Курс физики

Физика и ее связь с другими науками. Физические основы механики. Закон сохранения энергии. Элементы теории поля и законы Кеплера. Методы определения вязкости. Основы молекулярной физики и термодинамики. Механические и электромагнитные колебания.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 28.11.2016
Размер файла 13,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Мерой возникающей оптической анизотропии служит разность показателей преломления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси:

(195.1)

где k1, k2, k3 -- постоянные, характеризующие вещество, -- нормальное напряжение (см. § 21), Е и Н -- соответственно напряженность электрического и магнитного полей.

На рис. 284 приведена установка для наблюдения эффекта Керра в жидкостях (установки для изучения рассмотренных явлений однотипны). Ячейка Керра -- кювета с жидкостью (например, нитробензолом), в которую введены пластины конденсатора, помещается между скрещенными поляризатором Р и анализатором А. При отсутствии электрического поля свет через систему не проходит. При наложении электрического поля жидкость становится двоякопреломляющей; при изменении разности потенциалов между электродами меняется степень анизотропии вещества, а следовательно, и интенсивность света, прошедшего через анализатор. На пути l между обыкновенным и необыкновенным лучами возникает оптическая разность хода

(с учетом формулы (195.1)) или соответственно разность фаз

где

B=k2/

-- постоянная Керра.

Эффект Керра -- оптическая анизотропия веществ под действием электрического поля -- объясняется различной поляризуемостью молекул жидкости по разным направлениям. Это явление практически безынерционно, т. е. время перехода вещества из изотропного состояния в анизотропное при включении поля (и обратно) составляет приблизительно 10-10 с. Поэтому ячейка Керра служит идеальным световым затвором и применяется в быстропротекающих процессах (звукозапись, воспроизводство звука, скоростная фото- и киносъемка, изучение скорости распространения света и т. д.), в оптической локации, в оптической телефонии и т. д.

Искусственная анизотропия под действием механических воздействий позволяет исследовать напряжения, возникающие в прозрачных телах. В данном случае о степени деформации отдельных участков изделия (например, остаточных деформаций в стекле при закалке) судят по распределению в нем окраски. Так как применяемые обычно в технике материалы (металлы) непрозрачны, то исследование напряжений производят на прозрачных моделях, а потом делают соответствующий пересчет на проектируемую конструкцию.

5.31 Вращение плоскости поляризации

Некоторые вещества (например, из твердых тел -- кварц, сахар, киноварь, из жидкостей -- водный раствор сахара, винная кислота, скипидар), называемые оптически активными, обладают способностью вращать плоскость поляризации.

Вращение плоскости поляризации можно наблюдать на следующем опыте (рис. 285). Если между скрещенными поляризатором Р и анализатором А, дающими темное поле зрения, поместить оптически активное вещество (например, кювету с раствором сахара), то поле зрения анализатора просветляется. При повороте анализатора на некоторый угол можно вновь получить темное поле зрения. Угол и есть угол, на который оптически активное вещество поворачивает плоскость поляризации света, прошедшего через поляризатор. Так как поворотом анализатора можно получить темное поле зрения, то свет, прошедший через оптически активное вещество, является плоскополяризованным.

Опыт показывает, что угол поворота плоскости поляризации для оптически активных кристаллов и чистых жидкостей

для оптически активных растворов

(196.1)

где d -- расстояние, пройденное светом в оптически активном веществе,

([]) -- так называемое удельное вращение, численно равное углу поворота плоскости поляризации света слоем оптически активного вещества единичной толщины (единичной концентрации -- для растворов),

С -- массовая концентрация оптически активного вещества в растворе, кг/м3.

Удельное вращение зависит от природы вещества, температуры и длины волны света в вакууме.

Опыт показывает, что все вещества, оптически активные в жидком состоянии, обладают таким же свойством и в кристаллическом состоянии. Однако если вещества активны в кристаллическом состоянии, то не всегда активны в жидком (например, расплавленный кварц). Следовательно, оптическая активность обусловливается как строением молекул вещества (их асимметрией), так и особенностями расположения частиц в кристаллической решетке.

Оптически активные вещества в зависимости от направления вращения плоскости поляризации разделяются на право- и левовращающие. В первом случае плоскость поляризации, если смотреть навстречу лучу, вращается вправо (по часовой стрелке), во втором -- влево (против часовой стрелки).

