Курс физики
Физика и ее связь с другими науками. Физические основы механики. Закон сохранения энергии. Элементы теории поля и законы Кеплера. Методы определения вязкости. Основы молекулярной физики и термодинамики. Механические и электромагнитные колебания.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 28.11.2016 |
Размер файла | 13,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой 1--2--3--4--5--6--1, которая называется петлей гистерезиса (от греч. "запаздывание"). Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, т.е. одному и тому же значению Н соответствует несколько значений J.
Различные ферромагнетики дают разные гистерезисные петли. Ферромагнетики с малой (в пределах от нескольких тысячных до 1--2 А/см) коэрцитивной силой Нс (с узкой петлей гистерезиса) называются мягкими, с большой (от нескольких десятков до нескольких тысяч ампер на сантиметр) коэрцитивной силой (с широкой петлей гистерезиса) -- жесткими. Величины Нс, Jос и max определяют применимость ферромагнетиков для тех или иных практических целей. Taк, жесткие ферромагнетики (например, углеродистые и вольфрамовые стали) применяются для изготовления постоянных магнитов, а мягкие (например, мягкое железо, сплав железа с никелем) -- для изготовления сердечников трансформаторов.
Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри, при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не сопровождается поглощением или выделением теплоты, т.е. в точке Кюри происходит фазовый переход II рода (см. § 75).
Наконец, процесс намагничения ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции. Величина и знак эффекта зависят от напряженности Н намагничивающего поля, от природы ферромагнетика и ориентации кристаллографических осей по отношению к полю.
3.59 Природа ферромагнетизма
Рассматривая магнитные свойства ферромагнетиков, мы не вскрывали физическую природу этого явления. Описательная теория ферромагнетизма была разработана французским физиком П. Вейссом (1865--1940). Последовательная количественная теория на основе квантовой механики развита Я. И. Френкелем и немецким физиком В. Гейзенбергом (1901--1976).
Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Спонтанное намагничение, однако, находится в кажущемся противоречии с тем, что многие ферромагнитные материалы даже при температурах ниже точки Кюри не намагничены. Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых макроскопических областей -- доменов, самопроизвольно намагниченных до насыщения.
При отсутствии внешнего магнитного поля магнитные моменты отдельных доменов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю и ферромагнетик не намагничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как это имеет место в случае парамагнетиков, а целых областей спонтанной намагниченности. Поэтому с ростом Н намагниченность J (см. рис. 192) и магнитная индукции В (см. рис. 193) уже в довольно слабых полях растут очень быстро. Этим объясняется также увеличение ферромагнетиков до максимального значения в слабых полях (см. рис. 194). Эксперименты показали, что зависимость B от H не является такой плавной, а имеет ступенчатый вид, как показано на рис. 193. Это свидетельствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком.
При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепловое движение не в состоянии быстро дезориентировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса (рис. 195). Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную силу; размагничиванию способствуют также встряхивание и нагревание ферромагнетика. Точка Кюри оказывается той температурой, выше которой происходит разрушение доменной структуры.
Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур. На тщательно отполированную поверхность ферромагнетика наносится водная суспензия мелкого ферромагнитного порошка (например, магнетита). Частицы оседают преимущественно в местах максимальной неоднородности магнитного поля, т. е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов и подобную картину можно сфотографировать под микроскопом. Линейные размеры доменов оказались равными 10-4 -- 10-2 см.
Дальнейшее развитие теории ферромагнетизма Френкелем и Гейзенбергом, а также ряд экспериментальных фактов позволили выяснить природу элементарных носителей ферромагнетизма. В настоящее время установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами электронов (прямым экспериментальным указанием этого служит опыт Эйнштейна и де Гааза, см. § 131). Установлено также, что ферромагнитными свойствами могут обладать только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с нескомпенсированными спинами. В подобных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничения. Эти силы, называемые обменными силами, имеют квантовую природу -- они обусловлены волновыми свойствами электронов.
Так как ферромагнетизм наблюдается только в кристаллах, а они обладают анизотропией (см. § 70), то в монокристаллах ферромагнетиков должна иметь место анизотропия магнитных свойств (их зависимость от направления в кристалле). Действительно, опыт показывает, что в одних направлениях в кристалле его намагниченность при данном значении напряженности магнитного поля наибольшая (направление легчайшего намагничения), в других -- наименьшая (направление трудного намагничения). Из рассмотрения магнитных свойств ферромагнетиков следует, что они похожи на сегнетоэлектрики (см. § 91).
