную группу однофазные трехобмоточные трансформаторы типа ЗНОМ и НКФ.
Присоединение расчетных счетчиков к трехфазным трансформаторам напряжения не рекомендуется, т.к. они имеют, обычно, несимметричную магнитную систему и увеличенную погрешность. Для этой цели желательно устанавливать группу из двух однофазных трансформаторов соединенных в неполный треугольник.
Трансформаторы напряжения выбирают по условиям Uуст ?U1ном, S2? S2ном в намечаемом классе точности. За S2ном принимают мощность всех трех фаз однофазных трансформаторов напряжения, соединенных по схеме звезды, и удвоенную мощность однофазного трансформатора, включенного по, схеме неполного треугольника.
26. Устройство машины постоянного тока
Устройство статора.
Машина постоянного тока состоит из двух основных частей: неподвижной - статора и вращающейся - ротора, называемого в машинах постоянного тока якорем. Эскиз машины постоянного тока показан на рис. 1.1, а общий вид с разрезом -- на рис.
1.2. Статор состоит из станины 1, главных полюсов 2, дополнительных полюсов 3, подшипниковых щитов 4 и щеточной траверсы со щетками 6.
Станина имеет кольцевую форму и изготовляется из стального литья или стального листового проката. Она составляет основу всей машины и, кроме того, выполняет функцию магнитопровода.
Главные полюсы служат для создания постоянного во времени и неподвижного в пространстве магнитного поля. С этой целью по обмотке полюсов пропускается постоянный ток, называемый током возбуждения (в машинах малой мощности в качестве полюсов могут использоваться постоянные магниты).
Дополнительные полюсы устанавливаются между главными и служат для улучшения условий коммутации.
Подшипниковые щиты закрывают статор с торцов. В них впрессовываются подшипники и укрепляется щеточная траверса, которая с целью регулирования может поворачиваться. На щеточной траверсе закреплены пальцы, которые электрически изолированы от траверсы. На пальцах установлены щеткодержатели со щетками, изготовленными из графита или смеси графита с медью.
Устройство якоря.
Вращающаяся часть машин - якорь 9 (рис. 1.1, 1.2, а, б) состоит из сердечника 7, обмотки 8 и коллектора 5.
Сердечник имеет цилиндрическую форму. Он набирается из колец или сегментов листовой электротехнической стали, на внешней поверхности которых выштампованы пазы. В пазы сердечника укладываются секции из медного провода. Концы секций, которые выводятся на коллектор и припаиваются к его пластинам, образуют замкнутую обмотку якоря.
Коллектор (рис. 1.3) набран из медных пластин клинообразной формы, изолированных друг от друга, и корпуса 3миканитовыми прокладками 2, образующими в сборе цилиндр, который крепится на валу якоря.
27. Принцип действия машины постоянного тока
Принцип действия машин постоянного тока.
Принцип действия генератора. Простейший генератор можно представить в виде витка, вращающегося в магнитном поле (рис. 1.4, а, б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.
Принцип работы генератора основан на явлении электромагнитной индукции. Пусть виток приводится во вращение от внешнего приводного двигателя ПД. Проводники активной части витка пересекают магнитное поле и в них по закону электромагнитной индукции наводятся ЭДС e1 и e2,направление которых определяется по правилу правой руки. При вращении витка по направлению движения часовой стрелки в верхнем проводнике, находящемся под северным полюсом, ЭДС направлена от нас, а в нижнем, находящемся под южным полюсом, - к нам. По ходу витка ЭДС складываются, результирующая ЭДС е = е1 - е2.
Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него - к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя - отрицательным. При повороте витка на 180° проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменяется на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя - с верхней, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т. е. являются простейшим механическим выпрямителем.