Вращение плоскости поляризации объяснено О. Френелем (1817 г.). Согласно теории Френеля, скорость распространения света в оптически активных веществах различна для лучей, поляризованных по кругу вправо и влево.

Явление вращения плоскости поляризации и, в частности, формула (196.1) лежат в основе точного метода определения концентрации растворов оптически активных веществ, называемого поляриметрией (сахариметрией). Для этого используется установка, показанная на рис. 285.

По найденному углу поворота плоскости поляризации и известному значению [] из (196.1) находится концентрация растворенного вещества.

Впоследствии М. Фарадеем было обнаружено вращение плоскости поляризации в оптически неактивных телах, возникающее под действием магнитного поля.

Это явление получило название эффект Фарадея (или магнитного вращения плоскости поляризации). Оно имело огромное значение для науки, так как было первым явлением, в котором обнаружилась связь между оптическими и электромагнитными процессами.

5.32 Квантовая природа излучения. Тепловое излучение и его характеристики

Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких -- преимущественно длинные (инфракрасные).

Тепловое излучение -- практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в полость, ограниченную идеально отражающей оболочкой.

С течением времени, в результате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать. Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает.

Если в единицу времени тело больше излучает, чем поглощает (или наоборот), то температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возрастать) количество излучаемой телом энергии, пока, наконец, не установится равновесие. Все другие виды излучения неравновесны.

Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела -- мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

где d -- энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от до +d.

Единица спектральной плотности энергетической светимости (R,T) -- джоуль на метр в квадрате (Дж/м2).

Записанную формулу можно представить в виде функции длины волны:

Так как

c=,

то

где знак минус указывает на то, что с возрастанием одной из величин ( или ) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,

(197.1)

С помощью формулы (197.1) можно перейти от R,T к R,T и наоборот.

Зная спектральную плотность энергетической светимости, можно вычислить интегральную энергетическую светимость (интегральную излучательность) (ее называют просто энергетической светимостью тела), просуммировав по всем частотам:

(197.2)

Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от до +d, поглощается телом. Спектральная поглощательная способность -- величина безразмерная. Величины R,T и А,T зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и (вернее, к достаточно узкому интервалу частот от до +d).

Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

Идеальной моделью черного тела является замкнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис. 286). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

Наряду с понятием черного тела используют понятие серого тела -- тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, для серого тела =AT = const<l.

Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

5.33 Закон Кирхгофа

Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):

(198.1)

Для черного тела , поэтому из закона Кирхгофа (см. (198.1)) вытекает, что R,T для черного тела равна r,T. Таким образом, универсальная функция Кирхгофа r,T есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.

Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и ), так как А,T< 1 и поэтому R,T <r,T. Кроме того, из (198.1) вытекает, что если тело при данной температуре Т не поглощает электромагнитные волны в интервале частот от до +d, то оно их в этом интервале частот при температуре T и не излучает, так как при А,T =0 R,T =0.

Используя закон Кирхгофа, выражение для энергетической светимости тела (197.2) можно записать в виде

Для серого тела

(198.2)

где

-- энергетически светимость черного тела (зависит только от температуры).

Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое закону Кирхгофа не подчиняется, не является тепловым.

5.34 Законы Стефана -- Больцмана и смещения Вина

Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетическое светимости черного тела является универсальное функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.

Австрийский физик И. Стефан (1835--1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости Re от температуры. Согласно закону Стефана -- Больцмана,

(199.1)

т.е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры; -- постоянная Стефана -- Больцмана: ее экспериментальное значение равно 5,6710-8 Вт/(м2 К4).

Закон Стефана -- Больцмана, определяя зависимость Rе от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции r,T от длины волны при различных температурах (рис. 287) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости r,T от и осью абсцисс, пропорциональна энергетической светимости Re черного тела и, следовательно, по закону Стефана -- Больцмана, четвертой степени температуры.

Немецкий физик В. Вин (1864--1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны max, соответствующей максимуму функции r,T, от температуры Т. Согласно закону смещения Вина,

(199.2)

т. е. длина волны max, соответствующая максимальному значению спектральной плотности энергетической светимости r,T черного тела, обратно пропорциональна его термодинамической температуре, b -- постоянная Вина; ее экспериментальное значение равно 2,910-3 мК. Выражение (199.2) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции r,T по мере возрастания температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).

