Курс физики
Физика и ее связь с другими науками. Физические основы механики. Закон сохранения энергии. Элементы теории поля и законы Кеплера. Методы определения вязкости. Основы молекулярной физики и термодинамики. Механические и электромагнитные колебания.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 28.11.2016 |
Размер файла | 13,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Однако никакого нарушения принципа причинности применительно к микрообъектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъекта приобретает совершенно иной смысл, чем в классической механике. В квантовой механике состояние микрообъекта полностью определяется волновой функцией (x, у, z, t), квадрат модуля которой |(x, у, z, t)|2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z.
В свою очередь, волновая функция (х, у, z, t) удовлетворяет уравнению Шредингера (217.1), содержащему первую производную функции по времени. Это же означает, что задание функции 0 (для момента времени t0) определяет ее значение в последующие моменты. Следовательно, в квантовой механике начальное состояние 0 есть причина, а состояние в последующий момент -- следствие. Это и есть форма принципа причинности в квантовой механике, т. е. задание функции 0 предопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшествующего состояния, как того требует принцип причинности.
6.11 Движение свободной частицы
Свободная частица -- частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия частицы U(x) = const и ее можно принять равной нулю. Тогда полная энергия частицы совпадает с ее кинетической энергией. В таком случае уравнение Шредингера (217.5) для стационарных состояний примет вид
(219.1)
Прямой подстановкой можно убедиться в том, что частным решением уравнения (219.1) является функция
(х) = Аеikx,
где А = const и k = const, с собственным значением энергии
(219.2)
Функция
представляет собой только координатную часть волновой функции (x, t). Поэтому зависящая от времени волновая функция, согласно (217.4),
(219.3)
здесь
и .
Функция (219.3) представляет собой плоскую монохроматическую волну де Бройля (см. (217.2)).
Из выражения (219.2) следует, что зависимость энергии от импульса
оказывается обычной для нерелятивистских частиц. Следовательно, энергия свободной частицы может принимать любые значения (так как волновое число k может принимать любые положительные значения), т. е. ее энергетический спектр является непрерывным.
Таким образом, свободная квантовая частица описывается плоской монохроматической волной де Бройля. Этому соответствует не зависящая от времени плотность вероятности обнаружения частицы в данной точке пространства т. е. все положения свободной частицы в пространстве являются равновероятными.
6.12 Частице в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками"
Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)
где l -- ширина "ямы", а энергия отсчитывается от ее дна (рис. 296).
Уравнение Шредингера (217.5) для стационарных состояний в случае одномерной задачи запишется в виде
(220.1)
По условию задачи (бесконечно высокие "стенки"), частица не проникает за пределы "ямы", поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами "ямы" равна нулю. На границах "ямы" (при х=0 и х=1) непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид
В пределах "ямы" (0 х l) уравнение Шредингера (220.1) сведется к уравнению
или (220.3)
где
(220.4)
Общее решение дифференциального уравнения (220.3):
Так как по (220.2) (0)=0, то В=0. Тогда
(220.5)
Условие (220.2) (l)=A sin kl = 0 выполняется только при
kl = n,
где n -- целые числа, т. е. необходимо, чтобы
(220.6)
Из выражений (220.4) и (220.6) следует, что
(220.7)
т. е. стационарное уравнение Шредингера, описывающее движение частицы в "потенциальной яме" с бесконечно высокими "стенками", удовлетворяется только при собственных значениях Еn, зависящих от целого числа п. Следовательно, энергия Еn частицы в "потенциальной яме" с бесконечно высокими "стенками" принимает лишь определенные дискретные значения, т.е. квантуется. Квантованные значения энергии Еn называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находиться только на определенном энергетическом уровне Еn, или, как говорят, частица находится в квантовом состоянии n.
Подставив в (220.5) значение k из (220.6), найдем собственные функции:
Постоянную интегрирования А найдем из условия нормировки (216.3), которое для данного случая запишется в виде
В результате интегрирования получим А =, а собственные функции будут иметь вид
(220.8)
Графики собственных функций (220.8), соответствующие уровням энергии (220.7) при n = 1, 2, 3, приведены на рис. 297,а. На рис. 297,6 изображена плотность вероятности обнаружения частицы на различных расстояниях от "стенок" ямы, равная |n(х)|2 = n(х)*n(х) для n=1,2 и 3. Из рисунка следует, что, например, в квантовом состоянии с n=2 частица не может находиться в середине "ямы", в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.
Из выражения (220.7) вытекает, что энергетический интервал между двумя соседними уровнями равен
(220.9)
Например, для электрона при размерах ямы l=10-1 м (свободные электроны в металле) En 10-35n Дж 10-16n эВ, т. е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l10-10 м), то для электрона En 10-17n Дж 102n эВ, т. е. получаются явно дискретные значения энергии (линейчатый спектр). Таким образом, применение уравнения Шредингера к частице в "потенциальной яме" с бесконечно высокими "стенками" приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.
Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица "в потенциальной яме" с бесконечно высокими "стенками" не может иметь энергию меньшую, чем минимальная энергия, равная . Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты х частицы в "яме" шириной l равна x=l. Тогда, согласно соотношению неопределенностей (215.1), импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса
ph/l.
Такому разбросу значений импульса соответствует кинетическая энергия
Emin(p)2/(2m) = h2/(2ml2).
Все остальные уровни (n>1) имеют энергию, превышающую это минимальное значение.
