Основы электротехники

Электрическая цепь, её элементы и параметры. Расчет сложных цепей с помощью законов Кирхгофа. Простые цепи постоянного тока. Методы расчета нелинейных цепей. Индуктивный элемент в цепи синусоидального тока. Классификация и устройства трансформаторов.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 27.03.2015
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и Uном двигателя.

Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.

Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.

33. Регулирование скорости вращения ДПТ изменением сопротивления якорной цепи

Из уравнения скоростной характеристики электродвигателей постоянного тока следует, что их скорость можно регулировать:

а) изменением сопротивления якорной цепи R при помощи реостата в цепи якоря;

б) изменением магнитного потока возбуждения Ф (при помощи реостата в цепи возбуждения);

в) изменением величины напряжения U, подводимого к двигателю (за счет применения специальных схем включения).

1. Электродвигатели с параллельным возбуждением

Регулирование скорости вращения изменением сопротивления в цепи якоря. Как видно из механических характеристик, вводя дополнительное сопротивление в цепь якоря, можно регулировать скорость вниз от номинальной скорости двигателя, представленной естественной характеристикой. Жесткость характеристик уменьшается по мере увеличения добавочного сопротивления. Диапазон регулирования скорости не превышает 2 : 1, т. е. предел регулирования равен 50% вниз от основной скорости.

Настоящий способ регулирования скорости может быть легко осуществлен, однако он имеет ряд существенных недостатков, ограничивающих его применение: значительные потери энергии в регулировочном реостате; диапазон регулирования скорости непостоянен и зависит от нагрузки; невозможность регулирования при малых нагрузках.

В отличие от пускового реостата регулировочный реостат должен быть рассчитан на длительную работу при полном токе нагрузки, поскольку он оказывается включенным не только кратковременно во время пуска, но и во время работы двигателя на заданной скорости.

Регулирование скорости вращения изменением тока возбуждения (величины магнитного потока). Из рассмотрения механических характеристик видно, что, вводя дополнительное сопротивление в цепь возбуждения, можно регулировать скорость вращения двигателя вверх от номинальной его скорости. Жесткость механических искусственных характеристик при этом мало изменяется. Диапазон регулирования скорости для регулируемых таким методом двигателей составляет от 1,5 : 1 до 4 : 1. Обычно в каталогах указывается величина максимально допустимого числа оборотов двигателя. Данный способ регулирования скорости является одним из наиболее простых и экономичных, что определяет его широкое применение.

2. Электродвигатели с последовательным возбуждением

Регулирование скорости вращения изменением сопротивления в цепи якоря. Как видно из механической характеристики двигателя, вводя дополнительное сопротивление в цепь якоря, можно регулировать скорость вниз от номинальной скорости двигателя. Жесткость характеристики уменьшается по мере увеличения дополнительного сопротивления. Диапазон регулирования скорости не превышает 2:1, 3:1 и зависит от нагрузки.

Регулирование скорости рассмотренным методом связано с большими потерями энергии в регулировочном реостате, но несмотря на это, данный способ находит применение в крановых установках и электротележках ввиду своей простоты. Указанные механизмы работают со значительными перерывами, что уменьшает потерю энергии на нагрев сопротивлений реостатов.

Регулирование скорости вращения изменением магнитного потока возбуждения. Для двигателей с последовательным возбуждением применяются два основных способа регулирования скорости изменением магнитного потока Ф, а именно, путем шунтирования либо обмотки возбуждения, либо обмотки якоря.

При шунтировании обмотки возбуждения реостатом Яш (рис. 16) часть тока, проходящего по якорю двигателя, ответвляется в реостат, вследствие чего величина тока в обмотке возбуждения, а следовательно, и магнитного потока, создаваемого ею, уменьшается и скорость двигателя возрастает. При уменьшении величины сопротивления шунтирующего реостата искусственные скоростные характеристики на рис. 16 располагаются выше естественной характеристики. Таким образом, регулирование скорости этим методом происходит в сторону ее повышения по отношению к номинальной скорости. Предел регулирования скорости вращения двигателя не поевышает 2 : 1 при условии постоянства мощности. При постоянном нагрузочном моменте диапазон регулирования еще ниже.

Рис. 16. Схема регулирования скорости электродвигателя последовательного возбуждения шунтированием обмотки возбуждения
а --схема; б -- скоростные характеристики

При уменьшении величины сопротивления шунтирующего реостата увеличивается ток, протекающий по обмотке возбуждения, вследствие чего искусственные скоростные характеристики (рис. 17,6) двигателя рас полагаются ниже естественной характеристики. При переходе скорости вращения за пределы отрицательных моментов двигатель не отдает энергии в сеть, но работает генератором на шунтирующее сопротивление, так как э. д. с. двигателя не может быть больше приложенного напряжения сети. Таким образом, регулирование скорости этим методом происходит в сторону понижения по отношению к номинальной скорости. Возможен диапазон регулирования скорости (4--5) : 1. Регулирование скорости шунтированием обмотки якоря применяется в тех случаях, когда необходимо получить характеристики на низких скоростях, более жесткие, чем при реостатном регулировании. Этот метод регулирования скорости сопровождается значительной потерей энергии в шунтирующем реостате. Он находит применение в электроприводах, требующих получения низких скоростей на короткое время.