Принцип действия двигателя. То же устройство работает в режиме электрического двигателя (рис. 1.5), если к щеткам подвести постоянное напряжение. Под действием напряжения U через щетки, пластины коллектора и виток потечет ток i. По закону электромагнитной силы (закон Ампера) взаимодействие тока и магнитного поля В создает силу f, которая направлена перпендикулярно i. Направление силы f определяется правилом левой руки (рис. 1.5): на верхний проводник сила действует вправо, на нижний - влево. Эта пара сил создает вращающий момент Мвр, поворачивающий виток по часовой стрелке. При переходе верхнего проводника в зону южного полюса, а нижнего - в зону северного полюса концы проводников и соединенные с ними коллекторные пластины вступают в контакт со щетками другой полярности.
электрический цепь ток индуктивный
Рис.1.5
Направление тока в проводниках витка изменяется на противоположное, а направление сил f,момента Мвр и тока во внешней цепи не изменяется. Виток непрерывно будет вращаться в магнитном поле и может приводить во вращение вал рабочего механизма (РМ).
Таким образом, коллектор в режиме двигателя не только обеспечивает контакт внешней цепи с витком, но и выполняет функцию механического инвертора, т.е. преобразует постоянный ток во внешней цепи в переменный ток в витке.
Рассмотрение принципа действия показывает, что машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя, т. е. обладает свойством обратимости.
Противодействующий момент и противо-ЭДС. При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток, направление которого совпадает с направлением ЭДС (рис. 1.4,6), взаимодействие тока с магнитным полем полюсов создает моментМ, направленный в рассматриваемом случае против часовой стрелки. Так как приложенный к витку вращающий момент приводного двигателя Мвр направлен по часовой стрелке, то возникающий при работе генератора момент называется противодействующим моментом Мnp. По существу возникновение Мпр -- это реакция машины на воздействие внешнего момента Мвр, а физическая природа противодействующего момента та же, что и вращающего момента у двигателя. В установившемся режиме работы генератора между Мвр и Мпр устанавливается равновесие и Мвр=Мпр.
При работе машины в режиме двигателя проводники якоря пересекают магнитное поле и в них наводится ЭДС (рис. 1.5,б). Ее направление определяется по правилу правой руки. В рассматриваемом случае она направлена против тока и, следовательно, навстречу приложенному напряжению сети U и поэтому называется противо-ЭДС Enp. Физическая природа противо-ЭДС та же, что и ЭДС генератора. В установившемся режиме работы двигателя между Enp и Uустанавливается равновесие и можно считать, что Enp ? U .
Таким образом, при работе машины постоянного тока в любом режиме во вращающихся проводниках наводится ЭДС Е и возникает момент М, но роль их в разных режимах различная.
28. Классификация и механические характеристики двигателя постоянного тока
По способу создания магнитного потока различают электродвигатели с постоянными магнитами и электромагнитами.
Электродвигатели с постоянными магнитами в силу относительно слабого магнитного потока изготовляют только небольшой мощности. Их используют в системах управления в качестве серводвигателей.
Для привода рабочих машин применяются двигатели с электромагнитами, которые по способу включения обмоток, называемых обмотками возбуждения, подразделяются на двигатели с независимым (рис. 2.1, а), параллельным (рис. 2.1, б), последовательным (рис. 2.1, в) и смешанным (рис. 2.1, г) возбуждением.
Различие между двигателями с независимым и параллельным возбуждением заключается в том, что у первого обмотка возбуждения LM1 и якорь М питаются от различных источников постоянного тока, а у второго LM2 и М -- от одного. Напряжение возбуждения у двигателей с независимым возбуждением может быть равным напряжению приложенному к якорю, и отличным от него. У крупных двигателей в большинстве случаев напряжение возбуждения меньше напряжения, приложенного к якорю.
У двигателя с последовательным возбуждением обмотка возбуждения LM3 включена последовательно с якорем М. Напряжение возбуждения меньше напряжения, приложенного к якорю.
Двигатели с параллельным и последовательным возбуждением можно рассматривать как частный случай двигателя со смешанным возбуждением, имеющего 2 обмотки возбуждения LM2 и LM3. В цепь якоря включают пусковой реостат R1, а в цепь возбуждения регулирующий--R2.
Механической характеристикой электродвигателя называется зависимость частоты вращения от вращающего момента на его валу при неизменной схеме включения и постоянных параметрах питающей сети и элементов цепей якоря и возбуждения.