Из формул (220.9) и (220.7) следует, что при больших квантовых числах (n>>1) En/En2/n<<1, т. е. соседние уровни расположены тесно: тем теснее, чем больше n. Если n очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов -- дискретность -- сглаживается.
Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.
Более общая трактовка принципа соответствия, имеющего огромную роль в современной физике, заключается в следующем: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных предельных случаях новая теория переходит в старую.
Так, формулы кинематики и динамики специальной теории относительности переходят при v<<с в формулы механики Ньютона.
Например, хотя гипотеза де Бройля приписывает волновые свойства всем телам, но в тех случаях, когда мы имеем дело с макроскопическими телами, их волновыми свойствами можно пренебречь, т. е. применять классическую механику Ньютона.
6.13 Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 298, а) для одномерного (по оси х) движения частицы. Для потенциального барьера прямоугольной формы высоты U и ширины l можем записать
При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при Е>U), либо отразится от него (при Е<U) и будет двигаться в обратную сторону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы же, даже при Е>U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E<U имеется также отличная от нуля вероятность, что частица окажется в области х>1, т. е. проникает сквозь барьер. Подобные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при условиях данной задачи.
Уравнение Шредингера (217.5) для стационарных состояний для каждой из выделенных на рис. 298, а области имеет вид
(221.1)
Общие решения этих дифференциальных уравнений:
(221.2)
(221.3)
В частности, для области 1 полная волновая функция, согласно (217.4), будет иметь вид
(221.4)
В этом выражении первый член представляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (соответствует частице, движущейся в сторону барьера), а второй -- волну, распространяющуюся в противоположном направлении, т. е. отраженную от барьера (соответствует частице, движущейся от барьера налево).
Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент B3 в формуле (221.3) следует принять равным нулю.
В области 2 решение зависит от соотношений Е>U или Е<U. Физический интерес представляет случай, когда полная энергия частицы меньше высоты потенциального барьера, поскольку при Е<U законы классической физика однозначно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (221.1),
q=i
-- мнимое число, где
Учитывая значение q и B3=0, получим решения уравнения Шредингера для трех областей в следующем виде:
(221.5)
В области 2 функция (221.5) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Можно показать, что для частного случая высокого и широкого барьера, когда l >>1, B20.
Качественный характер функций 1(х), 2(х) и 3(x) иллюстрируется на рис. 298, б, откуда следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, получили, что частица имеет отличную от нудя вероятность прохождения сквозь потенциальный барьер конечной ширины.
Таким образом, квантовая механика приводит к принципиально новому специфическому квантовому явлению, получившему название туннельного эффекта, в результате которого микрообъект может "пройти" сквозь потенциальный барьер.
Для описания туннельного эффекта используют понятие коэффициента прозрачности D потенциального барьера, определяемого как отношение плотности потока прошедших частиц к плотности потока падающих. Можно показать, что
Для того чтобы найти отношение |А3/А1|2, необходимо воспользоваться условиями непрерывности и ' на границах барьера х=0 и х=l (рис. 298):
(221.6)
Эти четыре условия дают возможность выразить коэффициенты A2, A3, В1 и В2 через А1. Совместное решение уравнений (221.6) для прямоугольного потенциального барьера дает (в предположении, что коэффициент прозрачности мал по сравнению с единицей)
(221.7)
где U -- высота потенциального барьера, Е -- энергия частицы, l -- ширина барьера, D0 -- постоянный множитель, который можно приравнять единице. Из выражения (221.7) следует, что D сильно зависит от массы т частицы, ширины l барьера и от (U--E); чем шире барьер, тем меньше вероятность прохождения сквозь него частицы.
Для потенциального барьера произвольной формы (рис. 299), удовлетворяющей условиям так называемого квазиклассического приближения (достаточно гладкая форма кривой), имеем
где U=U(x).
С классической точки зрения прохождение частицы сквозь потенциальный барьер при Е<U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы сквозь область, в которую, согласно законам классической механики, она не может проникнуть, можно пояснить соотношением неопределенностей. Неопределенность импульса р на отрезке х=l составляет p>h/l. Связанная с этим разбросом в значениях импульса кинетическая энергия (р)2/(2m) может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной.
Основы теории туннельных переходов заложены работами Л. И. Мандельштама и М. А. Леонтовича (1903--1981). Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например, явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например, -распад, протекание термоядерных реакций).
6.14 Линейный гармонический осциллятор в квантовой механике
Линейный гармонический осциллятор -- система, совершающая одномерное движение под действием квазиупругой силы, -- является моделью, используемой во многих задачах классической и квантовой теории (см. § 142). Пружинный, физический и математический маятники -- примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора (см. (141.5)) равна
(222.1)
где 0 -- собственная частота колебаний осциллятора, т -- масса частицы. Зависимость (222.1) имеет вид параболы (рис. 300), т. е. "потенциальная яма" в данном случае является параболической.
Амплитуда малых колебаний классического осциллятора определяется его полной энергией Е (см. рис. 16). В точках с координатами ±xmax полная энергия Е равна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области (-xmax, +xmax). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Таким образом, классический осциллятор находится в "потенциальной яме" с координатами - xmax <х< xmax "без права выхода" из нее.