Рис. 17. Схема регулирования скорости электродвигателя последовательного возбуждения шунтированием обмотки якоря
а -- схема; б -- скоростные характеристики

3. Специальные схемы включения электродвигателей постоянного тока (система генератор -- двигатель, ионный привод, привод с магнитным усилителем)

Для ряда производственных механизмов диапазон регулирования скорости рассмотренными выше способами оказывается недостаточным. Более широкое регулирование скорости возможно за счет изменения величины подводимого к двигателю напряжения. При этом он должен иметь независимое возбуждение. Регулирование скоростей в этих условиях возможно в широких пределах вверх и вниз от естественной характеристики. Понижение подводимого к двигателю напряжения вызывает смещение механических характеристик к оси абсцисс, повышение --смещение их в обратном направлении.

Регулирование скорости вращения путем изменения напряжения осуществляется при включении электродвигателей по особым схемам с питанием их либо от специального генератора с регулируемым напряжением, либо от ионных преобразователей. Такие способы регулирования скорости отличаются высокой экономичностью, большой плавностью регулирования и возможностью использовать генераторное торможение с отдачей энергии в сеть. Основной его недостаток заключается в необходимости иметь дополнительное электрооборудование (генераторы, сетевой двигатель и др.), позволяющее изменять величину подводимого к двигателю напряжения.

Принципиальная схема системы Г--Д приведена на рис. 18. Основными элементами оборудования являются: ПД-- асинхронный или синхронный приводной двигатель, вращающий генератор Г и возбудитель В; Д -- двигатель исполнительного механизма.

Рис. 18. Принципиальная схема привода постоянного тока по системе генератор -- двигатель (Г -- Д)

Механические характеристики электропривода по системе Г--Д представлены на рис. 19. Характеристики, полученные при различных токах возбуждения генератора путем изменения сопротивления реостата возбуждения Rr , расположены в нижней части рисунка. Характеристики при неизменной величине э. д. с. генератора и различных потоках возбуждения двигателя, получаемые воздействием на реостат возбуждения двигателя RB. д, расположены в верхней части рисунка. Эти характеристики не Параллельны между собой, поскольку перепад скорости вращения, обратно пропорциональный потоку возбуждения, будет для одного и того же момента различным при разных токах возбуждения двигателя.

Рис. 19. Механические характеристики электропривода постоянного тока по системе генератор -- двигатель

Перед пуском в ход двигатель исполнительного механизма в системе Г--Д (см. рис. 18) должен иметь полное возбуждение [(RB. д=0), а группа «приводной двигатель--генератор» должна находиться во вращении со снятым с генератора возбуждением. Далее, путем постепенного повышения напряжения генератора (уменьшая сопротивления его реостата возбуждения Rг ) двигатель исполнительного механизма плавно доводят до номинальной скорости.

В зависимости от требуемого направления вращения двигателя пуск осуществляется замыканием контакторов KB или КН (с помощью специальной аппаратуры).

Применяемый в системе Г--Д метод пуска весьма экономичен, так как в главной цепи якоря машины отсутствуют пусковые сопротивления. Поскольку управление пуском осуществляется в цепи возбуждения генератора, обладающей сравнительно малой мощностью (2-- 6% номинальной мощности генератора), применяемая аппаратура управления имеет малые габариты, вес и стоимость.

Для того чтобы вызвать тормозной режим двигателя в системе Г--Д с последующей его остановкой, достаточно разомкнуть контакты контакторов KB и КН. Цепь возбуждения генератора будет отключена от питающей сети, однако ток возбуждения генератора не исчезнет мгновенно ввиду наличия разрядного сопротивления Rp, шунтирующего обмотку возбуждения генератора. В обмотке возбуждения генератора будет наводиться э. д. с. самоиндукции и тем самым поддерживаться ток в цепи, замкнутой на разрядное сопротивление.

Так как поток возбуждения двигателя исполнительного механизма остается неизменным, то его э. д. с. будет больше, чем уменьшающаяся э. д. с. генератора.

В результате этого двигатель начинает работать в режиме генератора за счет кинетической энергии вращающихся масс, а генератор -- в режиме двигателя. Поскольку поток возбуждения генератора непрерывно уменьшается, его скорость, а следовательно, и скорость вращения приводного двигателя ПД будет возрастать. Когда она превысит синхронную скорость двигателя ПД, последний начнет работать в генераторном режиме с отдачей электроэнергии в сеть. Отдача электроэнергии в сеть продолжается вплоть до полной остановки двигателя.

Если торможение механизма по условиям производственного процесса производится часто, то данный метод торможения представляет значительную экономическую выгоду.

Рассматриваемая система приводам позволяет иметь широкий диапазон регулирования до 100 : 1 с плавным изменением скорости, получить специальные, так называемые экскаваторные механические характеристики двигателей механизмов, работающих на упор, например механизм напора мощных экскаваторов.

В современных электроприводах, выполненных по системе Г--Д, наибольшее распространение в качестве возбудителей генераторов получили электромашинные усилители с поперечным полем. Применяются также магнитные и электронные усилители.

Электромашинный усилитель дает возможность управлять мощными установками посредством аппаратов и машин малой мощности. Эти же свойства усилителя за счет введения обратных связей по току, напряжению или скорости позволяют в некоторых приводах поднять диапазон регулирования скорости до 200 : 1.

