Характеристики и принцип действия детекторов по теплопроводности, плотности и ионизирующего излучения

Характеристики хроматографического разделения компонентов. Закономерности сорбционных процессов и уравнение теории удерживания. Изотермы адсорбции и форма фронтов зон. Детекторы по теплопроводности и плотности. Принципы ионизационного детектирования.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 09.04.2015
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отмеченные случаи аналитического применения ДТИ не исчерпывают всех его возможностей, однако, даже одна способность высокочувствительного детектирования фосфорсодержащих пестицидов оправдывает тот большой интерес, который проявляется к ДТИ.

Гелий-ионизационный детектор был разработан в 1950-е годы.

Принцип действия ГИД основан на том, что ионизация инертного газа увеличивается, если при постоянном уровне облучения в него добавляют посторонний газ. Если в камере детектора имеется источник -частиц, например тритий, то при наличии поля, создаваемого высоким напряжением, гелий возбуждается и его атомы становятся метастабильными. Механизм процесса основан, вероятнее всего, на переносе энергии от метастабильного гелия к другим атомам и молекулам. Сначала образуются заряды с постоянной скоростью:

А > А+ + е?

Освободившиеся электроны малых энергий разгоняются сильным полем и при соударениях с атомами газа-носителя сообщают им энергию, переводящую их в возбужденное (метастабильное) состояние:

А + е?> А* + е?

Полный сбор электронов и ионов, возникающих в результате первичной ионизации газа-носителя, создает фоновый ток детектора. Вероятность перехода возбужденных атомов Ar или Не в первоначальное энергетическое состояние значительно увеличивается при введении в детектор веществ, имеющих близкие или меньшие потенциалы ионизации (энергию отрыва электрона), чем энергия возбужденного состояния:

А* + М > А + М+ + е?

Образующиеся в результате реакции вторичной ионизации заряды создают дополнительный ток, являющийся сигналом детектора на введенное количество вещества.

Так как энергия возбуждения метастабильного гелия (19,6 эВ) и аргона (11,6 эВ) больше, чем потенциал ионизации всех других частиц, за исключением неона (21 эВ), поэтому другие компоненты могут ионизироваться.

ГИД используется главным образом в том случае, если необходимо обнаружить следы посторонних газов. ГИД является универсальным детектором.

Атомно-эмиссионный детектор (АЭД)

В течение многих лет исследователи пытались использовать атомно-эмиссионную спектроскопию в газовой хроматографии. Ее применение дает возможность определять элементы непосредственно в элюате, поступающем из колонки.

Возбуждающие атомы излучают свет с характерной длиной волны.

В атомно-эмиссионном детекторе проба переводится в атомарное состояние, а образовавшиеся атомы переходят в возбужденное состояние. Для этого необходима значительная энергия, которая имеется в плазме, индуцированной микроволновым излучением. Переход возбужденных атомов в состояние с более низкой энергией сопровождается излучением света.

Длина волны возникающего излучения измеряется спектрофотометром.

А + энергия > А*

А* > А + энергия

или

А + фотон > А+* + е?

А+* > А+ + фотон

где звездочкой отмечены на схеме частицы, находящиеся в возбужденном состоянии.

Фотоионизационный детектор (ДФИ)

Детектор был предложен в 1968 г., имел нестабильные характеристики и почти не применялся. В конце 70-х начале 80-х годов началась новая эра в развитии ДФИ, связанная, главным образом, с его применением для анализа примесей в воздухе. Новые конструкции детектора имеют чувствительность и линейность на уровне или выше тех же параметров ДПИ, причем в качестве газа-носителя можно использовать воздух. Детектор применяют в портативных и автономных газовых хроматографах, специально разработанных для целей охраны окружающей среды.

Проведено изучение работы ДФИ с различными газами-носителями, определены его линейности и чувствительности для большого круга органических веществ. Испробовано применение ДФИ с капиллярными колонками. В качестве источника возбуждения использован лазер, с помощью которого исследован механизм двухфотонной фотоионизации для анализа полиатомных ароматических соединений.