Гармонический осциллятор в квантовой механике -- квантовый осциллятор -- описывается уравнением Шредингера (217.5), учитывающим выражение (222.1) для потенциальной энергии. Тогда стационарные состояния квантового осциллятора определяются уравнением Шредингера вида
(222.2)
где Е -- полная энергия осциллятора. В теории дифференциальных уравнений доказывается, что уравнение (222.2) решается только при собственных значениях энергии
(222.3)
Формула (222.3) показывает, что энергия квантового осциллятора может иметь лишь дискретные значения, т. е. квантуется. Энергия ограничена снизу отличным от нуля, как и для прямоугольной "ямы" с бесконечно высокими "стенками" (см. § 220), минимальным значением энергии
E0=1/2ћ0.
Существование минимальной энергии -- она называется энергией нулевых колебаний -- является типичной для квантовых систем и представляет собой прямое следствие соотношения неопределенностей.
Наличие нулевых колебаний означает, что частица не может находиться на дне "потенциальной ямы", причем этот вывод не зависит от ее формы. В самом деле, "падение на дно ямы" связано с обращением в нуль импульса частицы, а вместе с тем и его неопределенности. Тогда неопределенность координаты становится сколь угодно большой, что противоречит, в свою очередь, пребыванию частицы в "потенциальной яме".
Вывод о наличии энергии нулевых колебаний квантового осциллятора противоречит выводам классической теории, согласно которой наименьшая энергия, которую может иметь осциллятор, равна нулю (соответствует покоящейся в положении равновесия частице). Например, классическая физика приводит к выводу, что при Т=0 энергия колебательного движения атомов кристалла должна обращаться в нуль. Следовательно, должно исчезать и рассеяние света, обусловленное колебаниями атомов. Однако эксперимент показывает, что интенсивность рассеяния света при понижении температуры не равна нулю, а стремится к некоторому предельному значению, указывающему на то, что при Т0 колебания атомов в кристалле не прекращаются. Это является подтверждением наличия нулевых колебаний.
Из формулы (222.3) также следует, что уровни энергии линейного гармонического осциллятора расположены на одинаковых расстояниях друг от друга (рис. 300), а именно расстояние между соседними энергетическими уровнями равно ћ0, причем минимальное значение энергии E0=1/2ћ0.
Строгое решение задачи о квантовом осцилляторе приводит еще к одному значительному отличию от классического рассмотрения. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области |x|xmax (см. рис. 16), в то время как с классической точки зрения она не может выйти за пределы области (-xmax, +xmax). Таким образом, имеется отличная от нуля вероятность обнаружить частицу в той области, которая является классически запрещенной. Этот результат (без его вывода) демонстрируется на рис. 301, где приводится квантовая плотность вероятности w обнаружения осциллятора для состояния п=1. Из рисунка следует, что для квантового осциллятора действительно плотность вероятности w имеет конечные значения за пределами классически дозволенной области |x|xmax, т.е. имеется конечная (но небольшая) вероятность обнаружить частицу в области за пределами "потенциальной ямы". Существование отличных от нуля значений w за пределами "потенциальной ямы" объясняется возможностью прохождения микрочастиц сквозь потенциальный барьер (см. § 221).
6.15 Элементы современной физики атомов и молекул. Атом водорода в квантовой механике
Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия Не+, двукратно ионизованного лития Li++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра.
Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1),
(223.1)
где r -- расстояние между электроном и ядром. Графически функция U(r) изображена жирной кривой на рис. 302. U(r) с уменьшением r (при приближении электрона к ядру) неограниченно убывает.
Состояние электрона в атоме водорода описывается волновой функцией , удовлетворяющей стационарному уравнению Шредингера (217.5), учитывающему значение (223.1):
(223.2)
где т -- масса электрона, Е -- полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (223.2) обычно используют сферическую систему координат: r, , . Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важнейших результатов, которые из него следуют, пояснив их физический смысл.
1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (223.2) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции , только при собственных значениях энергии
(223.3)
т. е. для дискретного набора отрицательных значений энергии.
Таким образом, как и в случае "потенциальной ямы" с бесконечно высокими "стенками" (см. § 220) и гармонического осциллятора (см. § 222), решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е1, E2, Е3,... показаны на рис. 302 в виде горизонтальных прямых. Самый нижний уровень Е1, отвечающий минимальной возможной энергии, -- основной, все остальные (Еn >Е1, n = 2, 3,...) -- возбужденные (см. § 212). При Е<0 движение электрона является связанным -- он находится внутри гиперболической "потенциальной ямы". Из рисунка следует, что по мере роста главного квантового числа n энергетические уровни располагаются теснее и при n= E = 0. При Е>0 движение электрона является свободным; область непрерывного спектра Е>0 (заштрихована на рис. 302) соответствует ионизованному атому. Энергия ионизации атома водорода равна
Выражение (223.3) совпадает с формулой (212.3), полученной Бором для энергии атома водорода. Однако если Бору пришлось вводить дополнительные гипотезы (постулаты), то в квантовой механике дискретные значения энергии, являясь следствием самой теории, вытекают непосредственно из решения уравнения Шредингера.
2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (223.2) удовлетворяют собственные функции , определяемые тремя квантовыми числами: главным п, орбитальным l и магнитным тl.
Главное квантовое число n, согласно (223.3), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с единицы:
Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется, т. е. не может быть произвольным, а принимает дискретные значения, определяемые формулой
(223.4)
где l -- орбитальное квантовое число, которое при заданном n принимает значения
(223.5)
т. е. всего n значений, и определяет момент импульса электрона в атоме.