Характеристика называется естественной, если напряжение сети равно нормальному, а сопротивления реостатов R1 и R2 равны нулю (R1 = 0; R2 = 0), в противном случае характеристика называется искусственной.
Аналитическое выражение механической характеристики двигателя может быть получено из соотношений, приведенных в курсе общей электротехники:
Для этого определим ток якоря
и, подставив его в формулу для частоты вращения якоря, получим уравнение механической характеристики двигателя:
При вращающем моменте М = 0
т. е. получим частоту вращения идеального холостого хода nx.
У двигателей с независимым и параллельным возбуждением последовательная обмотка отсутствует (см. рис. 2.1, а и б),
поэтому магнитный поток, если пренебречь реакцией якоря не зависит от тока якоря и при изменении вращающего момента двигателя остается постоянным: Ф = const. Следовательно, для этих двигателей уравнение механической характеристики может быть записано так:
где b -- угловой коэффициент характеристики;
Значение углового коэффициента b можно получить другим путем.
При вращающем моменте заторможенного двигателя М = Мп (М п -- пусковой момент двигателя) частота вращения n = 0. Тогда 0 = nx -- bМп и угловой коэффициент b = nx/Мп.
В этом случае механическая характеристика будет
Как видно из формул (2.1) и (2.2), механическая характеристика двигателей с независимым и параллельным возбуждением представляет собой прямую линию с угловым коэффициентом b (рис. 2.2, кривая 1), где b = tgв.
У двигателя с последовательным возбуждением обмотка возбуждения включена последовательно с обмоткой якоря, поэтому его магнитный поток является функцией тока якоря и механическая характеристика имеет вид гиперболы (кривая 2). При идеальном холостом ходе частота вращения неограниченно увеличивается. У реальных двигателей при номинальном режиме магнитная система близка к насыщению. Это вносит определенные искажения в форму механической характеристики, которая при перегрузках двигателя приближается к прямой линии,поскольку при насыщении магнитный поток становится практически постоянным и не зависит от момента.
Механическая характеристика двигателя со смешанным возбуждением (кривая 3) занимает промежуточное положение между механическими характеристиками двигателей с параллельным и последовательным возбуждением. У него, как и у двигателей с параллельным и независимым возбуждением, частота вращения идеального холостого хода имеет определенное значение
где Ф1 -- магнитный поток, создаваемый параллельной обмоткой возбуждения.
Его механическая характеристика криволинейна вследствие изменения магнитного потока, вызванного влиянием последовательной обмотки возбуждения.
Анализируя механические характеристики электродвигателей постоянного тока с различными способами включения обмоток возбуждения, можно прийти к выводу, что с изменением вращающего момента на валу электродвигателя его частота вращения изменяется незначительно у двигателя с параллельным возбуждением и в большей степени у двигателя с последовательным возбуждением.
Мощность, развиваемая электродвигателем,
где w -- угловая скорость двигателя.
Следовательно, мощность, потребляемая из сети, у двигателя с последовательным возбуждением изменяется меньше.
Поэтому механическую характеристику двигателя с параллельным возбуждением называют жесткой, а характеристику двигателя с последовательным возбуждением -- мягкой.
Характеристика двигателя со смешанным возбуждением обладает меньшей жесткостью, чем характеристика двигателя с параллельным возбуждением, но большей, чем характеристика двигателя с последовательным возбуждением.
29. Регулирование скорости вращения двигателя постоянного тока изменением напряжения на обмотке якоря
Регулирование скорости вращения электрических двигателей постоянного тока можно производить путем изменения напряжения, подводимого к двигателю, или путем изменения величины магнитного потока двигателя.
Изменение величины напряжения, подводимого к якорю двигателя, можно производить путем включения последовательно с якорем двигателя переменного регулировочного сопротивления или путем последовательного и параллельного включения обмоток якорей нескольких двигателей. Наиболее часто для регулирования скорости применяют способ изменения величины магнитного потока двигателя. Для этой цели в цепь обмотки возбуждения двигателя включают реостат, дающий возможность производить широкую и плавную регулировку скорости двигателя.