5.35 Формулы Рэлея -- Джинса и Планка

Из рассмотрения законов Стефана -- Больцмана и Вина следует, что термодинамический подход к решению задача о нахождении универсальной функции Кирхгофа r,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости r,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877--1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.

Формула Рэлея -- Джинса для спектральной плотности энергетической светимости черного тела имеет вид

(200.1)

где =kT -- средняя энергия осциллятора с собственной частотой . Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы (см. § 50), поэтому средняя энергия каждой колебательной степени свободы =kT.

Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея -- Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана -- Больцмана (см. (199.1)) из формулы Рэлея -- Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))

в то время как по закону Стефана -- Больцмана Rе пропорциональна четвертой степени температуры. Этот результат получил название "ультрафиолетовой катастрофы". Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:

где r,T --спектральная плотность энергетической светимости черного тела, С и А -- постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями -- квантами, причем энергия кванта пропорциональна частоте колебания (см. (170.3)):

(200.2)

где h= 6,62510-34 Джс -- постоянная Планка. Так как излучение испускается порциями, то энергия осциллятора может принимать лишь определенные дискретные значения, кратные целому числу элементарных порций энергии 0:

В данном случае среднюю энергию осциллятора нельзя принимать равной kT. В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана (§ 45), средняя энергия осциллятора

а спектральная плотность энергетической светимости черного тела

Таким образом, Планк вывел для универсальной функции Кирхгофа формулу

(200.3)

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

В области малых частот, т. е. при h<<kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка (200.3) совпадает с формулой Рэлея -- Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:

Подставляя последнее выражение в формулу Планка (200.3), найдем, что

т. е. получили формулу Рэлея -- Джинса (200.1).

Из формулы Планка можно получить закон Стефана--Больцмана. Согласно (198.3) и (200.3),

Введем безразмерную переменную

x=h/(kt); dx=hd/(kT); d=kTdx/h.

Формула для Re преобразуется к виду

(200.4)

где

так как

Таким образом, действительно формула Планка позволяет получить закон Стефана -- Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана -- Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3):

откуда

Значение max, при котором функция достигает максимума, найдем, приравняв нулю эту производную. Тогда, введя

x=hc/(kTmax),

получим уравнение

Решение этого трансцендентного уравнения методом последовательных приближений дает x=4,965. Следовательно, hc/(kTmax)=4,965, откуда

т. е. получили закон смещения Вина (см. (199.2)).

Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана -- Больцмана и Вина b. С другой стороны, зная экспериментальные значения и b, можно вычислить значения h и k (именно так и было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.

5.36 Оптическая пирометрия. Тепловые источники света

Законы теплового излучения используются для измерения температуры раскаленных и самосветящихся тел (например, звезд). Методы измерения высоких температур, использующие зависимость спектральной плотности энергетической светимости или интегральной энергетической светимости тел от температуры, называются оптической пирометрией. Приборы для измерения температуры нагретых тел по интенсивности их теплового излучения в оптическом диапазоне спектра называются пирометрами. В зависимости от того, какой закон теплового излучения используется при измерении температуры тел, различают радиационную, цветовую и яркостную температуры.

1. Радиационная температура -- это такая температура черного тела, при которой его энергетическая светимость Re (см. (198.3)) равна энергетической светимости RT (см. (197.2)) исследуемого тела. В данном случае регистрируется энергетическая светимость исследуемого тела и по закону Стефана -- Больцмана (199.1) вычисляется его радиационная температура:

Радиационная температура Tр тела всегда меньше его истинной температуры Т. Для доказательства этого предположим, что исследуемое тело является серым. Тогда, используя (199.1) и (198.2), можно записать

С другой стороны,

Из сравнения этих выражений вытекает, что

Так как АT< 1, то Tр< T, т. е. истинная температура тела всегда выше радиационной.