Ниже рассматривается принцип действия электромашинного усилителя (ЭМУ) с поперечным полем (рис. 20). Электромашинный усилитель приводится в действие асинхронным двигателем, который монтируется в одном корпусе с усилителем. Первая пара щеток ЭМУ аа замыкается накоротко, ко второй паре 66 подсоединяется внешняя нагрузка, обычно обмотка возбуждения генератора.

Конструктивные особенности ЭМУ позволяют в том же пространстве, где расположена обмотка ОУ, разместить еще несколько обмоток управления без значительного увеличения габаритов. С помощью дополнительных обмоток управления обычно осуществляются обратные связи.

Величина коэффициента усиления по мощности электромашинных усилителей с попеоечным полем составляет 4000-- 10000.

Диапазон регулирования скорости двигателя в рассмотренной схеме без обратной связи равен 1 : 7, а с обратной связью для той же системы он составляет 1 : 33.

В случае необходимости регулирования скорости оператор перемещает скользящий контакт реостата Ra. у в цепи обмотки управления ЭМУ. Применяя ЭМУ с обратными связями, можно получать жесткие механические характеристики.

Недостатки, отмечавшиеся для привода по системе Д, в значительной мере устраняются при питании приводных двигателей постоянного тока от ионных и полупроводниковых преобразователей. Для приводов небольшой мощности используются тиратроны, а для приводов большой мощности -- мощные управляемые ртутные вентили, а также полупроводниковые вентили -- тиристоры.

Рис. 21. Схема электропривода по системе генератор -- двигатель с электромашинным усилителем в качестве возбудителя

Систему, состоящую из двигателя постоянного тока и питающего его ионного преобразователя, называют ионным приводом. Ионный преобразователь в такой системе выполняет не только функции выпрямления переменного тока, но и функции управления двигателем, т. е. пуск, регулирование скорости, торможение и т. п. Достигается это изменением величины напряжения на стороне выпрямленного тока при помощи сеточного управления, регулирующего момент зажигания дуги в вентилях.

Принцип сеточного регулирования основан на том. что при наличии на сетке отрицательного (запирающего) напряжения дуга на главных анодах не зажигается и ток от анода к катоду не проходит.

Принципиальная схема ионного привода с тиратронами представлена на рис. 22. Двигатель постоянного тока Д получает питание через три тиратрона, включенных во вторичную цепь трансформатора Тр. Тиратроны, как и ртутные вентили, обычно включаются в сеть через трансформаторы. Наличие трансформаторов объясняется необходимостью получения напряжения

требуемой величины на стороне выпрямленного тока. Двигатель. подключен к нулевой точке трансформатора 0 и общей точке катодов тиратронов К. Для сглаживания пульсации тока в цепь двигателя включена реактивная катушка-дроссель ДР.

Как указывалось, регулирование сеточного напряжения производится фазорегулятором ФР. Там же между сетками и фазорегулятором включены так называемые пиковые трансформаторы ПТр, дающие возможность получить более резкие изменения напряжения на сетке, а отсюда более четкую фиксацию момента зажигания тиратрона. Цепи накала тиратронов присоединяются к отдельным обмоткам трансформатора, не показанным на схеме.

Механические характеристики системы ионный преобразователь-- двигатель подобны характеристикам системы генератор--двигатель с некоторым искажением в зоне, близкой к холостому ходу двигателя. Для повышения жесткости механических характеристик и увеличения диапазона регулирования скорости вращения двигателя в этих системах используют обратные связи по току и напряжению якоря двигателя.

Рис. 22. Схема ионного привода (с тиратронами и фазорегулятором)

Применение системы с ионными преобразователями экономичнее по стоимости, чем системы с вращающимися преобразователями, требует меньшей площади производственного помещения, кроме того, данная система имеет более высокий к. п. д. и практически безынерционное сеточное управление. Основным недостатком ионных преобразователей является низкий коэффициент мощности, который снижается при глубоком регулировании, примерно пропорционально уменьшению скорости вращения.

В последние годы были разработаны полупроводниковые (кремниевые) управляемые вентили -- тиристоры, которые по своим функциям в схемах преобразователей аналогичны тиратронам. Тиристоры, очевидно, найдут в будущем широкое применение для приводов средней и большой мощности вместо тиратронов и управляемых ртутных вентилей.

В приводах малой и средней мощности в настоящее время стали широко применять систему регулирования скорости двигателя с помощью магнитных усилителей. Принцип действия магнитного усилителя основан на явлении изменения индуктивного сопротивления переменного тока путем изменения подмагничивания сердечников постоянным током. Имеются приводы с магнитными усилителями, питающимися от сетей однофазного и трехфазного тока. Комплектные установки с магнитными усилителями, выпускаемые промышленностью мощностью от 0,1 до 8 кет, позволяют получать диапазон регулирования скорости порядка 10 : 1 при плавном регулировании. Они надежны в эксплуатации и имеют высокий к. п. д.

Механические характеристики двигателя при таком способе регулирования скорости -- мягкие вследствие значительного снижения напряжения на обмотке якоря с увеличением нагрузки двигателя.

Магнитные усилители могут иметь несколько обмоток управления и регулировать функции нескольких параметров. Они обладают большим коэффициентом усиления по мощности. Существенным недостатком привода с магнитным усилителем является его значительная инерционность: при резком изменении нагрузки на валу двигателя могут возникнуть колебания скорости и новое установившееся состояние наступает только спустя 0,2--2 сек.

