Основы информатики

Основные возможности Интернет. Основы структурного программирования. Выполнение расчетов на компьютерах. Элементы языка Пролог. Технология дистанционного обучения. Средства обработки данных. Анализ правильности алгоритмов. Элементы математической логики.

Рубрика Программирование, компьютеры и кибернетика
Вид учебное пособие
Язык русский
Дата добавления 25.11.2013
Размер файла 606,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

мама (Люба, Оля); - Люба - мама Оли

оценка (Вова, физика, 5); - Вова имеет 5 по физике

Обобщенные сведения в базах знаний записываются в форме правил вывода, выражающих определения понятий. Примеры обобщенных сведений:

бабушка (х, z) мама (х, у), мама (у, z) - бабушка - это мама мамы

двоечник (х) оценка (х, _ ,2) - двоечник - тот, у кого есть двойки

Используя совокупность конкретных и обобщенных фактов и правил, компьютеры могут давать ответы на широкий круг осмысленных вопросов. Для этого соответствующая база знаний с соответствующей системой понятий должна храниться в памяти ЭВМ.

Базы знаний могут содержать правила вывода следующих видов:

- правила определения понятий;

- правила принятия решений;

- способы решения задач;

- правила поведения и т. п.

При определении новых понятий необходимо различать их объем и содержание. Объем понятия - это совокупность вещей или явлений, отвечающих данному понятию. Объем понятий соотносит словам и терминам соответствующие объекты предметной области.

Содержание понятия - это совокупность логических признаков, выделяющих объекты, отвечающие данному понятию, среди других объектов. С логической точки зрения определение понятия представляет описание совокупности признаков, характеризующих его содержание.

Приведем примеры определения понятий.

1. Понятие «мама». Объем понятия - совокупность всех мам. Содержание понятия - женщина, имеющая детей. Формализация понятия на Прологе может выражаться конкретными фактами. Примеры:

мама (Люба, Оля); - Люба - мама Оли

мама (Зина, Люба); - Зина - мама Любы

2. Понятие - «бабушка». Объем понятия - совокупность всех бабушек. Содержание понятия - «бабушка - это мама мамы или папы». Формализация этого понятия на Прологе:

бабушка (х, z) мама (х, у), мама (у, z); - бабушка - это мама мамы

бабушка (х, z) мама (х, у), папа (у, z); - бабушка - это мама папы

3. Понятие «музыкант». Объем понятия - совокупность людей, занимающихся музыкой. Содержание понятия - «музыкант - человек, который любит музыку и занимается музыкой». Это понятие на языке Пролог можно записать в виде правила:

музыкант (х) любит (х, музыка), занятие (х, музыка).

4. Понятие «студент». Объем и содержание понятия - учащиеся в вузах, университетах и колледжах. Определение этого понятия на Прологе можно записать в виде набора правил:

студент (х) занятие (х, учеба), место (х, университет);

студент (х) занятие (х, учеба), место (х, институт);

студент (х) занятие (х, учеба), место (х, колледж);

Для создания сложных баз знаний может понадобиться целая система понятий, характеризующих объекты в заданной предметной области. Эта система определений базируется на наборе признаков, где каждый признак является характеристикой некоторого объекта.

Примеры признаков объектов и соответствующих значений:

цвет - красный, белый, зеленый, черный и т.д.;

вес - определяется в килограммах;

возраст - определяется в годах: 1, 2, 3, ...

Примеры записи признаков на Прологе:

возраст (Иванов, 18);

вес (Иванов, 85);

цвет (Иванов, глаза, синий);

цвет (Иванов, волосы, белый);

Основные возможности баз знаний:

- поиск ответов на сложные вопросы;

- логическая обработка данных;

- моделирование процедур принятия решений;

- обновление и ввод дополнительных данных;

- вывод информации в естественно-языковой форме;

- создание новых баз знаний.

Вопросы

1. Что такое базы знаний?

2. Как записываются факты на языке Пролог?

3. Как записываются вопросы на языке Пролог?

4. Как записываются правила на языке Пролог?

5. Что такое содержание понятий?

6. Каковы основные возможности баз знаний?

Задачи

1. Составьте базу знаний о книгах в библиотеке. Включите следующие сведения: название книги, жанр книги, автор, главный герой, страна.