Принцип работы ДФИ состоит в следующем: фотоны от ультрафиолетовой (УФ) лампы попадают в ионизационную камеру, через которую непрерывно проходит газ-носитель, выбранный таким образом, чтобы его потенциал ионизации Ip был значительно выше энергии фотонов. В этом случае газ-носитель не ионизируется, в то время как попадание в ионизационную камеру анализируемого вещества вызывает появление фотоионизациойного тока, пропорционального концентрации этого вещества. Диапазон детектируемых соединений ограничен «сверху» - детектируются все соединения, в том числе и неорганические, для которых потенциал ионизации меньше энергии фотонов. Различные УФ-лампы могут обеспечить разную селективность ДФИ к различным соединениям за счет сведения сигнала к некоторым из них до минимума. В этом случае можно определять даже неразделенные хроматографические пики. Однако такого рода селективность ограничена выбором источников излучения, что в первую очередь связано с отсутствием материалов, пропускающих свет более коротковолновый, чем резонансное излучение аргона: Коротковолновая граница пропускания для ДФИ находится ниже 11,7 э В.

Теоретические вычисления чувствительности ДФИ не дают достоверных результатов. Однако практически установлено, что ДФИ в среднем и в зависимости от типа соединения в 10-30 раз более чувствителен и имеет в 10 раз больший линейный диапазон детектирования, чем ДПИ. Наряду с этим использование воздуха в качестве, газа-носителя и отсутствие пламени дают ДФИ неоспоримые преимущества по сравнению с ДПИ.

Принципиальная схема ДФИ приведена на рис. 11.24. Свет от УФ-лампы 3 через окно 4 из MgF2 попадает в ионизационную камеру 1 с потенциальным 5 и измерительными 2 электродами.. Через трубку, являющуюся потенциальным электродом 5, в камеру из хроматографической колонки поступаем газ-носитель. В качестве источника фотоионизации применена криптоновая УФ-лампа 3 тлеющего разряда типа. Ионизационная камера изготовлена из высокоомной керамйки с электродами из нержавеющей стали. Электроды и окно приклеены к керамическому корпусу специальным клеем. Максимальная рабочая температура такого детектора около 200 °С.

При разработке детектора основные трудности связаны с технологией его изготовления, в том числе герметизацией УФ-лампы, окна из MgF2 и ионизационной камеры, выбором формы и материалов электродов при минимальном размере камеры и др.

Одним из недостатков ДФИ является возможность загрязнения окна из MgF2 компонентами газа-носителя, пробы и неподвижной фазы. Загрязнение приводит к уменьшению потока фотонов и к значительной потере чувствительности.

Фирма «Fotovak» (США) выпускает портативный газовый хроматограф с ДФИ для определения следов органических соединений в атмосфере. С помощью прибора можно определять органические вещества в 1 см пробы воздуха в количестве 0,1 млрд.-1. Преимущества прибора определяются высокостабильным источником фотонов с энергией да 11 эВ, который питается от высокочастотного генератора. Характерной особенностью прибора является возможность его применения при температуре окружающей среды, поэтому основные детали детектора изготовлены из фторопласта.

Для идентификации многокомпонентных смесей может быть применен набор фотоионизационных детекторов с различными УФ-лампами. Соотношение между сигналами ДФИ, например с УФ-лампами на 9,5 эВ и 11,7 эВ, позволяет получить дополнительную информацию о природе анализируемых веществ.

При работе с ДФИ в режиме ДЭЗ в качестве газа-носителя используют азот с примесью легко ионизируемого с помощью УФ-лампы органического вещества. Образовавшиеся электроны собираются на аноде под влиянием электрического поля и ддют фоновый ток, который уменьшается при захвате электронов электроотрицательными анализируемыми веществами. С помощью крана потоки газов-носителей переключаются таким образом, что детектор может последовательно работать в режимах ДФИ и ДЭЗ. Газом-носителем для режима ДЭЗ может служить азот с добавлением паров три-н-пропиламина или нафталина. Фоновый ток зависит от природы и количества добавок, интенсивности УФ-лампы и чистоты окна из MgF2. Для получения фонового тока 1-10-8 А поток нафталина должен составлять около 1 мкг/мин. При этих условиях можно анализировать антрацен на уровне 500 пг. Поляризационное напряжение составляло около 200 В. Линейный диапазон для линдана и гептахлора около 103.

Интерес к ДФИ постоянно повышается и многие фирмы планируют ввести его в состав своих хроматографов в качестве одного из основных детекторов.