Из решения уравнений Шредингера следует также, что вектор Ll момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция Llx на направление z внешнего магнитного поля принимает квантованные значения, кратные ћ:
(223.6)
где тl -- магнитное квантовое число, которое при заданном l может принимать значения
т. е. всего 2l+1 значений. Таким образом, магнитное квантовое число ml определяет проекцию момента импульса электрона на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентации.
Наличие квантового числа ml должно привести в магнитном поле к расщеплению уровня с главным квантовым числом п на 2l+1 подуровней. Соответственно в спектре атома должно наблюдаться расщепление спектральных линий. Действительно, расщепление энергетических уровней в магнитном поле было обнаружено в 1896 г. голландским физиком П. Зееманом (1865--1945) и получило название эффекта Зеемана. Расщепление уровней энергии во внешнем электрическом поле, тоже доказанное экспериментально, называется эффектом Штарка*.
Хотя энергия электрона (223.3) и зависит только от главного квантового числа п, но каждому собственному значению Еn (кроме Е1) соответствует несколько собственных функций , отличающихся значениями l и ml. Следовательно, атом водорода может иметь одно и то же значение энергии, находясь в нескольких различных состояниях. Так как при данном п орбитальное квантовое число l может изменяться от 0 до п-1 (см. (223.5)), а каждому значению l соответствует 2l+1 различных значений ml (223.7), то число различных состояний, соответствующих данному п, равно
(223.8)
Квантовые числа и их значения являются следствием решений уравнений Шредингера и условий однозначности, непрерывности и конечности, налагаемых на волновую функцию . Кроме того, так как при движении электрона в атоме существенны волновые свойства электрона, то квантовая механика вообще отказывается от классического представления об электронных орбитах. Согласно квантовой механике, каждому энергетическому состоянию соответствует волновая функция, квадрат модуля которой определяет вероятность обнаружения электрона в единице объема.
Вероятность обнаружения электрона в различных частях атома различна. Электрон при своем движении как бы "размазан" по всему объему, образуя электронное облако, плотность (густота) которого характеризует вероятность нахождения электрона в различных точках объема атома. Квантовые числа п и l характеризуют размер и форму электронного облака, а квантовое число ml характеризует ориентацию электронного облака в пространстве.
В атомной физике, по аналогии со спектроскопией, состояние электрона, характеризующееся квантовыми числами l=0, называют s-состоянием (электрон в этом состоянии называют s-электроном), l=1 -- p-состоянием, l=2 -- d-состоянием, l=3 -- f-состоянием и т. д. Значение главного квантового числа указывается перед условным обозначением орбитального квантового числа. Например, электроны в состояниях n=2 и l=0 и 1 обозначаются соответственно символами 2s и 2р.
На рис. 303 для примера приведено распределение электронной плотности (формы электронного облака) для состояний атома водорода при n=1 и п=2, определяемое ||2. Как видно из рисунка, оно зависит от n, l и ml. Так, при l=0 электронная плотность отлична от нуля в центре и не зависит от направления (сферически-симметрична), а для остальных состояний в центре равна нулю и зависит от направления.
3. Спектр. Квантовые числа n, l и ml позволяют более полно описать спектр испускания (поглощения) атома водорода, полученный в теории Бора (см. рис. 294).
В квантовой механике вводятся правила отбора, ограничивающие число возможных переходов электронов в атоме, связанных с испусканием и поглощением света. Теоретически доказано и экспериментально подтверждено, что для дипольного излучения электрона, движущегося в центрально-симметричном поле ядра, могут осуществляться только такие переходы, для которых: 1) изменение орбитального квантового числа l удовлетворяет условию
2) изменение магнитного квантового числа ml удовлетворяет условию
В оптических спектрах указанные правила отбора в основном выполняются. Однако в принципе могут наблюдаться и слабые "запрещенные" линии, например возникающие при переходах с l = 2. Появление этих линий объясняется тем, что строгая теория, запрещая дипольные переходы, разрешает переходы, соответствующие излучению более сложных систем зарядов, например квадруполей. Вероятность же квадрупольных переходов (переходы с l=2) во много раз меньше вероятности дипольных переходов, поэтому "запрещенные" линии и являются слабыми.
Учитывая число возможных состояний, соответствующих данному n, и правило отбора (223.9), рассмотрим спектральные линии атома водорода (рис. 304): серии Лаймана соответствуют переходы серии Бальмера -- и т. д.
Переход электрона из основного состояния в возбужденное обусловлен увеличением энергии атома и может происходить только при сообщении атому энергии извне, например за счет поглощения атомом фотона. Так как поглощающий атом находится обычно в основном состоянии, то спектр атома водорода должен состоять из линий, соответствующих переходам 1snp (n = 2, 3,...), что находится в полном согласии с опытом.
6.16 1s-Состояние электрона в атоме водорода
1s-Состояние электрона в атоме водорода является сферически-симметричным, т. е. не зависит от углов и . Волновая функция электрона в этом состоянии определяется только расстоянием r электрона от ядра, т. е.
= 100(r),
где цифры в индексе соответственно указывают, что п=1, l=0 и ml=0. Уравнению Шредингера для 1s-состояния электрона в атоме водорода удовлетворяет функция вида
где, как можно показать,
-- величина, совпадающая с первым боровским радиусом а (см. (212.2)) для атома водорода, С -- некоторая постоянная, определяемая из условия нормировки вероятностей (216.3).