2. Цветовая температура. Для серых тел (или тел, близких к ним по свойствам) спектральная плотность энергетической светимости

где AT=const<1. Следовательно, распределение энергии в спектре излучения серого тела такое же, как и в спектре черного тела, имеющего ту же температуру, поэтому к серым телам применим закон смещения Вина (см. (199.2)). Зная длину волны max, соответствующую максимальной спектральной плотности энергетической светимости R,T исследуемого тела, можно определить его температуру

которая называется цветовой температурой. Для серых тел цветовая температура совпадает с истинной. Для тел, которые сильно отличаются от серых (например, обладающих селективным поглощением), понятие цветовой температуры теряет смысл. Таким способом определяется температура на поверхности Солнца (Tц6500 К) и звезд.

3. Яркостная температуря Тя -- это температура черного тела, при которой для определенной длины волны его спектральная плотность энергетической светимости равна спектральной плотности энергетической светимости исследуемого тела, т. е.

(201.1)

где Т-- истинная температура тела. По закону Кирхгофа (см. (198.1)), для исследуемого тела при длине волны

(201.2)

или, учитывая (201.1),

Taк как для нечерных тел А<1, то r,Tя<r,T и, следовательно, Tя<Т, т. е. истинная температура тела всегда выше яркостной.

В качестве яркостного пирометра обычно используется пирометр с исчезающей нитью. Накал нити пирометра подбирается таким, чтобы выполнялось условие (201.1). В данном случае изображение нити пирометра становится неразличимым на фоне поверхности раскаленного тела, т. е. нить как бы "исчезает". Используя проградуированный по черному телу миллиамперметр, можно определить яркостную температуру.

Зная поглощательную способность А,Т тела при той же длине волны, по яркостной температуре можно определить истинную. Переписав формулу Планка (200.3) в виде

и учитывая это в (201.2), получим

т. е. при известных А,Т и можно определить истинную температуру исследуемого тела.

4. Тепловые источники света. Свечение раскаленных тел используется для создания источников света, первые из которых -- лампы накаливания и дуговые лампы -- были соответственно изобретены русскими учеными Л. Н. Лодыгиным в 1873 г. и П. Н. Яблочковым в 1876 г.

На первый взгляд кажется, что черные тела должны быть наилучшими тепловыми источниками света, так как их спектральная плотность энергетической светимости для любой длины волны больше спектральной плотности энергетической светимости нечерных тел, взятых при одинаковых температурах.

Однако оказывается, что для некоторых тел (например, вольфрама), обладающих селективностью теплового излучения, доля энергии, приходящаяся на излучение в видимой области спектра, значительно больше, чем для черного тела, нагретого до той же температуры. Поэтому вольфрам, обладая еще и высокой температурой плавления, является наилучшим материалом для изготовления нитей ламп.

Температура вольфрамовой нити в вакуумных лампах не должна превышать 2450 К, поскольку при более высоких температурах происходит ее сильное распыление. Максимум излучения при этой температуре соответствует длине волны 1,1 мкм, т. е. очень далек от максимума чувствительности человеческого глаза (0,55 мкм). Наполнение баллонов ламп инертными газами (например, смесью криптона и ксенона с добавлением азота) при давлении 50 кПа позволяет увеличить температуру нити до 3000 К, что приводит к улучшению спектрального состава излучения. Однако светоотдача при этом не увеличивается, так как возникают дополнительные потери энергии из-за теплообмена между нитью и газом вследствие теплопроводности и конвекции. Для уменьшения потерь энергии за счет теплообмена и повышения светоотдачи газонаполненных ламп нить изготовляют в виде спирали, отдельные витки которой обогревают друг друга. При высокой температуре вокруг этой спирали образуется неподвижный слой газа и исключается теплообмен вследствие конвекции. Энергетический к.п.д. ламп накаливания в настоящее время не превосходит 5%.

5.37 Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта -- явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. Различают фотоэффект внешний, внутренний и вентильный. Внешним фотоэлектрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка ультрафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 289. Два электрода (катод К из исследуемого металла и анод А -- в схеме Столетова применялась металлическая сетка) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения.

Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени:

1) наиболее эффективное действие оказывает ультрафиолетовое излучение;

2) под действием света вещество теряет только отрицательные заряды;

3) сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Дж. Дж. Томсон в 1898 г. измерил удельный заряд испускаемых под действием света частиц (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

Внутренний фотоэффект -- это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению э.д.с.

Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффекта, -- возникновение э.д.с. (фото-э.д.с.) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразования солнечной энергии в электрическую.