Редокс-хемилюминесцентный детектор (РХД)

Этот вид детекторов был разработан в конце 1970-х годов для количественного анализа азота, водорода и соединений серы в воде или воздухе. Обычно для определения используется реакция азота с озоном.

С помощью РХД можно анализировать следующие классы соединений: спирты, альдегиды, кетоны, фенолы, олефины, ароматические углеводороды, амины, тиолы, сульфиды и фосфонаты. РХД хорошо сочетается с ДИП, так как многие соединения, не дающие сигнала в детекторе ДИП, реагируют как восстановители и тем самым способны регистрироваться детектором РХД.

Инфракрасные детекторы (ИКД)

Инфракрасная спектроскопия широко применяется в химическом анализе и в сочетании с газовой хроматографией. Методом ИК-спектроскопии с преобразованием Фурье (ИКПФ) проводят анализ элюируемых соединений с высокой скоростью и чувствительностью. Полученный при этом ИК-спектр поглощения можно рассматривать как индивидуальную характеристику соединения и использовать для его идентификации.

Масс-селективный детектор (МСД)

Уже давно масс-спектрометр рассматривается как отличный детектор для газовой хроматографии. Полученные с его помощью спектры, подобно ИКД, дают такую информацию о качественном составе пробы, какую не могут дать иные газохроматографические детекторы. Различие между МСД и ИКД состоит в том, что первый обладает большей чувствительностью по сравнению с ИКД, кроме того, он разрушает пробу, дает информацию о массе, а не о функциональных группах и различает скорее гомологи, чем изомеры.

При бомбардировке электронами молекул в газообразном состоянии связи в молекулах разрываются и образуют ионы. Вид и количество образующихся фрагментов характерны для данной молекулы. При наложении магнитного поля положительно заряженные частицы ускоряются и движутся по изогнутым кривым, радиус кривизны которых пропорционален корню квадратному из массы иона. При некотором постоянном магнитном поле поток ионов, содержащий ионы с идентичным масса/заряд, попадает на коллектор. Здесь при разряде ионов возникает ток, пропорциональный относительному количеству ионов с соответствующей массой. Изменением магнитного поля постепенно переводят на коллектор потоки ионов с другим соотношением масса/заряд. Ток коллектора записывается и дает масс-спектрограмму.

В квадрупольном масс-спектрометре разделение по массе достигается иным образом. Между четырьмя постоянными магнитами образуется высокочастотное электрическое поле. Когда пучок ионов попадает в это поле, только ионы с определенным отношением масса/заряд имеют стабильную траекторию и попадают на детектор (коллектор). Детектирование пучков с различным отношением масса/заряд проводят варьированием электрического поля.

Размещено на Allbest.ru

...

Подобные документы

  • Величина коэффициента и единица измерения теплопроводности. Расчет теплоотдачи у наружной поверхности ограждения. Сущность теплового излучения. Удельная теплоёмкость материала, её зависимость от влажности. Связь теплопроводности и плотности материала.

    контрольная работа [35,3 K], добавлен 22.01.2012

  • Уравнение теплопроводности: физический смысл и выводы на примере линейного случая. Постановка краевой задачи остывания нагретых тел, коэффициент теплопроводности. Схема метода разделения переменных Фурье применительно к уравнению теплопроводности.

    курсовая работа [245,8 K], добавлен 25.11.2011

  • Квантовые детекторы видимого и инфракрасного диапазонов, их характеристики и принципы работы. Технология изготовления SSPD детекторов с резонатором и без него. Устройство и принцип действия резонатора. Измерение спектральной чувствительности образцов.

    курсовая работа [2,5 M], добавлен 12.11.2012

  • Дифференциальное уравнение теплопроводности. Поток тепла через элементарный объем. Условия постановка краевой задачи. Методы решения задач теплопроводности. Численные методы решения уравнения теплопроводности. Расчет температурного поля пластины.

    дипломная работа [353,5 K], добавлен 22.04.2011

  • Основной закон теплопроводности. Теплоносители как тела, участвующие в теплообмене. Дифференциальное уравнение теплопроводности. Лучеиспускание как процесс переноса энергии в виде электромагнитных волн. Сущность теплопроводности цилиндрической стенки.