Существуют вещества, в которых обменные силы вызывают антипараллельную ориентацию спиновых магнитных моментов электронов. Такие тела называются антиферромагнетиками. Их существование теоретически было предсказано Л.Д. Ландау. Антиферромагнетиками являются некоторые соединения марганца (MnO, MnF2), железа (FeO, FeCl2) и многих других элементов. Для них также существует антиферромагнитная точка Кюри (точка Нееля*), при которой магнитное упорядочение спиновых магнитных моментов нарушается и антиферромагнетик превращается в парамагнетик, претерпевая фазовый переход II рода (см. § 75).
В последнее время большое значение приобрели полупроводниковые ферромагнетики -- ферриты, химические соединения типа МeОFе2О3, где Me -- ион двухвалентного металла (Mn, Co, Ni, Сu, Mg, Zn, Cd, Fe). Они отличаются заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллиарды раз большим, чем у металлов). Ферриты применяются для изготовления постоянных магнитов, ферритовых антенн, сердечников радиочастотных контуров, элементов оперативной памяти в вычислительной технике, для покрытия пленок в магнитофонах и видеомагнитофонах и т. д.
3.60 Основы теории Максвелла для электромагнитного поля. Вихревое электрическое поле
Из закона Фарадея (см. (123.2))
=-dФ/dt
следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение э.д.с. электромагнитной индукции возможно и в неподвижном контуре,находящемся в переменном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы -- силы неэлектростатического происхождения (см. § 97). Поэтому встает вопрос о природе сторонних сил в данном случае.
Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение также нельзя объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла, контур, в котором появляется э.д.с., играет второстепенную роль, являясь своего рода лишь "прибором", обнаруживающим это поле.
Итак, по Максвеллу, изменяющееся во времени магнитное поле порождает электрическое поле ЕB, циркуляция которого, по (123.3),
(137.1)
где ЕBl -- проекция вектора ЕB на направление dl.
Подставив в формулу (137.1) выражение
получим
Если поверхность и контур неподвижны, то операции дифференцирования и интегрирования можно поменять местами. Следовательно,
(137.2)
где символ частной производной подчеркивает тот факт, что интеграл BdS является функцией только от времени.
Согласно (83.3), циркуляция вектора напряженности электростатического поля (обозначим его EQ) вдоль любого замкнутого контура равна нулю:
(137.3)
Сравнивая выражения (137.1) и (137.3), видим, что между рассматриваемыми полями (EB и ЕQ) имеется принципиальное различие: циркуляция вектора EB в отличие от циркуляции вектора EQ не равна нулю. Следовательно, электрическое поле EB, возбуждаемое магнитным полем, как и само магнитное поле (см. § 118), является вихревым.
3.61 Ток смещения
Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения.
Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор "протекают" токи смещения, причем в тех участках, где отсутствуют проводники.
Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (Iсм) равны: Iсм =I.
Ток проводимости вблизи обкладок конденсатора
(138.1)
(поверхностная плотность заряда на обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения когда и dS взаимно параллельны. Поэтому для общего случая можно записать
(138.2)
Выражение (138.2) и было названо Максвеллом плотностью тока смещения.
Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и jсм. При зарядке конденсатора (рис. 197, а) через проводник, соединяющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается; следовательно, >0, т. е. вектор направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется; следовательно, <0, т. е. вектор направлен противоположно вектору D. Однако вектор направлен опять так же, как и вектор j. Из разобранных примеров следует, что направление вектора j, а следовательно, и вектора jсм, совпадает с направлением вектора , как это и следует из формулы (138.2).
Подчеркнем, что из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно -- способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховыми линиями).
В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2),
D=0E+P,
где Е - напряженность электростатического поля, а Р -- поляризованность (см. § 88), то плотность тока смещения
(138.3)
где 0 -- плотность тока смещения в вакууме, -- плотность тока поляризации -- тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости.
Однако то, что и другая часть плотности тока смещения , не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возникновению в окружающем пространстве магнитного поля.
Следует отметить, что название "ток смещения" является условным, а точнее -- исторически сложившимся, так как ток смещения по своей сути -- это изменяющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым проходит переменный ток.
Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально А.А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.
Максвелл ввел понятие полного тока, равного сумме токов проводимости (а также конвекционных токов) и смещения. Плотность полного тока
Введя понятия тока смещения и полного тока, Максвелл по-новому подошел к рассмотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.