На рис. 289 приведена экспериментальная установка для исследования вольт-амперной характеристики фотоэффекта -- зависимости фототока I, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами. Такая зависимость, соответствующая двум различным освещенностям Е, катода (частота света в обоих случаях одинакова), приведена на рис. 290. По мере увеличения U фототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока Iнас -- фототок насыщения -- определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

где n -- число электронов, испускаемых катодом в 1 с.

Из вольт-амперной характеристики следует, что при U=0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U0. При U=U0 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

т. е., измерив задерживающее напряжение U0, можно определить максимальные значения скорости и кинетической энергии фотоэлектронов.

При изучении вольт-амперных характеристик разнообразных материалов (важна чистота поверхности, поэтому измерения проводятся в вакууме и на свежих поверхностях) при различных частотах падающего на катод излучения и различных энергетических освещенностях катода и обобщения полученных данных были установлены следующие три закона внешнего фотоэффекта.

I. Закон Столетова: при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Ее катода).

II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой .

III. Для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота 0 света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого из металла электрона должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия.

Однако этот вывод противоречит II закону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта.

Кроме того, волновая теория не смогла объяснить безынерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.

5.38 Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой не только испускается, как это предполагал Планк (см. § 200), но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых 0=h. Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью с распространения света в вакууме. Кванты электромагнитного излучения получили название фотонов.

По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно.

Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла (см. § 104) и на сообщение вылетевшему фотоэлектрону кинетической энергии mv2max/2. По закону сохранения энергии,

(203.1)

Уравнение (203.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (203.1) непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), так как ни А, ни от интенсивности света не зависят (II закон фотоэффекта). Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А=const), то при некоторой достаточно малой частоте =0 кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится (III закон фотоэффекта). Согласно изложенному, из (203.1) получим, что

(203.2)

и есть красная граница фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т. е. от химической природы вещества и состояния его поверхности.

Выражение (203.1) можно записать, используя (202.1) и (203.2), в виде

Уравнение Эйнштейна было подтверждено опытами Милликена. В его приборе (1916 г.) поверхность исследуемого металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии фотоэлектронов (изменялось задерживающее напряжение U0 (см. (202.1)) от частоты и определялась постоянная Планка. В 1926 г. российские физики П. И. Лукирский (1894--1954) и С. С. Прилежаев для исследования фотоэффекта применили метод вакуумного сферического конденсатора. Анодом в их установке служили посеребренные стенки стеклянного сферического баллона, а катодом -- шарик (R 1,5 см) из исследуемого металла, помещенный в центр сферы. В остальном схема принципиально не отличается от описанной на рис. 289.

Такая форма электродов позволила увеличить наклон вольт-амперных характеристик и тем самым более точно определять задерживающее напряжение U0 (а следовательно, и h). Значение h, полученное из данных опытов, согласуется со значениями, найденными другими методами (по излучению черного тела (§ 200) и по коротковолновой границе сплошного рентгеновского спектра (§ 299)). Все это является доказательством правильности уравнения Эйнштейна, а вместе с тем и его квантовой теории фотоэффекта.

Если интенсивность света очень большая (лазерные пучки; см. § 233), то возможен многофотонный (нелинейный) фотоэффект, при котором электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от N фотонов (N=27). Уравнение Эйнштейна для многофотонного фотоэффекта

В опытах с фокусируемыми лазерными пучками плотность фотонов очень большая, поэтому электрон может поглотить не одни, а несколько фотонов. При этом электрон может приобрести энергию, необходимую для выхода из вещества, даже под действием света с частотой, меньшей красной границы -- порога однофотонного фотоэффекта. В результате красная граница смещается в сторону более длинных волн.

Идея Эйнштейна о распространении света в виде потока отдельных фотонов и квантовом характере взаимодействия электромагнитного излучения с веществом подтверждена в 1922 г. опытами А. Ф. Иоффе и H. И. Добронравова.