Рис. 23. Схема электропривода с магнитным усилителем

34. Пуск, торможение и реверс двигателя постоянного тока

Пуск двигателя постоянного тока прямым включением его на напряжение сети допустим только для двигателей небольшой мощности. При этом пик тока в начале пуска может быть порядка 4 -- 6-кратного номинального. Прямой пуск двигателей постоянного тока значительной мощности совершенно недопустим, потому что начальный пик тока здесь будет равен 15 -- 50-кратному номинальному. Поэтому пуск двигателей средних и больших мощностей производят при помощи пускового реостата, который ограничивает ток при пуске до допустимых по коммутации и механической прочности значений.

Пусковой реостат выполняется из провода или ленты с высоким удельным сопротивлением, разделенных на секции. Провода присоединяются к медным кнопочным или плоским контактам в местах перехода от одной секции к другой. По контактам перемещается медная щетка поворотного рычага реостата. Реостаты могут иметь и другое выполнение. Ток возбуждения при пуске двигателя с параллельным возбуждением устанавливается соответствующим нормальной работе, цепь возбуждения включается прямо на напряжение сети, чтобы не было уменьшения напряжения, обусловленного падением напряжения в реостате (см. рис. 1).

Необходимость иметь нормальный ток возбуждения связана с тем, что при пуске двигатель должен развивать возможно больший допустимый момент Мэм, необходимый для обеспечения быстрого разгона. Пуск двигателя постоянного тока производится при последовательном уменьшении сопротивления реостата, обычно -- путем перевода рычага реостата с одного неподвижного контакта реостата на другой и выключения секций; уменьшение сопротивления может производиться и путем замыкания накоротко секций контакторами, срабатывающими по заданной программе.

При пуске вручную или автоматически ток изменяется от максимального значения, равного 1,8 --2,5-кратному номинальному в начале работы при данном сопротивлении реостата, до минимального значения, равного 1,1 -- 1,5-кратному номинальному в конце работы и перед переключением на другое положение пускового реостата. Ток якоря после включения двигателя при сопротивлении реостата rп составляет

где Uс -- напряжение сети.

После включения начинается разгон двигателя, при этом возникает противо-ЭДС Е и уменьшается ток якоря. Если учесть, что механические характеристики n = f1(Mн) и n = f2 (Iя) практически линейны, то при разгоне увеличение скорости вращения будет происходить по линейному закону в зависимости от тока якоря (рис. 1).

Рис. 1. Диаграмма пуска двигателя постоянного тока

Пусковая диаграмма (рис. 1) для различных сопротивлений в цепи якоря представляет собой отрезки линейных механических характеристик. При уменьшении тока якоря IЯ до значения Imin выключается секция реостата с сопротивлением r1 и ток возрастает до значения

где E1 -- ЭДС в точке А характеристики; r1--сопротивление выключаемой секции.

Затем снова происходит разгон двигателя до точки В, и так далее вплоть до выхода на естественную характеристику, когда двигатель будет включен прямо на напряжение Uc. Пусковые реостаты рассчитаны по нагреву на 4 --6 пусков подряд, поэтому нужно следить, чтобы в конце пуска пусковой реостат был полностью выведен.

При остановке двигатель отключается от источника энергии, а пусковой реостат полностью включается -- двигатель готов к следующему пуску. Для устранения возможности появления больших ЭДС самоиндукции при разрыве цепи возбуждения и при ее отключении цепь может замыкаться на разрядное сопротивление.

В регулируемых приводах пуск двигателей постоянного тока производится путем постепенного повышения напряжения источника питания так, чтобы ток при пуске поддерживался в требуемых пределах или сохранялся в течение большей части времени пуска примерно неизменным. Последнее можно осуществить путем автоматического управления процессом изменения напряжения источника питания в системах с обратными связями.

Пуск двигателей постоянного тока с последовательным возбуждением производится также при помощи пусковых устройств. Пусковая диаграмма представляет собой отрезки нелинейной механической характеристики для различных сопротивлений цепи якоря. Пуск при относительно небольших мощностях может выполняться вручную, а при больших -- путем замыкания накоротко секций пускового реостата контакторами, которые срабатывают при управлении вручную или автоматически.

Реверсирование -- изменение направления вращения двигателя -- производится путем изменения направления действия вращающего момента. Для этого требуется изменить направление магнитного потока двигателя постоянного тока, т. е. переключить обмотку возбуждения или якорь, при этом в якоре будет протекать ток другого направления. При переключении и цепи возбуждения, и якоря направление вращения останется прежним.

Обмотка возбуждения двигателя параллельного возбуждения имеет значительный запас энергии: постоянная времени обмотки составляет секунды для двигателей больших мощностей. Значительно меньше постоянная времени обмотки якоря. Поэтому для того чтобы реверсирование проходило возможно быстрее, производится переключение якоря. Только там, где не требуется быстродействия, можно выполнять реверсирование путем переключения цепи возбуждения.

Реверсирование двигателей последовательного возбуждения можно производить переключением или обмотки возбуждения, или обмотки якоря, так как запасы энергии в обмотках возбуждения и якоря невелики и их постоянные времени относительно малы.

При реверсировании двигателя с параллельным возбуждением якорь сперва отключается от источника питания и двигатель механически тормозится или переключается для торможения. После окончания торможения якорь переключается, если он не был переключен в процессе торможения, и выполняется пуск при другом направлении вращения.