2. Составьте базу данных о собаках и кошках у ваших знакомых. В базу включите сведения об их породе, возрасте, кличках.

3. Составьте базу знаний о соревнованиях. База должна содержать две группы фактов.

Первая группа фактов - сведения о командах: названия команды, города, тренер.

Вторая группа фактов - сведения о матчах: даты, команды и счет.

3.5 Законы логического вывода

Умение делать выводы - основная способность любого интеллекта. Основным признаком интеллекта являются знания и умения решать определенные задачи. Основой этих интеллектуальных умений являются законы и принципы логического вывода.

Законы человеческого мышления изучаются логикой и психологией. Принципы искусственного интеллекта разрабатываются в математической логике и информатике на основе методов машинного доказательства теорем и постановки экспериментов на ЭВМ.

Знание законов логического вывода позволяет выверять правильность рассуждений, доказательств, а также находить ошибочные утверждения. Незнание или нарушение этих законов и принципов приводит к логическим ошибкам и принятию неправильных решений.

В качестве иллюстраций рассмотрим базу знаний о семье. Пусть в семье есть дочь Оля, сын Сережа, мама Надя, папа Коля, бабушка Зина и дедушка Миша:

Соответствующая база данных на языке Пролог:

мама (Зина, Надя); папа (Миша, Надя);

мама (Надя, Оля); папа (Коля, Оля);

мама (Надя, Сережа); папа (Коля, Сережа);

Система Пролог при наличии этих фактов в памяти ЭВМ даст следующие ответы на вопросы о «папах» и «мамах»:

? мама (Надя, Оля) - Надя - мама Оли?

да

? папа (Сережа, Надя) - Сережа - папа Нади?

нет

Машина, использующая систему Пролог, дает ответы строго в соответствии с определенными логическими законами и принципами логического вывода. Разберем эти законы и принципы.

Законы логики - это общие законы логического вывода, используемые для вывода различных умозаключений. Наличие интеллекта и у компьютеров и у людей определяется прежде всего способностями делать выводы и умозаключения в различных ситуациях.

Закон противоречия - первый общий закон логики. Этот закон впервые высказал Аристотель - основатель логики как научной дисциплины:

А и не А - Не могут быть истинны одновременно

ложь суждение и его отрицание

Примеры противоречивых утверждений:

1) «яблоко - спелое»;

«яблоко - неспелое»;

2) «треугольник АВС - прямоугольный»;

«стороны треугольника равны друг другу».

Высказывание противоречивых суждений и утверждений является примером серьезных логических ошибок. Наличие противоречий говорит о некотором умысле либо о нарушениях в сознании.

В системе Пролог закон противоречия лежит в основе механизмов вывода ответов на вопросы. А именно, система Пролог для каждого вопроса формирует его отрицание и для этого отрицания ищет противоречие по отношению к фактам и правилам в базе знаний, хранящейся в памяти.

Так, вопрос ? мама (Надя, Оля) ЭВМ преобразует в отрицание не мама (Надя, Оля) и временно присоединяет его к базе знаний. При этом получившаяся база становится противоречивой и система Пролог объявляет отрицание ложным и выводит ответ ДА.

Закон исключения третьего - второй общий закон логики, указанный Аристотелем:

А или не А - Истинно суждение либо его отрицание,

истина третьего не дано.

Примеры взаимоисключающих утверждений:

1) «Сегодня будет дождь» или «Сегодня дождя не будет».

2) «Любой треугольник правильный либо в нем есть разные стороны».

Принципы логического вывода в системе Пролог отличаются от законов Аристотеля, поскольку его законы выражаются на языке высказываний, а работа системы Пролог основана на использовании предикатов.

Соответствующая запись законов логики на языке исчисления предикатов представляет конструктивные процедуры, позволяющие осуществлять конкретные логические выводы из общих правил и конкретных фактов.

Закон противоречия в записи на языке исчисления предикатов преобразуется в процедуру вывода ответов на простейшие вопросы вида ? А(с):

А(х) и не А(с) - При противоречии А(х) и не А(с)

ложь, при х = с контрпримером служит х = с.

Содержательный смысл: При противоречии А(х) и не А(с) контрпримером служит х = с. Здесь х - переменная, а с - конкретное значение, при котором отрицание ответа оказывается ложным. Это значение х = с выводится системой Пролог в качестве ответа на поставленный вопрос. Примеры такого рода вопросов и ответов:

? папа (х, Коля) - Кто папа у Коли ?