Максвелл обобщил теорему о циркуляции вектора Н, введя в ее правую часть полный сквозь поверхность S, натянутую на замкнутый контур L. Тогда обобщенная теорема о циркуляции вектора Н запишется в виде
(138.4)
Выражение (138.4) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.
3.62 Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.
В основе теории Максвелла лежат рассмотренные выше четыре уравнения:
1. Электрическое поле (см. § 137) может быть как потенциальным (ЕQ), так и вихревым (ЕB), поэтому напряженность суммарного поля
Е = ЕQ + ЕB.
Так как циркуляция вектора ЕQ равна нулю (см. (137.3)), а циркуляция вектора ЕB определяется выражением (137.2), то циркуляция вектора напряженности суммарного поля
Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.
2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):
Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.
3. Теорема Гаусса для поля D (см. (89.3)):
(139.1)
Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью , то формула (139.1) запишется в виде
4. Теорема Гаусса для поля В (см. (120.3)):
Итак, полная система уравнений Максвелла в интегральной форме:
Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):
где 0 и 0 -- соответственно электрическая и магнитная постоянные, и -- соответственно диэлектрическая и магнитная проницаемости, -- удельная проводимость вещества.
Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями.
Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса
можно представить полную систему уравнении Максвелла в дифференциальном форме (характеризующих поле в каждой точке пространства):
Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла -- интегральная и дифференциальная -- эквивалентны. Однако если имеются поверхности разрыва - поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений является более общей.
Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Чтобы достичь математической эквивалентности обеих форм уравнений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):
(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов проводимости).
Уравнения Максвелла -- наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом -- они образуют единое электромагнитное поле.
Теория Максвелла, являясь обобщением основных законов электрических и магнитных явлений, не только смогла объяснить уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явления. Одним из важных выводов этой теории явилось существование магнитного поля токов смещения (см. § 138), что позволило Максвеллу предсказать существование электромагнитных волн -- переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью.
В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3108 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857--1894), доказавшим, что законы их возбуждения и распространения полностью описываются уравнениями Максвелла. Таким образом, теория Максвелла была экспериментально подтверждена.
К электромагнитному полю применим только принцип относительности Эйнштейна, так как факт распространения электромагнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.
Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инерциальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инвариантны относительно преобразований Лоренца: их вид не меняется при переходе от одной инерциальной системы отсчета к другой, хотя величины Е, В, D, Н в них преобразуются по определенным правилам.
Из принципа относительности вытекает, что отдельное рассмотрение электрического и магнитного полей имеет относительный смысл. Taк, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь неподвижными относительно одной инерциальной системы отсчета, движутся относительно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвижный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке пространства постоянное магнитное поле, движется относительно других инерциальных систем, и создаваемое им переменное магнитное поле возбуждает вихревое электрическое поле.
Таким образом, теория Максвелла, ее экспериментальное подтверждение, а также принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базирующейся на представлении об электромагнитном поле.
4. Колебания и волны
4.1 Механические и электромагнитные колебания. Гармонические колебания и их характеристики
Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и др. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д. У. Рэлеем (1842--1919), А. Г. Столетовым, русским инженером-экспериментатором П. Н. Лебедевым (1866--1912). Большой вклад в развитие теории колебаний внесли Л. И. Мандельштам (1879--1944) и его ученики.
Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания -- колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам: 1) колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; 2) различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний. Гармонические колебания величины s описываются уравнением типа
(140.1)
где А -- максимальное значение колеблющейся величины, называемое амплитудой колебания, 0 -- круговая (циклическая) частота, -- начальная фаза колебания в момент времени t=0, (0t+) -- фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то s может принимать значения от +А до -А.
Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение 2, т. е.
откуда
(140.2)
Величина, обратная периоду колебаний,
(140.3)
т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (140.2) и (140.3), получим
Единица частоты -- герц (Гц): 1 Гц -- частота периодического процесса, при которой за 1 с совершается один цикл процесса.
Запишем первую и вторую производные по времени от гармонически колеблющейся величины s:
(140.4)
(140.5)
т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (140.4) и (140.5) соответственно равны А0 и А. Фаза величины (140.4) отличается от фазы величины (140.1) на /2, а фаза величины (140.5) отличается от фазы величины (140.1) на . Следовательно, в моменты времени, когда s=0, ds/dt приобретает наибольшие значения; когда же s достигает максимального отрицательного значения, то d2s/dt2 приобретает наибольшее положительное значение (рис. 198).