Благодаря сферической симметрии -функции вероятность обнаружения электрона на расстоянии r одинакова по всем направлениям. Поэтому элемент объема dV, отвечающий одинаковой плотности вероятности, обычно представляют в виде объема сферического слоя радиусом r и толщиной dr: dV=4r2dr. Тогда, согласно условию нормировки вероятностей (216.3) с учетом (224.1),
После интегрирования получим
(224.2)
Подставив выражение (224.2) в формулу (224.1), определим нормированную волновую функцию, отвечающую 1s-состоянию электрона в атоме водорода:
(224.3)
Вероятность обнаружить электрон в элементе объема (см. (216.2)) равна
Подставив в эту формулу волновую функцию (224.3), получим
Вычислим те расстояния rmax от ядра, на которых электрон может быть обнаружен с наибольшей вероятностью. Исследуя выражение dW/dr на максимум, получим, что rmax=a.
Следовательно, электрон может быть обнаружен с наибольшей вероятностью на расстояниях, равных боровскому радиусу, т. е. имеется равная и наибольшая вероятность обнаружения электрона во всех точках, расположенных на сферах радиуса а с центром в ядре атома.
Казалось бы, квантово-механический расчет дает полное согласие с теорией Бора. Однако, согласно квантовой механике, плотность вероятности лишь при r=а достигает максимума, оставаясь отличной от нуля во всем пространстве (рис. 305).
Таким образом, в основном состоянии атома водорода наиболее вероятным расстоянием от электрона до ядра является расстояние, равное боровскому радиусу. В этом заключается квантово-механический смысл боровского радиуса.
6.17 Спин электрона. Спиновое квантовое число
О. Штерн и В. Герлах, проводя прямые измерения магнитных моментов (см. § 131), обнаружили в 1922 г., что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса электрона равен нулю (см. (223.4)). Магнитный момент атома, связанный с орбитальным движением электрона, пропорционален механическому моменту (см. (131.3)), поэтому он равен нулю и магнитное поле не должно оказывать влияния на движение атомов водорода в основном состоянии, т. е. расщепления быть не должно. Однако в дальнейшем при применении спектральных приборов с большой разрешающей способностью было доказано, что спектральные линии атома водорода обнаруживают тонкую структуру (являются дублетами) даже в отсутствие магнитного поля.
Для объяснения тонкой структуры спектральных линий, а также ряда других трудностей в атомной физике американские физики Д. Уленбек (1900--1974) и С. Гаудсмит (1902--1979) предположили, что электрон обладает собственным неуничтожимым механическим моментом импульса, не связанным с движением электрона в пространстве, спином (см. §131).
Спин электрона (и всех других микрочастиц) -- квантовая величина, у нее нет классического аналога; это внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.
Если электрону приписывается собственный механический момент импульса (спин) Ls, то ему соответствует собственный магнитный момент рms. Согласно общим выводам квантовой механики, спин квантуется по закону
где s -- спиновое квантовое число.
По аналогии с орбитальным моментом импульса, проекция Lsz спина квантуется так, что вектор Ls может принимать 2s+1 ориентации. Так как в опытах Штерна и Герлаха наблюдались только две ориентации, то 2s+1=2, откуда s= Ѕ. Проекция спина на направление внешнего магнитного поля, являясь квантованной величиной, определяется выражением, аналогичным (223.6):
где тs -- магнитное спиновое квантовое число; оно может иметь только два значения: ms = ± Ѕ.
Таким образом, опытные данные привели к необходимости характеризовать электроны (и микрочастицы вообще) добавочной внутренней степенью свободы. Поэтому для полного описания состояния электрона в атоме необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.
6.18 Принцип неразличимости тождественных частиц. Фермионы и бозоны
Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлектронным системам, то проявляются особые свойства, не имеющие аналога в классической физике. Пусть квантово-механическая система состоит из одинаковых частиц, например электронов. Все электроны имеют одинаковые физические свойства -- массу, электрический заряд, спин и другие внутренние характеристики (например, квантовые числа). Такие частицы называют тождественными.
Необычные свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики -- принципе неразличимости тождественных частиц, согласно которому невозможно экспериментально различить тождественные частицы.
В классической механике даже одинаковые частицы можно различить по положению в пространстве и импульсам. Если частицы в какой-то момент времени пронумеровать, то в следующие моменты времени можно проследить за траекторией любой из них. Классические частицы, таким образом, обладают индивидуальностью, поэтому классическая механика систем из одинаковых частиц принципиально не отличается от классической механики систем из различных частиц.
В квантовой механике положение иное. Из соотношения неопределенностей вытекает, что для микрочастиц вообще неприменимо понятие траектории; состояние микрочастицы описывается волновой функцией, позволяющей вычислять лишь вероятность (||2) нахождения микрочастицы в окрестностях той или иной точки пространства. Если же волновые функции двух тождественных частиц в пространстве перекрываются, то разговор о том, какая частица находится в данной области, вообще лишен смысла: можно лишь говорить о вероятности нахождения в данной области одной из тождественных частиц. Таким образом, в квантовой механике тождественные частицы полностью теряют свою индивидуальность и становятся неразличимыми. Следует подчеркнуть, что принцип неразличимости тождественных частиц не является просто следствием вероятностной интерпретации волновой функции, а вводится в квантовую механику как новый принцип, который, как уже указывалось, является фундаментальным.