В такой же последовательности производится и реверсирование двигателя последовательного возбуждения: отключение -- торможение -- переключение -- пуск в другом направлении. У двигателей со смешанным возбуждением при реверсировании следует переключить якорь либо последовательную обмотку вместе с параллельной.

Торможение необходимо для того, чтобы уменьшить время выбега двигателей, которое при отсутствии торможения может быть недопустимо велико, а также для фиксации приводимых механизмов в определенном положении. Механическое торможение двигателей постоянного тока обычно производится при наложении тормозных колодок на тормозной шкив. Недостатком механических тормозов является то, что тормозной момент и время торможения зависят от случайных факторов: попадания масла или влаги на тормозной шкив и других. Поэтому такое торможение применяется, когда не ограничены время и тормозной путь.

В ряде случаев после предварительного электрического торможения при малой скорости можно достаточно точно произвести остановку механизма (например, подъемника) в заданном положении и зафиксировать его положение в определенном месте. Такое торможение применяется и в аварийных случаях.

Электрическое торможение обеспечивает достаточно точное получение требуемого тормозящего момента, но не может обеспечить фиксацию механизма в заданном месте. Поэтому электрическое торможение при необходимости дополняется механическим, которое входит в действие после окончания электрического.

Электрическое торможение происходит, когда ток протекает согласно с ЭДС двигателя. Возможны три способа торможения.

Торможение двигателей постоянного тока с возвратом энергии в сеть. При этом ЭДС Е должна быть больше напряжения источника питания UС и ток будет протекать в направлении ЭДС, являясь током генераторного режима. Запасенная кинетическая энергия будет преобразовываться в электрическую и частично возвращаться в сеть. Схема включения показана на рис. 2, а.

Рис. 2. Схемы электрического торможения двигателей постоянного тока: я -- с возвратом энергии в сеть; б -- при противовключении; в -- динамическое торможение

Торможение двигателя постоянного тока может быть выполнено, когда уменьшается напряжение источника питания так, что Uc< Е, а также при спуске грузов в подъемнике и в других случаях.

Торможение при противовключении выполняется путем переключения вращающегося двигателя на обратное направление вращения. При этом ЭДС Е и напряжение Uc в якоре складываются, и для ограничения тока I следует включать резистор с начальным сопротивлением

где Imах -- наибольший допустимый ток.

Торможение связано с большими потерями энергии.

Динамическое торможение двигателей постоянного тока выполняется при включении на зажимы вращающегося возбужденного двигателя резистора rт (рис. 2, в). Запасенная кинетическая энергия преобразуется в электрическую и рассеивается в цепи якоря как тепловая. Это наиболее распространенный способ торможения.

35. Понятие о коллекторных двигателях переменного тока

Если машину постоянного тока включить в цепь переменного тока, взаимодействие тока в якоре I и магнитного потока индуктора Ф создает вращающий момент, пропорциональный произведению этих величин. Так как якорь и индуктор питаются от одной и той же сети, знаки I и Ф (при переменном токе) меняются одновременно и знак вращающего момента сохраняется неизменным.

Однако такой двигатель имел бы очень плохие технические и экономические характеристики. В стали индуктора были бы очень большие потери энергии на вихревые токи и гистерезис, поэтому к. п. д. двигателя был бы низким. В секциях обмотки якоря (замыкающихся щетками накоротко) переменным магнитным потоком индуктора индуктировались бы особые э. д. с, вследствие чего возникало бы сильное искрение под щетками. Коэффициент мощности такой машины тоже был бы низким. Поэтому коллекторные двигатели переменного тока, создаваемые по конструктивной схеме машин постоянного тока, имеют весьма существенные конструктивные усложнения:

1. сердечник индуктора собирают из листов электротехнической стали, как и у всех машин переменного тока;

2. в якоре для улучшения коммутации закладывают дополнительную обмотку, компенсирующую явления, вызывающие искрение под щетками.

Таким образом, коллекторная машина переменного тока сложнее и значительно дороже машины постоянного тока на ту же мощность.

Выпускаются однофазные коллекторные двигатели переменного тока с последовательным и с параллельным соединением обмоток якоря (ротора) и индуктора (статора). Характеристики их близки к характеристикам сериесного и шунтового двигателей постоянного тока. Однофазные двигатели с последовательным соединением обмоток получили применение на электрифицированных железных дорогах, причем в ряде случаев питание их осуществляется током пониженной частоты (25 и 162/з пер/сек), что улучшает условия их работы.

Однофазные коллекторные двигатели с последовательным возбуждением малой мощности находят все большее применение в электрифицированных бытовых приборах и устройствах автоматики. Они работают как на переменном, так и на постоянном токе и потому называются универсальными.

Трехфазные коллекторные двигатели создаются на основе конструктивной схемы трехфазного асинхронного двигателя, однако с очень большими усложнениями. Основное преимущество коллекторных двигателей переменного тока по сравнению с другими типами двигателей на этом токе - возможность плавного регулирования скорости вращения в очень широких пределах. Применение этих двигателей ограничивается их конструктивной сложностью и высокой стоимостью.