Из выражения (140.5) следует дифференциальное уравнение гармонических колебаний
(140.6)
где
s = A cos (0t+).
Решением этого уравнения является выражение (140.1).
Гармонические колебания изображаются графически методом вращающегося вектора амплитуды, или методом векторных диаграмм. Для этого из произвольной точки О, выбранной на оси х, под углом , равным начальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания (рис. 199). Если этот вектор привести во вращение с угловой скоростью 0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения от -А до +А, а колеблющаяся величина будет изменяться со временем по закону
s=A cos (0t+).
Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом , равным начальной фазе, и вращающегося с угловой скоростью 0 вокруг этой точки.
В физике часто применяется другой метод, который отличается от метода вращающегося вектора амплитуды лишь по форме. В этом методе колеблющуюся величину представляют комплексным числом. Согласно формуле Эйлера, для комплексных чисел
(140.7)
где -- мнимая единица. Поэтому уравнение гармонического колебания (140.1) можно записать в комплексной форме:
(140.8)
Вещественная часть выражения (140.8)
представляет собой гармоническое колебание. Обозначение Re вещественной части условимся опускать и (140.8) будем записывать в виде
В теории колебаний принимается, что колеблющаяся величина s равна вещественной части комплексного выражения, стоящего в этом равенстве справа.
4.2 Механические гармонические колебания
Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (140.1), где s=x:
(141.1)
Согласно выражениям (140.4) в (140.5), скорость v и ускорение а колеблющейся точки соответственно равны
(141.2)
Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (1412) равна
Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия).
Кинетическая энергия материальной точки, совершающей прямолинейные гармонические колебания, равна
(141.3)
или
(141.4)
Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F, равна
(141.5)
или
(141.6)
Сложив (141.3) и (141.5), получим формулу для полной энергии:
(141.7)
Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.
4.3 Гармонический осциллятор. Пружинный, физический и математический маятники
Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (140.6);
(142.1)
Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).
1. Пружинный маятник -- это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы
F = -kx,
где k -- жесткость пружины. Уравнение движения маятника
Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармонические колебания по закону
х=А соs (0t + )
с циклической частотой
(142.2)
и периодом
(142.3)
Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (см. (21.3)), т. е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна
2. Физический маятник -- это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела (рис. 201).
Если маятник отклонен из положения равновесия на некоторый угол , то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент M возвращающей силы можно записать в виде
(142.4)
Принимая
(142.5)
получим уравнение
идентичное с (142.1), решение которого (140.1) известно:
(142.6)
Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой 0
(142.7)
где
L=J/(ml)
-- приведенная длина физического маятника.
Точка О' на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим
т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса станет новым центром качаний, и период колебаний физического маятника не изменится.
3. Математический маятник -- это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника
(142.8)
где l -- длина маятника.
Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке -- центре масс, то, подставив выражение (142.8) в формулу (1417), получим выражение для периода малых колебаний математического маятника
(142.9)
Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Следовательно, приведенная длина физического маятника -- это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.
4.4 Свободные гармонические колебания в колебательном контуре
Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур -- цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.
Рассмотрим последовательные стадии колебательного процесса в идеализированном контуре, сопротивление которого пренебрежимо мало (R0). Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Тогда в начальный момент времени t=0 (рис. 202, а) между обкладками конденсатора возникнет электрическое поле. Если замкнуть конденсатор на катушку индуктивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. В результате энергия электрического поля будет уменьшаться, а энергия магнитного поля катушки (она равна -- возрастать.
Так как R0, то, согласно закону сохранения энергии, полная энергия
так как она на нагревание не расходуется. Поэтому в момент t=јT, когда конденсатор полностью разрядится, энергия электрического поля обращается в нуль, а энергия магнитного поля (а следовательно, и ток) достигает наибольшего значения (рис. 202, б).
Начиная с этого момента ток в контуре будет убывать; следовательно, начнет ослабевать магнитное поле катушки, и в ней индуцируется ток, который течет (согласно правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся ослабить ток, который в конце концов обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 202, в). Далее те же процессы начнут протекать в обратном направлении (рис. 202, г) и система к моменту времени t=Т придет в первоначальное состояние (рис. 202, а).