Принимая во внимание физический смысл величины ||2, принцип неразличимости тождественных частиц можно записать в виде
(226.1)
где x1 и х2 -- соответственно совокупность пространственных и спиновых координат первой и второй частиц. Из выражения (226.1) вытекает, что возможны два случая: т. е. принцип неразличимости тождественных частиц ведет к определенному свойству симметрии волновой функции. Если при перемене частиц местами волновая функция не меняет знака, то она называется cимметричной, если меняет -- антисимметричной. Изменение знака волновой функции не означает изменения состояния, так как физический смысл имеет лишь квадрат модуля волновой функции. В квантовой механике доказывается, что характер симметрии волновой функции не меняется со временем. Это же является доказательством того, что свойство симметрии или антисимметрии -- признак данного типа микрочастиц.
Установлено, что симметрия или антисимметрия волновых функций определяется спином частиц. В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются антисимметричными волновыми функциями и подчиняются статистике Ферми -- Дирака; эти частицы называются фермионами.
Частицы с нулевым или целочисленным спином (например, -мезоны, фотоны) описываются симметричными волновыми функциями и подчиняются статистике Бозе -- Эйнштейна; эти частицы называются бозонами. Сложные частицы (например, атомные ядра), составленные из нечетного числа фермионов, являются фермионами (суммарный спив -- полуцелый), а из четного -- бозонами (суммарный спин целый).
Зависимость характера симметрии волновых функций системы тождественных частиц от спина частиц теоретически обоснована швейцарским физиком В. Паули (1900--1958), что явилось еще одним доказательством того, что спин является фундаментальной характеристикой микрочастиц.
6.19 Принцип Паули. Распределение электронов в атоме по состояниям
Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, так как для фермионов волновая функция должна быть антисимметричной. Обобщая опытные данные, В. Паули сформулировал принцип, согласно которому системы фермионов встречаются в природе только в состояниях, описываемых антисимметричными волновыми функциями (квантово-механическая формулировка принципа Паули).
Из этого положения вытекает более простая формулировка принципа Паули, которая и была введена им в квантовую теорию (1925) еще до построения квантовой механики: в системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоянии. Отметим, что число однотипных бозонов, находящихся в одном и том же состоянии, не лимитируется.
Напомним, что состояние электрона в атоме однозначно определяется набором четырех квантовых чисел:
Распределение электронов в атоме подчиняется принципу Паули, который может быть использован в его простейшей формулировке: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел п, l, ml и тs т. е.
где Z(п, l, ml, тs) -- число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел: п, l, ml, тs. Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями по крайней мере одного квантового числа.
Согласно формуле (223.8), данному n соответствует n2 различных состояний, отличающихся значениями l и ml. Квантовое число тs может принимать лишь два значения (± Ѕ). Поэтому максимальное число электронов, находящихся в состояниях, определяемых данным главным квантовым числом, равно
Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n, называют электронной оболочкой. В каждой из оболочек электроны распределяются по подоболочкам, соответствующим данному l. Поскольку орбитальное квантовое число принимает значения от 0 до n-1, число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l+1). Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам представлены в табл. 6.
Таблица 6
6.20 Периодическая система элементов Менделеева
Принцип Паули, лежащий в основе систематики заполнения электронных состояний в атомах, позволяет объяснить Периодическую систему элементов Д. И. Менделеева (1869) -- фундаментального закона природы, являющегося основой современной химии, атомной и ядерной физики.
Д. И. Менделеев ввел понятие порядкового номера Z химического элемента, равного числу протонов в ядре и соответственно общему числу электронов в электронной оболочке атома. Расположив химические элементы по мере возрастания порядковых номеров, он получил периодичность в изменении химических свойств элементов. Однако для известных в то время 64 химических элементов некоторые клетки таблицы оказались незаполненными, так как соответствующие им элементы (например, Ga, Se, Ос) тогда еще не были известны. Д. И. Менделеев, таким образом, не только правильно расположил известные элементы, но и предсказал существование новых, еще не открытых элементов и их основные свойства. Кроме того, Д. И. Менделееву удалось уточнить атомные веса некоторых элементов. Например, атомные веса Be и U, вычисленные на основе таблицы Менделеева, оказались правильными, а полученные ранее экспериментально -- ошибочными.
Так как химические и некоторые физические свойства элементов объясняются внешними (валентными) электронами в атомах, то периодичность свойств химических элементов должна быть связана с определенной периодичностью в расположении электронов в атомах. Поэтому для объяснения таблицы будем считать, что каждый последующий элемент образован из предыдущего прибавлением к ядру одного протона и соответственно прибавлением одного электрона в электронной оболочке атома. Взаимодействием электронов пренебрегаем, внося, где это необходимо, соответствующие поправки. Рассмотрим атомы химических элементов, находящиеся в основном состоянии.
Единственный электрон атома водорода находится в состоянии 1s, характеризуемом квантовыми числами п=1, l=0, ml=0 и ms= Ѕ; (ориентация его спина произвольна). Оба электрона атома Не находятся в состоянии 1s, но с антипараллельной ориентацией спина. Электронная конфигурация для атома Не записывается как 1s2(два 1s-электрона). На атоме Не заканчивается заполнение K-оболочки, что соответствует завершению I периода Периодической системы элементов Менделеева (табл. 7).
Таблица 7
Третий электрон атома Li (Z=3), согласно принципу Паули, уже не может разместиться в целиком заполненной K-оболочке и занимает наинизшее энергетическое состояние с n=2 (L-оболочка), т.е. 2s-состояние. Электронная конфигурация для атома Li: 1s22s. Атомом Li начинается II период Периодической системы элементов. Четвертым электроном Be (Z=4) заканчивается заполнение подоболочки 2s. У следующих шести элементов от В (Z=5) до Ne (Z=10) идет заполнение подоболочки 2р (табл. 7). II период Периодической системы заканчивается неоном -- инертным газом, для которого подоболочка 2р целиком заполнена.