36. Устройства трехфазного асинхронного двигателя

Устройство статора. Асинхронный двигатель, как и всякая электрическая машина, состоит из статора и ротора (рис. 3.1, а). Статор имеет цилиндрическую форму. Он состоит из корпуса /, сердечника 2 и обмотки 3. Корпус литой, в большинстве случаев стальной или чугунный. Сердечник статора собирается из тонких листов электротехнической стали (рис. 3.1,б).

Листы для машин малой мощности ничем не покрываются, так как образующийся на листах оксидный слой является достаточной изоляцией. Собранные листы стали образуют пакет статора, который запрессовывается в корпус статора. На внутренней поверхности сердечника вырубаются пазы, в которые укладывается обмотка статора. Обмотки статора могут соединяться звездой или треугольником. Для осуществления таких соединений на корпусе двигателя имеется коробка, в которую выведены начала фаз С1, С2, СЗ и концы фаз С4, С5, С6. На рис. 3.2, а--в показаны схемы расположения этих выводов и способы соединения их между собой при соединении фаз звездой и треугольником. Схема соединений обмоток статора зависит от расчетного напряжения двигателя и номинального напряжения сети. Например, в паспорте двигателя указано 380/220. Первое число соответствует схеме соединения обмоток в звезду при линейном напряжении в сети 380 В, а второе -- схеме соединения в треугольник при линейном напряжении сети 220 В. В обоих случаях напряжение на фазе обмотки будет 220 В.

Корпус статора с торцов закрыт подшипниковыми щитами, в которые запрессованы подшипники вала ротора.

Устройство ротора. Ротор асинхронного двигателя состоит из стального вала 4 (рис. 3.1, а), на который напрессован сердечник 5, выполненный, как и сердечник статора, из отдельных листов электротехнической стали с выштампованными в них закрытыми или полузакрытыми пазами. Обмотка ротора бывает двух типов: короткозамкнутая и фазная - соответственно роторы называются короткозамкнутыми и фазными.

Большее распространение имеют двигатели с короткозамкнутым ротором, так как они дешевле и проще в изготовлении и в эксплуатации. Токопроводящая часть такого ротора, названного М. О. Доливо-Добровольским ротором с беличьей клеткой, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов (рис. 3.3). Как правило, беличья клетка формируется путем заливки пазов ротора расплавленным алюминием.

Фазный ротор (рис.3.4) имеет три обмотки, соединенные в звезду. Выводы обмоток подсоединены к кольцам 2, закрепленным на валу 3. К кольцам при пуске прижимаются неподвижные щетки 4, которые подсоединяются к реостату 5.

37. Принцип действия трехфазного асинхронного двигателя

Принцип действия трехфазного асинхронного двигателя

Неподвижная часть асинхронного двигателя - статор имеет трехфазную обмотку, при включении которой в сеть возникает вращающееся магнитное поле. Скорость вращения этого поля

n1=f1•60/p.

В расточке статора расположена вращающаяся часть двигателя - ротор, который состоит из вала, сердечника и обмотки. Обмотка ротора состоит из стержней, уложенных в пазы сердечника и замкнутых с двух сторон кольцами.

Вращающееся поле статора пересекает проводники (стержни) обмотки ротора и наводит в них э. д. с. Но так как обмотка ротора замкнута, то в стержнях возникают токи. Взаимодействие этих токов с полем статора создает на проводниках обмотки ротора электромагнитные силы Fпр, направление которых определяется по правилу «левой руки». Силы Fпр стремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил Fпр, приложенных к отдельным проводникам, создает на роторе электромагнитный момент М, приводящий его во вращение со скоростью n2. Вращение ротора через вал передается исполнительному механизму.

Таким образом, электрическая энергия, поступающая в обмотку статора из сети, преобразуется в механическую.

Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора, зависит от порядка следования фаз напряжения, подводимого к обмотке статора. При необходимости изменить направление вращения ротора асинхронного двигателя следует поменять местами любую пару проводов, соединяющих обмотку статора с сетью. Например, порядок следования фаз АВС заменить порядком СВА. Скорость вращения ротора n2асинхронного двигателя всегда меньше скорости вращения поля n1, так как только в этом случае возможно наведение э.д.с. в обмотке ротора. Разность скоростей ротора и вращающегося поля статора характеризуется величиной, называемой скольжением,

s=(n1 - n2)/n1.

Часто скольжение выражается в процентах:

s=[(n1 - n2)/n1]•100.

Скольжение асинхронного двигателя может изменяться в пределах от 0 до 1. При этом s?0 соответствует режиму холостого хода, когда ротор двигателя не испытывает противодействующих моментов, а s?1 соответствует режиму короткого замыкания, когда противодействующий момент двигателя превышает вращающий момент и поэтому ротор двигателя неподвижен (n2=0).

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Так, например, для двигателей нормального исполнения мощностью от 1 до 1000 кВт номинальное скольжение приблизительно составляет соответственно 0,06-0,01, т.е. 6-1%.

Скорость вращения ротора асинхронного двигателя равна

n2=(1-s)•n1.

На щитке двигателя указывается номинальная скорость вращения nн. Эта величина дает возможность определить синхронную скорость вращения n1, номинальное скольжение sн, а также число полюсов обмотки статора 2р.