После этого начнется повторение рассмотренного цикла разрядки и зарядки конденсатора. Если бы потерь энергии не было, то в контуре совершались бы периодические незатухающие колебания, т.е. периодически изменялись (колебались) бы заряд Q на обкладках конденсатора, напряжение U на конденсаторе и сила тока I, текущего через катушку индуктивности. Следовательно, в контуре возникают электрические колебания, причем колебания сопровождаются превращениями энергий электрического и магнитного полей.
Электрические колебания в колебательном контуре можно сопоставить с механическими колебаниями маятника (рис. 202 внизу), сопровождающимися взаимными превращениями потенциальной и кинетической энергий маятника. В данном случае энергия электрического поля конденсатора (Q2/(2C)) аналогична потенциальной энергии маятника, энергия магнитного поля катушки (LQ2/2) -- кинетической энергии, сила тока в контуре -- скорости движения маятника. Индуктивность L играет роль массы т, а сопротивление контура -- роль силы трения, действующей на маятник.
Согласно закону Ома, для контура, содержащего катушку индуктивностью L, конденсатор емкостью С и резистор сопротивлением R,
где IR--напряжение на резисторе,
Uc=Q/C
--напряжение на конденсаторе,
- э.д.с. самоиндукции, возникающая в катушке при протекании в ней переменного тока (- единственная э.д.с. в контуре). Следовательно,
(143.1)
Разделив (143.1) на L и подставив
получим дифференциальное уравнение колебаний заряда Q в контуре:
(143.2)
В данном колебательном контуре внешние э.д.с. отсутствуют, поэтому рассматриваемые колебания представляют собой свободные колебания (см. §140). Если сопротивление R=0, то свободные электромагнитные колебания в контуре являются гармоническими.
Тогда из (143.2) получим дифференциальное уравнение свободных гармонических колебаний заряда в контуре.
Из выражений (142.1) и (140.1) вытекает, что заряд Q совершает гармонические колебания по закону
(143.3)
где Qm -- амплитуда колебаний заряда конденсатора с циклической частотой 0, называемой собственной частотой контура, т. е.
(143.4)
и периодом
(143.5)
Формула (143.5) впервые была получена У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре (см. (140.4))
(143.6)
где
Im=0Qm
-- амплитуда силы тока. Напряжение на конденсаторе
(143.7)
где
Um=Qm/C
--амплитуда напряжения.
Из выражений (143.3) и (143.6) вытекает, что колебания тока I опережают по фазе колебания заряда Q на /2, т.е., когда ток достигает максимального значения, заряд (а также и напряжение (см. (143.7)) обращается в нуль, и наоборот.
4.5 Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты
воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис. 203). Tax как векторы A1 и А2 вращаются с одинаковой угловой скоростью 0, то разность фаз (2--1) между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет
(144.1)
В выражении (144.1) амплитуда А и начальная фаза соответственно задаются соотношениями
(144.2)
Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (2--1) складываемых колебаний.
Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.
Пусть амплитуды складываемых колебаний равны А, а частоты равны и +, причем <<. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:
Складывая эти выражения и учитывая, что во втором сомножителе , найдем
(144.3)
Результирующее колебание (144.3) можно рассматривать как гармоническое с частотой , амплитуда Аб, которого изменяется по следующему периодическому закону:
(144.4)
Частота изменения Аб в два раза больше частоты изменения косинуса (так как берется по модулю), т. е. частота биений равна разности частот складываемых колебаний:
Период биений
Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их -- график медленно меняющейся по уравнению (144.4) амплитуды.
Определение частоты тона (звука определенной высоты (см. § 158)) биений между эталонным и измеряемым колебаниями -- наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной.
Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.
Любые сложные периодические колебания
s=f(t)
можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте 0:
(144.5)
Представление периодической функции в виде (144.5) связывают с понятием гармонического анализа сложного периодического колебания, или разложения Фурье.* Слагаемые ряда Фурье, определяющие гармонические колебания с частотами 0, 20, 30,..., называются первой (или основной), второй, третьей и т. д. гармониками сложного периодического колебания.
4.6 Сложение взаимно перпендикулярных колебаний
Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты , происходящих во взаимно перпендикулярных направлениях вдоль осей х и у. Для простоты начало отсчета выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем
(145.1)
где -- разность фаз обоих колебаний, А и В -- амплитуды складываемых колебаний. Уравнение траектории результирующего колебания находится исключением из выражений (145.1) параметра t. Записывая складываемые колебания в виде
и заменяя во втором уравнении cost на х/А и sint на , получим после несложных преобразований уравнение эллипса, оси которого ориентированы относительно координатных осей произвольно:
(145.2)
Так как траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными.