Регулирование скорости вращения асинхронных двигателей производится одним из следующих способов.
1. Изменение числа полюсов электродвигателя. Для возможности изменения числа пар полюсов двигателя статор его выполняют либо с двумя самостоятельными обмотками, либо с одной обмоткой, которую можно пересоединять на различные числа полюсов. Пересоединение обмоток статора производится при помощи специального аппарата - контроллера. При этом способе регулировка скорости вращения двигателя совершается скачками. Регулировку скорости вращения двигателя путем изменения числа полюсов можно производить только у асинхронных двигателей с короткозамкнутым ротором. Ротор с короткозамкну-той обмоткой может работать с любым числом полюсов статора. Наоборот, ротор двигателя с фазной обмоткой может нормально работать лишь при определенном числе полюсов статора. Иначе обмотку ротора также пришлось бы переключать, что внесло бы большие усложнения в схему двигателя.
2. Изменение частоты переменного тока. При этом способе частоту переменного тока, подводимого к обмотке статора двигателя, изменяют при помощи специального генератора. Регулировку изменения частоты тока выгодно производить, когда имеется большая группа двигателей, требующих совместного плавного регулирования скорости вращения.
3. Введение сопротивления в цепь ротора. Во время работы двигателя в цепь обмотки ротора вводят сопротивление регулировочного реостата. Такой способ применим только для двигателей с фазным ротором.
4. Управление с помощью дросселей насыщения. Однофазный дроссель насыщения имеет две обмотки: одна включена в цепь переменного тока, другая, называемая управляющей или подмагничивающей обмоткой, подключается к источнику постоянного напряжения (выпрямителю). С увеличением тока в управляющей обмотке магнитная система дросселя насыщается и индуктивное сопротивление обмотки переменного тока уменьшается. Включая дроссели в каждую фазу асинхронного двигателя и меняя ток управляющей обмотки, можно менять сопротивление в цепи статора двигателя, а следовательно, и скорость вращения самого двигателя.
Для пуска в ход двигателей постоянного тока большой мощности, а также для широкой регулировки скорости вращения двигателей применяют схему «генератор - двигатель», сокращенно Г - Д. Система Г - Д дает возможность осуществить плавный пуск и широкую регулировку скорости вращения двигателя.
30. Построение статистических характеристик двигателя постоянного тока. Режимы работы
Основная схема включения двигателя постоянного тока (ДПТ) независимого возбуждения приведена на рис. 2.6, а. На рис. 2.6 приняты обозначения: I и IВ - токи якоря и обмотки возбуждения ОВ; Е -ЭДС якоря; и М-скорость и момент двигателя; Rв и Rд - соответственно добавочные резисторы в цепях возбуждения и якоря (они могут отсутствовать); - полное сопротивление якорной цепи, состоящее из сопротивлений обмоток якоря rо,я, дополнительных полюсов rд,п, компенсационной rк,о и щеточного контактаrщ. На схеме для общности показаны два источника питания цепи якоря и возбуждения, хотя во многих случаях используется только один источник.
Рис.2.6 Схема включения (а) и характеристики ДПТ НВ (б)
Вывод уравнений для характеристик ДПТ проведем при следующих допущениях: реакция якоря не учитывается; момент на валу двигателя равен электромагнитному моменту.
В основе вывода лежат уравнение электрического равновесия цепи якоря и выражения ЭДС и момента ДПТ, которые соответственно записываются в виде
(2.1)
(2.2)
М=kФФ. (2.3)
где - полное сопротивление цепи якоря, Ом;
Ф - магнитный поток ДПТ, Вб; - угловая скорость ротора ДПТ (в дальнейшем просто скорость), рад/с; k=рN/(2а) - конструктивный коэффициент ДПТ; р - число пар полюсов; N - число активных проводников обмотки якоря; а - число параллельных ветвей обмотки якоря.