    презентация [193,0 K], добавлен 29.09.2013

  • Исходные данные и расчетные формулы для определения плотности твердых тел правильной формы. Средства измерений, их характеристики. Оценка границы относительной, абсолютной погрешностей результата измерения плотности по причине неровности поверхности тела.

    лабораторная работа [26,9 K], добавлен 30.12.2010

  • Математическая зависимость, связывающая физические параметры, характеризующие явление теплопроводности внутри объема. Феноменологический и статистический методы исследования процессов тепло- и массообмена. Модель сплошной среды, температурное поле.

    презентация [559,8 K], добавлен 15.03.2014

  • Рассмотрение теории нелинейной теплопроводности: основные свойства, распространение тепловых возмущений в нелинейных средах и их пространственная локализация. Задача нелинейной теплопроводности с объемным поглощением и пример ее решения на полупрямой.

    курсовая работа [2,5 M], добавлен 07.05.2011

  • Основные положения теории теплопроводности. Дерево проблем и целей. Математическая модель, прямая и обратная задача теплопроводности. Выявление вредных факторов при работе за компьютером, расчет заземления. Расчет себестоимости программного продукта.

    дипломная работа [1,7 M], добавлен 04.03.2013

  • Исходные соотношения теории теплопроводности и термоупругости тонких изотропных оболочек. Применение двумерного интегрального преобразования Фурье к исходным соотношениям. Сведение задачи теплопроводности к системам сингулярных интегральных уравнений.

    дипломная работа [405,8 K], добавлен 11.06.2013

  • Исследование распределения температуры в стенке и плотности теплового потока. Дифференциальное уравнение теплопроводности в цилиндрической системе координат. Определение максимальных тепловых потерь. Вычисление критического диаметра тепловой изоляции.

    презентация [706,5 K], добавлен 15.03.2014

  • Дифференциальное уравнение теплопроводности как математическая модель целого класса явлений, особенности его составления и решения. Краевые условия – совокупность начальных и граничных условий, их отличительные черты. Способы задания граничного условия.

    реферат [134,2 K], добавлен 08.02.2009

  • Особенности работы детекторов на основе щелочно-галоидных кристаллов для регистрации рентгеновского и мягкого гамма-излучения, пути ее оптимизации. Анализ методик, позволяющих значительно улучшить сцинтилляционные характеристики регистраторов излучений.

    дипломная работа [2,1 M], добавлен 16.12.2012

  • Применение фотоколориметрии в биологии, медицине, фармации. Природа и основные характеристики оптического излучения, закономерности поглощения света веществом. Понятие об оптической плотности, светопропускании, светопоглощении. Схема фотометра КФК-3.

    методичка [374,7 K], добавлен 30.04.2014

  • Понятие и внутреннее устройство простейшей тепловой трубы, принцип ее действия и взаимосвязь элементов. Теплопередача при пленочном кипении, путем теплопроводности, конвекции и излучения через пленку пара. Предпосылки и причины температурного перепада.

    реферат [603,0 K], добавлен 08.03.2015

  • Содержание закона Фурье. Расчет коэффициентов теплопроводности для металлов, неметаллов, жидкостей. Причины зависимости теплопроводности от влажности материала и направления теплового потока. Определение коэффициента теплопередачи ограждающей конструкции.

    контрольная работа [161,2 K], добавлен 22.01.2012

  • Определение коэффициента теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде. Особенности оценки зависимости теплопроводности воздуха от напряжения тока, заданного в цепи.

    лабораторная работа [240,1 K], добавлен 11.03.2014

  • Математическое моделирование тепловых процессов. Основные виды теплообмена в природе. Применение метода конечно разностной аппроксимации для решения уравнения теплопроводности. Анализ изменения температуры по ширине пластины в выбранные моменты времени.

    курсовая работа [1,5 M], добавлен 22.05.2019

  • Дифференциальное уравнение теплопроводности. Условия однозначности. Удельный тепловой поток Термическое сопротивление теплопроводности трехслойной плоской стенки. Графический метод определения температур между слоями. Определение констант интегрирования.

    презентация [351,7 K], добавлен 18.10.2013

  • Изучение возникновения и применения гамма-излучения. Особенности использования в качестве детекторов в дозиметрических приборах газоразрядных счетчиков, работа которых основана на ионизирующем действии ядерного излучения; их достоинства и недостатки.

    курсовая работа [696,4 K], добавлен 24.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.