Ориентация эллипса и размеры его осей зависят от амплитуд складываемых колебаний и разности фаз .
Рассмотрим некоторые частные случаи, представляющие физический интерес:
= m
m=0, ±1, ±2,....
В данном случае эллипс вырождается в отрезок прямой
(145.3)
где знак плюс соответствует нулю и четным значениям т (рис. 205, а), а знак минус -- нечетным значениям т (рис. 205, б). Результирующее колебание является гармоническим колебанием с частотой и амплитудой , совершающимся вдоль прямой (145.3), составляющей с осью х угол
=arctg.
В данном случае имеем дело с линейно поляризованными колебаниями;
= (2m+1)
m=0, ± 1, ±2,...
В данном случае уравнение примет вид
(145.4)
Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны соответствующим амплитудам (рис. 206). Кроме того, если А=В, то эллипс (145.4) вырождается в окружность. Такие колебания называются циркулярно поляризованными колебаниями или колебаниями, поляризованными по кругу.
Если частоты складываемых взаимно перпендикулярных колебаний различны, то замкнутая траектория результирующего колебания довольно сложна. Замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу.* Вид этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рис. 207 представлены фигуры Лиссажу для различных соотношений частот (указаны слева) и разностей фаз (указаны вверху; разность фаз принимается равной ).
Отношение частот складываемых колебаний равно отношению числа пересечений фигур Лиссажу с прямыми, параллельными осям координат. По виду фигур можно определить неизвестную частоту по известной или определить отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу -- широко используемый метод исследования соотношений частот и разности фаз складываемых колебаний, а также формы колебаний.
4.7 Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
Рассмотрим свободные затухающие колебания - колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.
Закон затухания колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы -- идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука), колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что позволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ.
Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде
(146.1)
где s - колеблющаяся величина, описывающая тот или иной физический процесс, =const -- коэффициент затухания, 0 -- циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при =0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.
Решение уравнения (146.1) рассмотрим в виде
(146.2)
где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим
(146.3)
Решение уравнения (146.3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:
(146.4)
(если ()>0, то такое обозначение мы вправе сделать). Тогда получим уравнение типа (142.1) ь+2и=0, решением которого является функция и=А0cos(t+) (см. (140.1)). Таким образом, решение уравнения (146.1) в случае малых затуханий ()
(146.5)
А0 -- начальная амплитуда. Зависимость (146.5) показана на рис. 208 сплошной линией, а зависимость (146.6) -- штриховыми линиями. Промежуток времени =1/, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации.
Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 208). Тогда период затухающих колебаний с учетом формулы (146.4) равен
Если A(t) и А(t + Т) -- амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение
называется декрементом затухания, а его логарифм
(146.7)
-- логарифмическим декрементом затухания; Ne -- число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания -- постоянная для данной колебательной системы величина.
Для характеристики колебательной системы пользуются понятием добротности Q, которая при малых значениях логарифмического декремента равна
(146.8)
(так как затухание мало (), то T принято равным Т0).
Из формулы (146.8) следует, что добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации.
Выводы, полученные для свободных затухающих колебаний линейных систем, применимы для колебаний различной физической природы -- механических (в качестве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический колебательный контур).
1. Свободные затухающие колебания пружинного маятника. Для пружинного маятника (см. § 142) массой т, совершающего малые колебания под действием упругой силы F= --kx, сила трения пропорциональна скорости, т. е.
где r -- коэффициент сопротивления; знак минус указывает на противоположные направления силы трения и скорости
При данных условиях закон движения маятника будет иметь вид
(146.9)
Используя формулу
0=
и принимая, что коэффициент затухания
(146.10)
получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний маятника:
Из выражений вытекает, что колебания маятника подчиняются закону
где частота
Добротность пружинного маятника, согласно (146.8) и (146.10),
Q=/r.
2. Свободные затухающие колебания в электрическом колебательном контуре. Дифференциальное уравнение свободных затухающих колебаний заряда в контуре (при R0) имеет вид (см. (143.2))
Учитывая выражение (143.4) и принимая коэффициент затухания
(146.11)
дифференциальное уравнение (143.2) можно записать в идентичном уравнению (146.1) виде
Из выражений (146.1) и (146.5) вытекает, что колебания заряда совершаются по закону
(146.12)
с частотой, согласно (146.4),
(146.13)
меньшей собственной частоты контура 0 (см. (143.4)). При R=0 формула (146.13) переходит в (143.4).