38) рабочие и механические характеристики асинхронного двигателя

Рабочие характеристики асинхронного электродвигателя представляют собой зависимости тока обмотки статора I1,потребляемой мощности Р 1,момента М, частоты вращения ротора n, КПД ?, коэффициента мощности cosц от полезной мощности Р2, т.е. I1, Р1, М, n, ?, cosц =f(Р 2) при U1лн = const, частоте тока питающей сети 50 Гц и постоянстве сопротивления роторной цепи. Например: получение значений параметров рабочих характеристик для точки номинального режима Ан ведется в следующий последовательности. Величина тока обмотки статора I1 = ОАн (мм)тi (А/мм). Из т. Ан опускается перпендикуляр на линию подводимой мощности Р 1= 0 (линия 00), до пересечения в т. а; при этом перпендикуляр пересекает в т. г линию полезной мощности АоАк, в т. в линию электромагнитной мощности А 0К 1.

Тогда потребляемая мощность

Р1 = аАн(мм)mp(Вт/мм.),

полезная мощность

Р2= гАн (мм)mp (Вт/мм)

и номинальный КПД

моменты

м=вАн(мм)mM(Н м/мм),

в точке Аи момент равен номинальному моменту Мн.

Для определения величины номинального скольжения S продолжают отрезок АоАн, являющийся вектором приведенного тока обмотки ротора, до пересечения со шкалой скольжения де в точке д тогда

S = дд/де.

Номинальная частота вращения ротора

Где p - число пар полюсов

Для определения номинального коэффициента мощности cosц продолжают отрезок ОАн, являющийся вектором тока обмотки статора до пересечения с полуокружностью в точке f и определяют

Дополнительно можно определить потери мощности в намагничивающем контуре (потери мощности при холостом ходе)

ДР 0 = аб,

потери мощности в обмотке статора

ДРт - бв*тР,

потери мощности в обмотке ротора

ДРМ2 = вг*тР.

Аналогично определяют значение параметров для других режимов нагрузки Р2 = 0,25Рн; Р2 = 0,5Рн; Р2 = 0,75Рн, при этом опускаются перпендикуляры на линию ООсоответственно из точек А 0,25, А 0,5, А 0,75. Результаты расчетов сводят в таблицу 1

Определение рабочих характеристик для номинального режима нагрузки:

Определение рабочих характеристик для режима нагрузки Р2 = 0,75Рн:

Определение рабочих характеристик для режима нагрузки Р2 = 0,5Рн:

Определение рабочих характеристик для режима нагрузки Р2 = 0,25Рн:

Таблица 1 - Рабочие характеристики

Точки режима

?

M

I1

S

n

cosц

Вт

Вт

-

Н м

А

-

Об/мин

-

А 0

0

0

4000

0

0

46

0

750

0,052

А 0,25

0,25

13600

15600

0,87

186,3

51

0,007

745

0,44

А 0,5

0,5

27500

30000

0,92

378

66

0,014

739

0,66

А 0,75

0,75

41200

44000

0,93

567

84

0,02

735

0,79

1,0

55000

60000

0,92

764,1

105

0,028

729

0,85

38. Механическая характеристика асинхронного электродвигателя

Механическая характеристика асинхронного двигателя М =f(S) представляет зависимость момента от величины скольжения при постоянном напряжении, постоянной частоте тока питающей сети и постоянном сопротивлении роторной цепи. Известные величины М и S из таблицы 1 переносят в таблицу 2.

Таблица 2 - Механические характеристики двигателя

Точки режима

А 0

А 0,25

А 0,5

А 0,75

Am

AK

S

0

0.007

0.014

0.02

0.028

0,24

1

M

0

186.3

378

567

764.1

2745,9

1344,6

Для определения максимального момента из центра круговой диаграммы 01 проводят перпендикуляр к линии электромагнитной мощности Рэм = 0 (отрезку А0 К1) до пересечения с дугой окружности круговой диаграммы в точке Ат которая соответствует режиму максимального момента. Опустив из точки Ат вертикаль до пересечения с отрезком А0 К1 в точке М, получают значение максимального значения момента

Скольжение, соответствующее максимальному моменту, называют критическим. Для его определения продолжают линию АоАт до пересечения со шкалой скольжения в точке дкр и тогда критическое скольжение

В точке режима короткого замыкания (пуска) Ак скольжения S = 1, а соответствующий ему пусковой момент

Определяют перегрузочную способность асинхронного электродвигателя:

кратность пускового момента:

39. регулирование скорости асинхронного двигателя изменением частоты тока

Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

n1 = 60f/p, где n1 -- частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 -- коэффициент пересчета мерности.

Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.

Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей. Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

40. регулирование скорости асинхронного двигателя изменением числа пар плюсов

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

· укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,

· применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2 : 1 = р2 : pt , 3-х скоростные двигатели -- с двумя обмотками на статоре, из которых одна выполняется с переключением 2 : 1 = Рг : Pi , 4-х скоростные двигатели -- с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

41. регулирование скорости асинхронного двигателя изменением скольжения

Изменение скольжения. Третий вариант регулирования асинхронного двигателя состоит в том, что во время работы электродвигателя в электрическую цепь роторной обмотки вводят дополнительное сопротивление регулировочного реостата. Вводя активное сопротивление в электроцепь фазного ротора, мы делаем больше скольжение, а значит, понижаем скорость вращения ротора. Такой вариант регулирования асинхронного двигателя применим только для асинхронных электродвигателей с фазным ротором. Недостатком данного варианта регулирования скорости является то, что в реостате есть значительная потеря мощности.