В электрическом поле плоского конденсатора уравновешивалась заряженная пылинка из висмута. Нижняя обкладка конденсатора изготовлялась из тончайшей алюминиевой фольги, которая являлась одновременно анодом миниатюрной рентгеновской трубки. Анод бомбардировался ускоренными до 12 кВ фотоэлектронами, испускаемыми катодом под действием ультрафиолетового излучения. Освещенность катода подбиралась столь слабой, чтобы из него в 1 с вырывалось лишь 1000 фотоэлектронов, а следовательно, и число рентгеновских импульсов было 1000 в 1 с. Опыт показал, что в среднем через каждые 30 мин уравновешенная пылинка выходила из равновесия, т. е. рентгеновское излучение освобождало из нее фотоэлектрон.

Если бы рентгеновское излучение распространялось в виде сферических волн, а не отдельных фотонов, то каждый рентгеновский импульс отдавал бы пылинке очень малую часть своей энергии, которая распределялась бы, в свою очередь, между огромным числом электронов, содержащихся в пылинке. Поэтому при таком механизме трудно вообразить, что один из электронов за такое короткое время, как 30 мин, может накопить энергию, достаточную для преодоления работы выхода из пылинки. Напротив, с точки зрения корпускулярной теории это возможно. Так, если рентгеновское излучение распространяется в виде потока дискретных фотонов, то электрон выбивается из пылинки только тогда, когда в нее попадает фотон. Элементарный расчет для выбранных условий дает, что в среднем в пылинку попадает один фотон из 1,8106. Так как в 1 с вылетает 1000 фотонов, то в среднем в пылинку будет попадать один фотон в 30 мин, что согласуется с результатами опыта.

Если свет представляет собой поток фотонов, то каждый фотон, попадая в регистрирующий прибор (глаз, фотоэлемент), должен вызывать то или иное действие независимо от других фотонов. Это же означает, что при регистрации слабых световых потоков должны наблюдаться флуктуации их интенсивности. Эти флуктуации слабых потоков видимого света действительно наблюдались С. И. Вавиловым. Наблюдения проводились визуально. Глаз, адаптированный к темноте, обладает довольно резким порогом зрительного ощущения, т. е. воспринимает свет, интенсивность которого не меньше некоторого порога. Для света с =525 нм порог зрительного ощущения соответствует у разных людей примерно 100--400 фотонам, падающим на сетчатку за 1 с. С. И. Вавилов наблюдал периодически повторяющиеся вспышки света одинаковой длительности. С уменьшением светового потока некоторые вспышки уже не воспринимались глазом, причем чем слабее был световой поток, тем больше было пропусков вспышек. Это объясняется флуктуациями интенсивности света, т. е. число фотонов оказывалось по случайным причинам меньше порогового значения. Таким образом, опыт Вавилова явился наглядным подтверждением квантовых свойств света.

5.39 Применение фотоэффекта

На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в различных областях науки и техники. В настоящее время практически невозможно указать отрасли производства, где бы не использовались фотоэлементы -- приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.

Простейшим фотоэлементом с внешним фотоэффектом является вакуумный фотоэлемент. Он представляет собой откачанный стеклянный баллон, внутренняя поверхность которого (за исключением окошка для доступа излучения) покрыта фоточувствительным слоем, служащим фотокатодом. В качестве анода обычно используется кольцо или сетка, помещаемая в центре баллона. Фотоэлемент включается в цепь батареи, э.д.с. которой выбирается такой, чтобы обеспечить фототок насыщения. Выбор материала фотокатода определяется рабочей областью спектра: для регистрации видимого света и инфракрасного излучения используется кислородно-цезиевый катод, для регистрации ультрафиолетового излучения и коротковолновой части видимого света -- сурьмяно-цезиевый.

Вакуумные фотоэлементы безынерционны, и для них наблюдается строгая пропорциональность фототока интенсивности излучения. Эти свойства позволяют использовать вакуумные фотоэлементы в качестве фотометрических приборов, например фотоэлектрический экспонометр, люксметр (измеритель освещенности) и т. д.

Для увеличения интегральной чувствительности вакуумных фотоэлементов (фототок насыщения, приходящийся на 1 лм светового потока) баллон заполняется разреженным инертным газом (Аr или Ne при давлении 1,313 Па). Фототок в таком элементе, называемом газонаполненным, усиливается вследствие ударной ионизации молекул газа фотоэлектронами. Интегральная чувствительность газонаполненных фотоэлементов ( 1 мА/лм) гораздо выше, чем для вакуумных (20--150 мкА/лм), но они обладают по сравнению с последними большей инерционностью (менее строгой пропорциональностью фототока интенсивности излучения), что приводит к ограничению области их применения.