Подставляя (2.2) в (2.1), получаем формулу для электромеханической характеристики ДПТ
(2.4)
Формула для механической характеристики ДПТ независимого возбуждения получается из (2.4) заменой в нем тока на момент по выражению (2.3)
(2.5)
В соответствии с (2.4) и (2.5) электромеханическая и механическая характеристики ДПТ представляют собой линейные зависимости скорости от тока и момента. Иногда уравнения (2.4) и (2.5) представляются в следующей форме записи:
, (2.6)
где - скорость идеального холостого хода двигателя,
; (2.6, а)
- перепад скорости относительно скорости идеального холостого хода,
.
На рис. 2.6, б показаны электромеханическая и механическая характеристики ДПТ при разных полярностях питающего якорь напряжения U, причем поскольку kФ=const, то М~I и характеристики представлены совмещенными линиями.
На том же рисунке показана электромеханическая и механическая характеристики двигателя при U=0. Уравнения этих характеристик получаются из (2.4) и (2.5) при U=0
; (2.7)
(2.8)
Схема, в которой ДПТ имеет такие характеристики, показана на рис. 2.7. Она носит название схемы динамического торможения или схемы генератора, включенного независимо от сети.
Полученные выражения (2.4) и (2.5) позволяют назвать основные способы получения искусственных характеристик ДПТ независимого возбуждения в целях регулирования координат электропривода: изменение сопротивления добавочного резистора в цепи якоря Rд, магнитного потока Ф и напряжения U, подводимого к цепи якоря. В дальнейшем эти способы, а также основанные на них другие способы подробно рассматриваются
Энергетический режим работы двигателя зависит от механических М, и электрических Е, I координат двигателя, определяющих его механическую и электромагнитную мощности.
Рис.2.7 Схема динамического торможения ДПТ независимого возбуждения
В табл. 2.1 приведены их характерные сочетания для основных двух режимов - двигательного и генераторного и двух граничных режимов - холостого хода и короткого замыкания.
Рассматривая приведенную таблицу можно отметить, что для двигательного режима характерно одинаковое направление скорости и момента и противоположное направление ЭДС и тока, а для генераторного режима, наоборот, направление ЭДС и тока совпадают, а скорости и момента - нет. Для режимов холостого хода характерно равенство нулю тока и момента, а для режима короткого замыкания - равенство нулю ЭДС и скорости двигателя.
Основываясь на данных табл. 2.1, рассмотрим энергетический режим работы ДПТ на различных участках его характеристик рис. 2.6, б при положительной полярности U.
1. Режим холостого хода имеет место в точке А, где I=0, М=0, =0 и E=U=kФ0 . Двигатель не получает энергии ни из электрической сети (за исключением электроэнергии на возбуждение), ни с вала. Схема для этого режима показана на рис. 2.8, а.
Таблица 2.1
Режим |
Координаты |
||
механические |
электрические |
||
Двигательный |
М>0; >0 М<0; <0 |
Е<0; I>0 E>0; I<0 |
|
Генераторный |
М>0; <0 М<0; >0 |
E>0; I>0 Е<0; I<0 |
|
Холостой ход |
М=0; =0 |
E=U; I=0 |
|
Короткое замыкание |
M=Mк,з;=0 |
E=0; I=Iк,з |
2. Двигательный режим имеет место на участке I при 0<<0, т.е. в первом квадранте, где и М совпадают по направлению. В этом режиме |Е| <|U|, ток I=(U-E)/R совпадает по направлению с U и не совпадает с ЭДС, электрическая энергия ЭЭ (рис. 2.8, б) поступает из сети, а механическая энергия МЭ отдается с вала ДПТ.
Рис.2.8. Энергетические режимы ДПТ независимого возбуждения: а - холостой ход; б - двигательный; в - генераторный параллельно с сетью; г - короткое замыкание; д - генераторный последовательно с сетью; е - генераторный независимо от сети
3. Генераторный режим работы ДПТ параллельно с сетью, или режим рекуперативного торможения, имеет место на участке II. На участке II >0, поэтому ЭДС становится больше напряжения сети, ток и момент изменяют свое направление на противоположное. Двигатель получает механическую энергию от рабочей машины и отдает ее (рекуперирует) в виде электроэнергии в сеть (рис. 2.8, в).