Регулирование асинхронных двигателей путём их реверсирования. Для смены направления движения асинхронного электродвигателя необходимо менять местами любых два провода из имеющихся трех, которые идут к статорным обмоткам электродвигателя. При этом изменяется направление вращения электромагнитного поля статора, и электродвигатель начинает вращаться в противоположную сторону.

Торможение асинхронных двигателей может осуществляться электрическим, механическим и электромеханическим способом. Электромеханическое торможение осуществляется с помощью колодочного либо ленточного тормоза, который действует на закреплённый на валу шкив. Ослабление колодок или ленты делается специальным тормозным электромагнитом, обмотка которого параллельно соединена с обмоткой статора электродвигателя. Электрическое торможение можно осуществить при помощи реверсивного включения. При этом обратное магнитное поле статорной обмотки будет стремиться противодействовать движению.

Размещено на Allbest.ru

...

Подобные документы

  • Основные элементы и характеристики электрических цепей постоянного тока. Методы расчета электрических цепей. Схемы замещения источников энергии. Расчет сложных электрических цепей на основании законов Кирхгофа. Определение мощности источника тока.

    презентация [485,2 K], добавлен 17.04.2019

  • Экспериментальное исследование электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. Составление баланса мощностей.

    лабораторная работа [44,5 K], добавлен 23.11.2014

  • Что такое нелинейные цепи и нелинейный элемент. Классификация нелинейных элементов, параметры и некоторые схемы замещения. Методы расчёта нелинейных цепей постоянного тока. Графический способ расчета цепей с применением кусочно-линейной аппроксимации.

    реферат [686,7 K], добавлен 28.11.2010

  • Элементы R, L, C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Методы расчета электрических цепей. Составление уравнений по законам Кирхгофа. Метод расчёта электрических цепей с использованием принципа суперпозиции.

    курсовая работа [604,3 K], добавлен 11.10.2013

  • Закон Ома для участков цепи и закон Ома для полной цепи. Применения правил Кирхгофа для расчета цепей постоянного тока. Постановка задачи о расчете цепи постоянного тока.

    лабораторная работа [22,7 K], добавлен 18.07.2007

  • Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.

    курсовая работа [777,7 K], добавлен 15.04.2010

  • Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.

    реферат [122,8 K], добавлен 27.07.2013

  • Однофазные цепи синусоидального тока. Двигатели постоянного тока параллельного возбуждения. Расчет линейной цепи постоянного тока методом двух законов Кирхгофа. Расчет характеристик асинхронного трехфазного двигателя с короткозамкнутым ротором.

    методичка [1,4 M], добавлен 03.10.2012

  • Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа [685,5 K], добавлен 28.09.2014

  • Разветвленная цепь с одним источником электроэнергии. Определение количества уравнений, необходимое и достаточное для определения токов во всех ветвях схемы по законам Кирхгофа. Метод контурных токов. Символический расчет цепи синусоидального тока.

    контрольная работа [53,2 K], добавлен 28.07.2008

  • Порядок расчета неразветвленной электрической цепи синусоидального тока комплексным методом. Построение векторной диаграммы тока и напряжений. Анализ разветвленных электрических цепей, определение ее проводимости согласно закону Ома. Расчет мощности.

    презентация [796,9 K], добавлен 25.07.2013

  • Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.

    реферат [66,6 K], добавлен 27.03.2009

  • Анализ электрической схемы постоянного тока. Особенности первого и второго законов Кирхгофа для узлов и ветвей цепи. Знакомство с типами электрических цепей: двухполюсные, четырёхполюсные. Рассмотрение способов постройки векторных диаграмм напряжений.

    контрольная работа [651,6 K], добавлен 04.04.2013

  • Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях, содержащих конденсатор и сопротивление.

    курсовая работа [4,4 M], добавлен 14.05.2010

  • Электрическая цепь, её элементы и классификация. Энергия, мощность, режим работы и законы электрической цепи. Расчёт цепи с одним и несколькими источниками ЭДС. Свойства и области применения мостовых цепей, потенциометров и делителей напряжений.

    реферат [368,0 K], добавлен 25.12.2010

  • Основные элементы электрической цепи, источник ЭДС и источник тока. Линейные цепи постоянного тока, применение законов Кирхгофа. Основные соотношения в синусоидальных цепях: сопротивление, емкость, индуктивность. Понятие о многофазных электрических цепях.

    курс лекций [1,2 M], добавлен 24.10.2012

  • Расчет значений тока во всех ветвях сложной цепи постоянного тока при помощи непосредственного применения законов Кирхгофа и метода контурных токов. Составление баланса мощности. Моделирование заданной электрической цепи с помощью Electronics Workbench.

    контрольная работа [32,6 K], добавлен 27.04.2013

  • Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.

    лабораторная работа [27,5 K], добавлен 12.01.2010

  • Расчет цепей при замкнутом и разомкнутом ключах. Определение переходных тока и напряжения в нелинейных цепях до и после коммутации с помощью законов Кирхгофа. Расчет длинных линий и построение графиков токов при согласованной и несогласованной нагрузке.

    курсовая работа [1,1 M], добавлен 13.07.2013

  • Расчет линейной электрической цепи постоянного тока, а также электрических цепей однофазного синусоидального тока. Определение показаний ваттметров. Вычисление линейных и фазных токов в каждом трехфазном приемнике. Векторные диаграммы токов и напряжений.

    курсовая работа [1,2 M], добавлен 21.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.