Одиннадцатый электрон Na (Z=11) размещается в М-оболочке (n=3), занимая наинизшее состояние 3s. Электронная конфигурация имеет вид 1s22s22p63s. 3s-Электрон (как и 2s-электрон Li) является валентным электроном, поэтому оптические свойства Na подобны свойствам Li. С Z=12 идет последовательное заполнение M-оболочки. Аr (Z=18) оказывается подобным Не и Ne: в его наружной оболочке все s- и p-состояния заполнены. Аr является химически инертным и завершает III период Периодической системы.
Девятнадцатый электрон К (Z=19) должен был бы занять 3d-состоянис в M-оболочке. Однако и в оптическом, и в химическом отношениях атом К схож с атомами Li и Na, которые имеют внешний валентный электрон в s-состоянии. Поэтому 19-й валентный электрон К должен также находиться в s-состоянии, но это может быть только s-состояние новой оболочки (N-оболочки), т. е. заполнение N-оболочки для К начинается при незаполненной M-оболочке. Это означает, что в результате взаимодействия электронов состояние n=4, l=0 имеет меньшую энергию, чем состояние n=3, l=2. Спектроскопические и химические свойства Са (Z=20) показывают, что его 20-й электрон также находится в 4s-состоянии N-оболочки. В последующих элементах происходит заполнение M-оболочки (от Sc (Z=21) до Zn (Z=30)). Далее N-оболочка заполняется до Кr (Z=36), у которого опять-таки, как и в случае Ne и Аr,
s- и p-состояния наружной оболочки заполнены целиком. Криптоном заканчивается IV период Периодической системы. Подобные рассуждения применимы и к остальным элементам таблицы Менделеева, однако эти данные можно найти в справочниках. Отметим лишь, что и начальные элементы последующих периодов Rb, Cs, Fr являются щелочными металлами, а их последний электрон находится в s-состоянии. Кроме того, атомы инертных газов (Не, Ne, Ar, Кr, Хе, Rn) занимают в таблице особое положение -- в каждом из них s- и p-состояния наружной оболочки целиком заполнены и ими завершаются очередные периоды Периодической системы.
Каждую из двух групп элементов -- лантаниды (от лантана (Z=57) до лютеция (Z=71)) и актиниды (от актиния (Z=89) до лоуренсия (Z=103)) -- приходится помещать в одну клетку таблицы, так как химические свойства элементов в пределах этих групп очень близки. Это объясняется тем, что для лантанидов заполнение подоболочки 4f, которая может содержать 14 электронов, начинается лишь после того, как целиком заполнятся подоболочки 5s, 5p и 6s. Поэтому для этих элементов внешняя P-оболочка (6s2) оказывается одинаковой. Аналогично, одинаковой для актинидов является Q-оболочка (7s2).
Таким образом, открытая Менделеевым периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов. Так, инертные газы имеют одинаковые внешние оболочки из 8 электронов (заполненные s- и p-состояния); во внешней оболочке щелочных металлов (Li, Na, К, Rb, Cs, Fr) имеется лишь один s-электрон; во внешней оболочке щелочноземельных металлов (Be, Mg, Ca, Sr, Ba, Ra) имеется два s-электрона; галоиды (F, О, Br, I, At) имеют внешние оболочки, в которых недостает одного электрона до оболочки инертного газа, и т. д.
6.21 Рентгеновские спектры
Большую роль в выяснении строения атома, а именно распределения электронов по оболочкам, сыграло излучение, открытое в 1895 г. немецким физиком В. Рентгеном (1845--1923) и названное рентгеновским. Самым распространенным источником рентгеновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод (металлическая мишень из тяжелых металлов, например W или Pt), испытывая на нем резкое торможение. При этом возникает рентгеновское излучение, представляющее собой электромагнитные волны с длиной волны примерно 10-12--10-8 м. Волновая природа рентгеновского излучения доказана опытами по его дифракции, рассмотренными в § 182.
Исследование спектрального состава рентгеновского излучения показывает, что его спектр имеет сложную структуру (рис. 306) и зависит как от энергии электронов, так и от материала анода. Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей min, называемой границей сплошного спектра, и линейчатого спектра -- совокупности отдельных линий, появляющихся на фоне сплошного спектра.
Исследования показали, что характер сплошного спектра совершенно не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Детальное исследование свойств этого излучения показало, что оно испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Сплошной рентгеновский спектр поэтому называют тормозным спектром. Этот вывод находится в согласии с классической теорией излучения, так как при торможении движущихся зарядов должно действительно возникать излучение со сплошным спектром.
Из классической теории, однако, не вытекает существование коротковолновой границы сплошного спектра. Из опытов следует, что чем больше кинетическая энергия электронов, вызывающих тормозное рентгеновское излучение, тем меньше min. Это обстоятельство, а также наличие самой границы объясняются квантовой теорией. Очевидно, что предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т.е.
где U--разность потенциалов, за счет которой электрону сообщается энергия Еmax, max -- частота, соответствующая границе сплошного спектра. Отсюда граничная длина волны
(229.1)
что полностью соответствует экспериментальным данным. Измеряя границу рентгеновского сплошного спектра, по формуле (229.1) можно определить экспериментальное значение постоянной Планка h, которое наиболее точно совпадает с современными данными.