4. Режим короткого замыкания наступает при =0, E=0. В этом режиме согласно (3.1) I= Iк,з =U/R, электрическая энергия ЭЭ (рис. 2.8, г), поступая из сети, рассеивается в виде тепла в резисторах якорной цепи. Механическая энергия с вала ДПТ не отдается, так как =0.
5. Режим генератора последовательно с сетью, или режим торможения противовключением, наступает при <0 (участок III характеристики). За счет изменения направления скорости изменяется направление ЭДС, которая теперь совпадает по направлению с напряжением сети. Двигатель оказывается включенным последовательно с сетью, ток в якоре совпадает по направлению с напряжением и ЭДС и определяется их суммарным действием, т. е. . В результате этого электрическая энергия поступает из сети (рис. 2.8, д) и вырабатывается самим ДПТ за счет поступающей на его вал механической энергии. Электрическая энергия рассеивается в виде тепла в резисторах якорной цепи. По этой причине рассматриваемый режим в тепловом отношении является для ДПТ наиболее трудным, так как связано необходимостью рассеивания в виде тепла значительного количества энергии.
6. Режим генератора независимо от сети, или режим динамического торможения, имеет место при отключении якорной цепи ДПТ от сети и закорачивании ее на добавочный резистор или накоротко (отметим, что закорачивание накоротко якоря электрической машины не означает для нее режима короткого замыкания). Ток в якоре протекает под действием ЭДС и совпадает с ней по направлению, электрическая энергия ЭЭ (см. рис. 2.8, е), вырабатываемая за счет механической энергии, поступающей с вала, рассеивается в виде тепла в резисторах якорной цепи.
31. Схема включения, статические характеристики и режимы работы двигателя постоянного тока последовательного возбуждения
Схема включения ДПТ последовательного возбуждения приведена на рис. 2.9, а. На этой схеме приняты те же обозначения, что и на схеме включения ДПТ независимого возбуждения (см. рис. 2.6, a).
Рис. 2.9. Схема включения (а) и кривая намагничивания (б) ДПТ ПВ
Основной особенностью ДПТ последовательного возбуждения является включение его обмотки возбуждения OB последовательно с обмоткой якоря, вследствие чего ток якоря одновременно является и током возбуждения.
ри получении выражений для статических характеристик ДПТ последовательного возбуждения используем те же допущения, что и для ДПТ независимого возбуждения, и исходные формулы (2.1)-(2.3), в которых принято R=Rя+Rо,в+Rд. Согласно (2.1)-(2.3) электромеханическая и механическая характеристики ДПТ последовательного возбуждения выражаются формулами
(2.9)
(2.10)
Магнитный поток Ф и ток I якоря связаны между собой кривой намагничивания, которая показана на рис. 2.9, б сплошной линией. В общем случае эта кривая не имеет точного аналитического выражения, поэтому нельзя получить и точных выражений для характеристик ДПТ последовательного возбуждения. Тем не менее можно представить эту кривую с помощью какого-либо приближенного аналитического выражения, что позволит проанализировать вид характеристик ДПТ последовательного возбуждения.
В простейшем случае можно представить кривую намагничивания прямой линией, как это показано штриховой линией на рис. 2.9, б. Такая аппроксимация означает пренебрежение насыщением магнитной системы ДПТ последовательного возбуждения и позволяет выразить зависимость потока от тока следующим образом:
(2.11)
где ? = tg? (см рис. 2.9, б).
При принятой аппроксимации момент ДПТ является квадратичной функцией тока
(2.12)
Подстановка (2.11) в (2.9) приводит к следующему выражению для электромеханической характеристики ДПТ последовательного возбуждения:
(2.13)
Если теперь в (2.13) с помощью выражения (2.12) выразить ток через момент, то получится следующее выражение для механической характеристики;
(2.14)
Для графического изображения характеристик ДПТ последовательного возбуждения отметим следующие положения, вытекающие из анализа выражений (2.13) и (2.14):
1. При I?0, M?0 ??, т. е. ось скорости является вертикальной асимптотой для характеристик ДПТ последовательного возбуждения.