нет

? папа (х, Оля) - Кто папа у Оли ?

х = Коля

? мама (х, у) - Что известно о мамах?

х = Зина у = Надя

х = Надя у = Оля

Закон двойного отрицания - третий общий закон логики. Этот закон также был высказан Аристотелем:

не (не А) - Если неверно отрицание,

А то суждение - истинно

Примеры рассуждений.

1) Неверно, что «Вчера не было дождя».

Следовательно, «Вчера был дождь».

2) Неправда, что «это сделал не Саша».

Следовательно, «это сделал Саша». (?)

Из второго примера видно, что закон двойного отрицания является косвенным доказательством, поскольку оно не опирается на факты или аргументы. По этим причинам закон двойного отрицания может оказаться ошибочным и этот закон не является общезначимым (верным для всех случаев и ситуаций).

Правильность утверждений и рассуждений даже при безупречной логике доказательств зависит от достоверности исходных фактов и положений. Эту идею выражает четвертый общий логический закон - закон достаточных оснований, впервые сформулированный Лейбницем - создателем одной из самых первых механических вычислительных машин и основателем исчисления предикатов.

Закон достаточных оснований:

Всякое утверждение должно предполагать существование аргументов и фактов, достаточных для его обоснования.

Иными словами, любое утверждение должно предполагать наличие набора конкретных фактов и правил, из которых должно вытекать утверждаемое. Нарушениями это закона являются рассуждения, опирающиеся на недостоверные факты или положения, истинность которых не проверяется, а принимается на веру.

Пример рассуждений, не имеющих достаточных оснований:

1. «Если дорогу перебежала черная кошка, то быть неприятностям».

2. «Это верно, потому что это - справедливо».

Экспертные системы на ЭВМ с этой точки зрения должны создаваться исключительно на основе достоверных данных и общих правил вывода, проверенных практикой. Включение в базу знаний недостоверных данных или неподтвержденных обобщений и правил может привести к появлению ошибок и получению неправильных решений.

Причина такой работы экспертных систем состоит в том, что компьютеры могут делать выводы и умозаключения только исходя из фактов и правил, имеющихся в базе знаний, и только из этих данных - и ничего другого. Практическую ценность для систем машинного интеллекта представляют принципы логического вывода на основе не только фактов, но и правил.

Закон логического вывода modus ponens - первый закон, указанный Аристотелем:

А В, А - Если из А следует В и посылка А истинна,

В то выполняется и следствие В.

Примеры применения правила логического вывода.

1. «Если идет дождь, то на улице мокро».

«Пошел дождь».

Следовательно, «на улице мокро».

2. «Если кому-то весело, то он улыбается».

«Маша развеселилась».

Следовательно, «Маша улыбается».

В предикатной форме закон логического вывода превращается в процедуру вывода новых сведений из имеющихся общих правил и конкретных фактов:

А(х) В(х), А(с) - Если из А(х) следует В(х) и А(х) выполнено

В(с) для х = с, то выполняется В (с).

Данная процедура из конкретного факта А(с) и общего правила логического вывода А(х) В(х) позволяет вывести новое конкретное утверждение В(с). Иными словами, эта процедура вывода позволяет выводить новые конкретные сведения из общих правил и уже известных конкретных фактов.

Следовательно, знание и применение законов логического вывода позволяет порождать новые сведения, являющиеся логическим следствием уже известных сведений. Этим свойством и этими законами могут пользоваться не только люди - они применяются в системах машинного интеллекта.

Закон вывода отрицаний - второй закон логического вывода:

А В, не В - Если из А следует В, но следствие В ложно,

не А то не выполняется посылка А.

Примеры логического вывода из отрицаний.

1. «Если идет дождь, то на улице мокро».

«На улице сухо».

Следовательно, «На улице не было дождя».

2. «Если кому-то весело, то он улыбается».

«Вова не улыбается».

Следовательно, «Вове не весело».

В предикатной форме закон вывода отрицаний превращается в конструктивную процедуру вывода отрицаний:

А(х) В(х), не В(с) - Если из А(х) следует В(х), но В не выполнено

не А(с) для х = с, то не выполняется и А(с).