При достаточно большой энергии бомбардирующих анод электронов на фоне сплошного спектра появляются отдельные резкие линии -- линейчатый спектр, определяемый материалом анода и называемый характеристическим рентгеновским спектром (излучением).
По сравнению с оптическими спектрами характеристические рентгеновские спектры элементов совершенно однотипны и состоят из нескольких серий, обозначаемых К, L, М, и O. Каждая серия, в свою очередь, содержит небольшой набор отдельных линий, обозначаемых в порядке убывания длины волны индексами , , ,... (К, К, К,.... L, L, L,...). При переходе от легких элементов к тяжелым структура характеристического спектра не изменяется, лишь весь спектр смещается в сторону коротких волн. Особенность этих спектров заключается в том, что атомы каждого химического элемента, независимо от того, находятся ли они в свободном состоянии или входят в химическое соединение, обладают определенным, присущим только данному элементу линейчатым спектром характеристического излучения. Так, если анод состоит из нескольких элементов, то и характеристическое рентгеновское излучение представляет собой наложение спектров этих элементов.
Рассмотрение структуры и особенностей характеристических рентгеновских спектров приводит к выводу, что их возникновение связано с процессами, происходящими во внутренних, застроенных электронных оболочках атомов, которые имеют сходное строение.
Разберем механизм возникновения рентгеновских серий, который схематически показан на рис. 307. Предположим, что под влиянием внешнего электрона или высокоэнергетического фотона вырывается один из двух электронов K-оболочки атома. Тогда на его место может перейти электрон с более удаленных от ядра оболочек L, M, N,....
Такие переходы сопровождаются испусканием рентгеновских квантов и возникновением спектральных линий К-серии: К (LK), K (MK), K (NK) и т. д. Самой длинноволновой линией К-серии является линия K. Частоты линий возрастают в ряду K K K, поскольку энергия, высвобождаемая при переходе электрона на K-оболочку с более удаленных оболочек, увеличивается.
Наоборот, интенсивности линий в ряду K K K убывают, так как вероятность переходов электронов с L-оболочки на K-оболочку больше, чем с более удаленных оболочек М и N. К-серия сопровождается обязательно другими сериями, так как при испускании ее линий появляются вакансии в оболочках L, M,..., которые будут заполняться электронами, находящимися на более высоких уровнях.
Аналогично возникают и другие серии, наблюдаемые, впрочем, только для тяжелых элементов. Рассмотренные линии характеристического излучения могут иметь тонкую структуру, поскольку уровни, определяемые главным квантовым числом, расщепляются согласно значениям орбитального и магнитного квантовых чисел.
Исследуя рентгеновские спектры элементов, английский физик Г. Мозли (1887--1915) установил в 1913 г. соотношение, называемое законом Мозли:
(229.2)
где -- частота, соответствующая данной линии характеристического рентгеновского излучения, R -- постоянная Ридберга, -- постоянная экранирования, т = 1, 2, 3,... (определяет рентгеновскую серию), n принимает целочисленные значения начиная с m+1 (определяет отдельную линию соответствующей серии). Закон Мозли (229.2) подобен обобщенной формуле Бальмера (209.3) для атома водорода.
Смысл постоянной экранирования заключается в том, что на электрон, совершающий переход, соответствующий некоторой линии, действует не весь заряд ядра Zе, а заряд (Z-)e, ослабленный экранирующим действием других электронов. Например, для K-линии = 1, и закон Мозли запишется в виде
6.22 Молекулы: химические связи, понятие об энергетических уровнях
Молекула -- наименьшая частица вещества, состоящая из одинаковых или различных атомов, соединенных между собой химическими связями, и являющаяся носителем его основных химических и физических свойств. Химические связи обусловлены взаимодействием внешних, валентных электронов атомов. Наиболее часто в молекулах встречается два типа связи: ионная и ковалентная (см. § 71).
...Подобные документы
Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.
учебное пособие [7,9 M], добавлен 03.04.2010Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.
курс лекций [1,0 M], добавлен 13.10.2011Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.
лекция [339,3 K], добавлен 28.06.2013Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.
шпаргалка [7,1 M], добавлен 30.10.2010Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.
учебное пособие [10,2 M], добавлен 10.05.2010Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.
реферат [751,3 K], добавлен 14.01.2010Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.
учебное пособие [686,6 K], добавлен 26.02.2008Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.
реферат [18,6 K], добавлен 27.05.2003Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.
статья [77,4 K], добавлен 07.05.2002Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.
шпаргалка [243,2 K], добавлен 14.05.2011Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева - Клапейрона).
презентация [972,4 K], добавлен 06.12.2013Закон сохранения импульса. Ускорение свободного падения. Объяснение устройства и принципа действия динамометра. Закон сохранения механической энергии. Основные модели строения газов, жидкостей и твердых тел. Примеры теплопередачи в природе и технике.
шпаргалка [168,0 K], добавлен 15.12.2009Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.
презентация [1,4 M], добавлен 22.01.2012Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.
реферат [34,2 K], добавлен 26.04.2007Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.
презентация [12,0 M], добавлен 28.06.2015Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.
контрольная работа [29,8 K], добавлен 16.08.2009Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.
шпаргалка [250,6 K], добавлен 29.11.2009Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.
курсовая работа [56,6 K], добавлен 22.02.2004Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.
реферат [160,9 K], добавлен 15.02.2016