2. При I??, М?? ?-R/(k?), т. е. прямая с ординатой =-R/(k?) является горизонтальной асимптотой характеристик ДПТ.
3. Зависимости (I) и (М) имеют гиперболический характер. Выполненный анализ позволяет представить характеристики ДПТ в виде кривых, показанных на рис. 2.10. Рассмотрим с их помощью энергетические режимы работы ДПТ последовательного возбуждения
Особенностью такого ДПТ является отсутствие у него генераторного режима работы параллельно с сетью (режима рекуперативного торможения). Характеристики ДПТ не пересекают ось скорости и не переходят во второй квадрант. Для ДПТ последовательного возбуждения не может быть однозначно определена скорость идеального холостого хода 0, так как теоретически при I?0, М?0 Ф?0 и 0??. Отметим, что из-за наличия потока остаточного намагничивания Фост практически такая скорость может существовать. В этом случае она определяется выражением
(2.15)
Остальные режимы работы ДПТ последовательного возбуждения аналогичны режимам работы ДПТ независимого возбуждения, а именно: двигательный режим, имеющий место при 0<
Регулирование координат ДПТ последовательного возбуждения может осуществляться теми же способами, что и ДПТ независимого возбуждения, - путем изменения сопротивления добавочного резистора Rд в цепи якоря, магнитного потока Ф, подводимого к ДПТ напряжения U. Кроме этих основных способов, практическое распространение получили импульсные способы, а также регулирование в схеме с шунтированием якоря.
Полученные выражения (2.13) и (2.14) дают лишь общее представление о характеристиках ДПТ последовательного возбуждения и не могут быть использованы для инженерных расчетов. Причина этого заключается в принятой линейной аппроксимации кривой намагничивания, в то время как выпускаемые промышленностью ДПТ последовательного возбуждения работают на колене кривой намагничивания или даже в области насыщения магнитной системы.
Рис.2.10. Электромеханическая (а) и механическая (б) характеристики ДПТ последовательного возбуждения
Рис. 2.11. Универсальные характеристики ДПТ ПВ
Для получения реальных естественных характеристик ДПТ последовательного возбуждения в практических расчетах используются так называемые универсальные характеристики ДПТ последовательного возбуждения. Эти характеристики представляют собой зависимости относительных значений скорости ДПТ *=/ном и момента M=M/Mном от относительного тока I*=I/Iном. Универсальные характеристики ДПТ последовательного возбуждения приведены на рис. 2.11.
32. Регулировка скорости вращения двигателя постоянного тока изменением магнитного тока
Из уравнения электромеханической характеристики двигателя постоянного тока независимого возбуждения следует, что возможны три способа регулирования его угловой скорости:
1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,
2) регулирование за счет изменения потока возбуждения двигателя Ф,
3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U. Ток в цепи якоря Iя и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.
Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря. Схема включения двигателя для этого случая представлена на рис. 1, а электромеханические и механические характеристики -- на рис. 2, а.
Рис. 1. Схема включения двигателя постоянного тока независимого возбуждения
Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)
Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках -- щ1, щ2, щ3.
Проведем анализ данного способа регулирования угловой скорости двигателей постоянного тока с помощью основных технико-экономических показателей. Так как при данном способе регулирования изменяется жесткость характеристик в широких пределах, то при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен (D= 2 -З).
Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.
Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.
Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.
При втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока -- уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.
При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Диапазон регулирования скорости для данного способа D = 2 - 4.
Механические характеристики для различных значений потока двигателя приведены на рис. 2, а и 2, б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.
Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.
Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.
Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.
Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. Поскольку все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной, работа двигателя является стабильной на всех угловых скоростях и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Этот диапазон равен 10 и может быть расширен за счет специальных схем управления.
...Подобные документы
Основные элементы и характеристики электрических цепей постоянного тока. Методы расчета электрических цепей. Схемы замещения источников энергии. Расчет сложных электрических цепей на основании законов Кирхгофа. Определение мощности источника тока.
презентация [485,2 K], добавлен 17.04.2019Экспериментальное исследование электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. Составление баланса мощностей.