Для усиления фототока применяются уже рассмотренные выше (см. рис. 155) фотоэлектронные умножители, в которых наряду с фотоэффектом используется явление вторичной электронной эмиссии (см. § 105). Размеры фотоэлектронных умножителей немного превышают размеры обычной радиолампы, общий коэффициент усиления составляет 107 (при напряжении питания 1--1,5 кВ), а их интегральная чувствительность может достигать 10 А/лм. Поэтому фотоэлектронные умножители начинают вытеснять фотоэлементы, правда, их применение связано с использованием высоковольтных стабилизированных источников питания, что несколько неудобно.

Фотоэлементы с внутренним фотоэффектом, называемые полупроводниковыми фотоэлементами или фотосопротивлениями (фоторезисторами), обладают гораздо большей интегральной чувствительностью, чем вакуумные. Для их изготовления используются PbS, CdS, PbSe и некоторые другие полупроводники. Если фотокатоды вакуумных фотоэлементов и фотоэлектронных умножителей имеют красную границу фотоэффекта не выше 1,1 мкм, то применение фотосопротивлений позволяет производить измерения в далекой инфракрасной области спектра (34 мкм), а также в областях рентгеновского и гамма-излучений. Кроме того, они малогабаритны и имеют низкое напряжение питания. Недостаток фотосопротивлений -- их заметная инерционность, поэтому они непригодны для регистрации быстропеременных световых потоков.

Фотоэлементы с вентильным фотоэффектом, называемые вентильными фотоэлементами (фотоэлементами с запирающим слоем), обладая, подобно элементам с внешним фотоэффектом, строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность (примерно 2--30 мА/лм) и не нуждаются во внешнем источнике э.д.с. К числу вентильных фотоэлементов относятся германиевые, кремниевые, селеновые, купроксные, сернисто-серебряные и др.

Кремниевые и другие вентильные фотоэлементы применяются для создания солнечных батарей, непосредственно преобразующих световую энергию в электрическую. Эти батареи уже в течение многих лет работают на космических спутниках и кораблях. К.п.д. этих батарей составляет 10% и, как показывают теоретические расчеты, может быть доведен до 22%, что открывает широкие перспективы их использования в качестве источников электроэнергии для бытовых и производственных нужд.

Рассмотренные виды фотоэффекта используются также в производстве для контроля, управления и автоматизации различных процессов, в военной технике для сигнализации и локации невидимым излучением, в технике звукового кино, в различных системах связи и т. д.

5.40 Масса и импульс фотона. Давление света

Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями (квантами), названными фотонами. Энергия фотона 0=h. Его масса находится из закона взаимосвязи массы и энергии (см. (40.8)):

(205.1)

Фотон -- элементарная частица, которая всегда (в любой среде!) движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя.

Импульс фотона р получим, если в общей формуле (40.7) теории относительности положим массу покоя фотона = 0:

(205.2)

Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Выражения (205.1), (205.2) и (200.2) связывают корпускулярные характеристики фотона -- массу, импульс и энергию -- с волновой характеристикой света -- его частотой .

Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.

Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота ), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади поверхности тела падает N фотонов, то при коэффициенте отражения света от поверхности тела N фотонов отразится, а (1-)N -- поглотится. Каждый поглощенный фотон передаст поверхности импульс

p=h/c,

а каждый отраженный --

2p=2h/c

(при отражении импульс фотона изменяется на -p). Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:

Nh=Ee есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т. е. энергетическая освещенность поверхности (см. § 168), a Ee/c=w -- объемная плотность энергии излучения. Поэтому давление, производимое светом при нормальном падении на поверхность,

(205.3)

Формула (205.3), выведенная на основе квантовых представлений, совпадает с выражением, получаемым из электромагнитной (волновой) теории Максвелла (см. § 163).