Логарифмический декремент затухания определяется формулой (146.7), а добротность колебательного контура (см. (146.8))
(146.14)
В заключение отметим, что при увеличении коэффициента затухания период затухающих колебании растет и при =0 обращается в бесконечность, т. е. движение перестает быть периодическим. В данном случае колеблющаяся величина асимптотически приближается к нулю, когда t. Процесс не будет колебательным. Он называется апериодическим.
Огромный интерес для техники представляет возможность поддерживать колебания незатухающими. Для этого необходимо восполнять потери энергии реальной колебательной системы. Особенно важны и широко применимы так называемые автоколебания -- незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.
Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний, происходящих под действием периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени (в такт с ее колебаниями).
Примером автоколебательной системы могут служить часы. Храповой механизм подталкивает маятник в такт с его колебаниями. Энергия, передаваемая при этом маятнику, берется либо за счет раскручивающейся пружины, либо за счет опускающегося груза. Колебания воздуха в духовых инструментах и органных трубах также возникают вследствие автоколебаний, поддерживаемых воздушной струёй.
4.8 Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющего по гармоническому закону:
Если рассматривать механические колебания, то роль X(t) играет внешняя вынуждающая сила
(147.1)
С учетом (147.1) закон движения для пружинного маятника (146.9) запишется в виде
Используя (142.2) и (146.10), придем к уравнению
(147.2)
Если рассматривать электрический колебательный контур, то роль X(t) играет подводимая к контуру внешняя периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение
(147.3)
Тогда уравнение (143.2) с учетом (147.3) можно записать в виде
Используя (143.4) и (146.11), придем к уравнению
(147.4)
Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.
Уравнения (147.2) и (147.4) можно свести к линейному неоднородному дифференциальному уравнению
(147.5)
применяя впоследствии его решение для вынужденных колебаний конкретной физической природы (x0 в случае механических колебаний равно F0/m, в случае электромагнитных -- Um/L).
Решение уравнения (147.5) равно сумме общего решения (146.5) однородного уравнения (146.1) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме (см. § 140). Заменим правую часть уравнения (147.5) на комплексную величину х0:
(147.6)
Частное решение этого уравнения будем искать в виде
Подставляя выражение для s и его производных в уравнение (147.6), получаем
(147.7)
Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что =. Учитывая это, из уравнения (147.7) найдем величину s0 и умножим ее числитель и знаменатель на
Это комплексное число удобно представить в экспоненциальной форме:
где
(147.8)
(147.9)
Следовательно, решение уравнения (147.6) в комплексной форме примет вид
Его вещественная часть, являющаяся решением уравнения (147.5), равна
(147.10)
где А и задаются соответственно формулами (147.8) и (147.9).
...Подобные документы
Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.
учебное пособие [7,9 M], добавлен 03.04.2010Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.
курс лекций [1,0 M], добавлен 13.10.2011Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.
лекция [339,3 K], добавлен 28.06.2013Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.
шпаргалка [7,1 M], добавлен 30.10.2010Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.
учебное пособие [10,2 M], добавлен 10.05.2010Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.
реферат [751,3 K], добавлен 14.01.2010Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.
учебное пособие [686,6 K], добавлен 26.02.2008Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.
реферат [18,6 K], добавлен 27.05.2003Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.
статья [77,4 K], добавлен 07.05.2002Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.
шпаргалка [243,2 K], добавлен 14.05.2011Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева - Клапейрона).
презентация [972,4 K], добавлен 06.12.2013Закон сохранения импульса. Ускорение свободного падения. Объяснение устройства и принципа действия динамометра. Закон сохранения механической энергии. Основные модели строения газов, жидкостей и твердых тел. Примеры теплопередачи в природе и технике.
шпаргалка [168,0 K], добавлен 15.12.2009Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.
презентация [1,4 M], добавлен 22.01.2012Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.
реферат [34,2 K], добавлен 26.04.2007Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.
презентация [12,0 M], добавлен 28.06.2015Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.
контрольная работа [29,8 K], добавлен 16.08.2009Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.
шпаргалка [250,6 K], добавлен 29.11.2009Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.
курсовая работа [56,6 K], добавлен 22.02.2004Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.
реферат [160,9 K], добавлен 15.02.2016