лабораторная работа [44,5 K], добавлен 23.11.2014Что такое нелинейные цепи и нелинейный элемент. Классификация нелинейных элементов, параметры и некоторые схемы замещения. Методы расчёта нелинейных цепей постоянного тока. Графический способ расчета цепей с применением кусочно-линейной аппроксимации.
реферат [686,7 K], добавлен 28.11.2010Элементы R, L, C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Методы расчета электрических цепей. Составление уравнений по законам Кирхгофа. Метод расчёта электрических цепей с использованием принципа суперпозиции.
курсовая работа [604,3 K], добавлен 11.10.2013Закон Ома для участков цепи и закон Ома для полной цепи. Применения правил Кирхгофа для расчета цепей постоянного тока. Постановка задачи о расчете цепи постоянного тока.
лабораторная работа [22,7 K], добавлен 18.07.2007Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.
курсовая работа [777,7 K], добавлен 15.04.2010Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.
реферат [122,8 K], добавлен 27.07.2013Однофазные цепи синусоидального тока. Двигатели постоянного тока параллельного возбуждения. Расчет линейной цепи постоянного тока методом двух законов Кирхгофа. Расчет характеристик асинхронного трехфазного двигателя с короткозамкнутым ротором.
методичка [1,4 M], добавлен 03.10.2012Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.
курсовая работа [685,5 K], добавлен 28.09.2014Разветвленная цепь с одним источником электроэнергии. Определение количества уравнений, необходимое и достаточное для определения токов во всех ветвях схемы по законам Кирхгофа. Метод контурных токов. Символический расчет цепи синусоидального тока.
контрольная работа [53,2 K], добавлен 28.07.2008Порядок расчета неразветвленной электрической цепи синусоидального тока комплексным методом. Построение векторной диаграммы тока и напряжений. Анализ разветвленных электрических цепей, определение ее проводимости согласно закону Ома. Расчет мощности.
презентация [796,9 K], добавлен 25.07.2013Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.
реферат [66,6 K], добавлен 27.03.2009Анализ электрической схемы постоянного тока. Особенности первого и второго законов Кирхгофа для узлов и ветвей цепи. Знакомство с типами электрических цепей: двухполюсные, четырёхполюсные. Рассмотрение способов постройки векторных диаграмм напряжений.
контрольная работа [651,6 K], добавлен 04.04.2013Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях, содержащих конденсатор и сопротивление.
курсовая работа [4,4 M], добавлен 14.05.2010Электрическая цепь, её элементы и классификация. Энергия, мощность, режим работы и законы электрической цепи. Расчёт цепи с одним и несколькими источниками ЭДС. Свойства и области применения мостовых цепей, потенциометров и делителей напряжений.
реферат [368,0 K], добавлен 25.12.2010Основные элементы электрической цепи, источник ЭДС и источник тока. Линейные цепи постоянного тока, применение законов Кирхгофа. Основные соотношения в синусоидальных цепях: сопротивление, емкость, индуктивность. Понятие о многофазных электрических цепях.
курс лекций [1,2 M], добавлен 24.10.2012Расчет значений тока во всех ветвях сложной цепи постоянного тока при помощи непосредственного применения законов Кирхгофа и метода контурных токов. Составление баланса мощности. Моделирование заданной электрической цепи с помощью Electronics Workbench.
контрольная работа [32,6 K], добавлен 27.04.2013Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.
лабораторная работа [27,5 K], добавлен 12.01.2010Расчет цепей при замкнутом и разомкнутом ключах. Определение переходных тока и напряжения в нелинейных цепях до и после коммутации с помощью законов Кирхгофа. Расчет длинных линий и построение графиков токов при согласованной и несогласованной нагрузке.
курсовая работа [1,1 M], добавлен 13.07.2013Расчет линейной электрической цепи постоянного тока, а также электрических цепей однофазного синусоидального тока. Определение показаний ваттметров. Вычисление линейных и фазных токов в каждом трехфазном приемнике. Векторные диаграммы токов и напряжений.
курсовая работа [1,2 M], добавлен 21.10.2013