Таким образом, давление света одинаково успешно объясняется и волновой, и квантовой теорией. Как уже говорилось (см. § 163), экспериментальное доказательство существования светового давления на твердые тела и газы дано в опытах П. И. Лебедева, сыгравших в свое время большую роль в утверждении теории Максвелла. Лебедев использовал легкий подвес на тонкой нити, по краям которого прикреплены легкие крылышки, одни из которых зачернены, а поверхности других зеркальные. Для исключения конвекции и радиометрического эффекта (см. § 49) использовалась подвижная система зеркал, позволяющая направлять свет на обе поверхности крылышек, подвес помещался в откачанный баллон, крылышки подбиралась очень тонкими (чтобы температура обеих поверхностей была одинакова).

Световое давление на крылышки определялось по углу закручивания нити подвеса и совпадало с теоретически рассчитанным. В частности оказалось, что давление света на зеркальную поверхность вдвое больше, чем на зачерненную (см. (205.3)).

5.41 Эффект Комптона и его элементарная теория

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892--1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веществами с легкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение. Опыты показали, что разность

='-

не зависит от длины волны падающего излучения и природы рассеивающего вещества, а определяется только углом рассеяния :

(206.1)

где ' -- длина волны рассеянного излучения, С -- комптоновская длина волны (при рассеянии фотона на электроне С= 2,426 пм).

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и -излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу, т. е. представляет собой поток фотонов, то эффект Комптона -- результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения.

Рассмотрим упругое столкновение двух частиц (рис. 291) -- налетающего фотона, обладающего импульсом

p = h/c

и энергией

=h,

с покоящимся свободным электроном (энергия покоя W0=m0c2; т0--масса покоя электрона). Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения. При каждом столкновении выполняются законы сохранения энергии и импульса.

Согласно закону сохранения энергии,

(206.2)

а согласно закону сохранения импульса,

(206.3)

где W0=m0c2 -- энергия электрона до столкновения,

=h

-- энергия налетающего фотона,

W=

-- энергия электрона после столкновения (используется релятивистская формула, так как скорость электрона отдачи в общем случае значительна),

-- энергия рассеянного фотона. Подставив в выражение (206.2) значения величин и представив (206.3) в соответствии с рис. 291, получим

(206.4)

(206.5)

Решая уравнения (206.4) и (206.5) совместно, получим

Поскольку

= c/, ' = c/' и = ' - ,

получим

(206.6)

Выражение (206.6) есть не что иное, как полученная экспериментально Комптоном формула (206.1). Подстановка в нее значений h, m0 и с дает комптоновскую длину волны электрона

C = h/(m0c) = 2,426 пм.

Наличие в составе рассеянного излучения несмещенной линии (излучения первоначальной длины волны) можно объяснить следующим образом. При рассмотрении механизма рассеяния предполагалось, что фотон соударяется лишь со свободным электроном. Однако если электрон сильно связан с атомом, как это имеет место для внутренних электронов (особенно в тяжелых атомах), то фотон обменивается энергией и импульсом с атомом в целом. Так как масса атома по сравнению с массой электрона очень велика, то атому передается лишь ничтожная часть энергии фотона. Поэтому в данном случае длина волны ' рассеянного излучения практически не будет отличаться от длины волны падающего излучения.

Из приведенных рассуждений следует также, что эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным.

...

Подобные документы

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.

    шпаргалка [7,1 M], добавлен 30.10.2010

  • Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.

    учебное пособие [10,2 M], добавлен 10.05.2010

  • Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.

    реферат [751,3 K], добавлен 14.01.2010

  • Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие [686,6 K], добавлен 26.02.2008

  • Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.

    реферат [18,6 K], добавлен 27.05.2003

  • Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.

    статья [77,4 K], добавлен 07.05.2002

  • Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.

    шпаргалка [243,2 K], добавлен 14.05.2011

  • Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева - Клапейрона).

    презентация [972,4 K], добавлен 06.12.2013

  • Закон сохранения импульса. Ускорение свободного падения. Объяснение устройства и принципа действия динамометра. Закон сохранения механической энергии. Основные модели строения газов, жидкостей и твердых тел. Примеры теплопередачи в природе и технике.

    шпаргалка [168,0 K], добавлен 15.12.2009

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.

    презентация [12,0 M], добавлен 28.06.2015

  • Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.

    контрольная работа [29,8 K], добавлен 16.08.2009

  • Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.

    реферат [1,7 M], добавлен 01.11.2013

  • Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.

    шпаргалка [250,6 K], добавлен 29.11.2009

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.