Данная процедура из конкретного отрицания следствия не В(с) и общего правила А(х) В(х) выводит конкретное отрицание не А(с) предпосылки при х = с. Эта процедура используется в системе Пролог как основной механизм поиска ответов на сложные вопросы, в которых участвуют определяемые предикаты.

В качестве иллюстраций дополним рассмотренную базу знаний о семье набором правил на языке Пролог, выражающих понятие «родитель»:

родитель (х, у) мама (х, у); - Мама - родитель

родитель (х, у) папа (х, у); - Папа - родитель

После ввода этих правил в ЭВМ система Пролог на вопросы о родителях выдаст такие ответы при указанной выше базе данных:

? родитель (Надя, х) - Кому родитель Надя ?

х = Оля

х = Сережа

Вывод ответов на эти вопросы система Пролог проводит следующим образом. Во-первых, вопрос ? родитель (Надя, х) будет заменен на отрицание не родитель (Надя, х). Далее это отрицание будет сопоставлено с правилом вывода родитель (х, у) мама (х, у), а затем с правилом родитель (х, у) папа (х, у).

Применение этой же процедуры вывода ко второму определению родитель (х, у) папа (х, у) даст отрицание не папа (Надя, х), означающее утверждение «Надя не является папой никому». Для этого утверждения компьютер не имеет в базе данных никаких соответствующих фактов и после просмотра базы знаний по этому варианту выдает ответ НЕТ.

Применение к отрицанию не родитель (Надя, х) и определению родитель (х, у) мама (х, у) рассматриваемой процедуры приводит к выводу утверждения не мама (Надя, х), означающему «Надя не является мамой никому». Для этого отрицания машина найдет два конкретных противоречащих ему факта мама (Надя, Оля) и мама (Надя, Сережа). Используя конструктивную процедуру вывода ответов из отрицаний, компьютер даст два конкретных ответа - х = Оля и х = Сережа.

Закон тождества - четвертый общий логический закон, указанный Аристотелем:

«Предмет рассмотрения должен быть определен и не должен меняться до конца обсуждения»

Данный закон носит фундаментальный характер для работы экспертных систем - правильные выводы и решения могут быть получены от экспертных систем только при строгом совпадении определений вещей из рассматриваемой предметной области.

Расхождения в понимании и определении предметных понятий могут приводить и, как правило, приводят к логическим ошибкам и получению неправильных выводов и результатов, что наблюдается среди людей, не обладающих необходимыми профессиональными знаниями.

Примером нарушения закона тождества является подмена предмета, когда два собеседника осознанно или неосознанно говорят о разных вещах, что приводит их к непониманию, спорам и разногласиям. Классический пример нарушения - ситуация: «я - про Фому, а он - про Ерему».

В системе Пролог и в системах искусственного интеллекта вывод ответов на сложные вопросы основан на принципе унификации (взаимосогласования) ответов. По этой причине экспертные системы на ЭВМ в отличии от людей могут производить вывод ответов на сложные вопросы только в соответствии с принципом унификации.

Принцип унификации ответов состоит в том, что общие переменные во взаимосвязанных вопросах должны получать одинаковые значения. Пример ответа на сложносоставной вопрос, состоящий из двух подвопросов:

? мама (z, у), мама (у, Оля) - Кто мама у мамы Оли?

z = Зина

у = Надя

Вывод ответов на сложносоставные вопросы состоит в выделении подвопросов и поиске на них ответов по частям:

? мама (z, у), мама (у, Оля)

\

? мама (z, у) ?мама (у, Оля)

\

z = Зина у = Надя

В данном примере общим элементом в выделяемых подвопросах ? мама (z, у) и ? мама (у, Оля) является переменная «у». Ответом на первый подвопрос ? мама (z, у) будут значения z = Зина и у = Надя. Ответы на второй подвопрос ? мама (у, Оля) в соответствии с принципом взаимосогласования будет проводиться для значения у = Надя.

Принцип вывода взаимосогласованных ответов в системе Пролог распространяется и на сложносоставные правила, включаемые в базы знаний и процедуры логического вывода. Приведем примеры сложных определений:

бабушка (z, х) мама (z, у), мама (у, х);

бабушка (z, х) мама (z, у), папа (у, х);

дедушка (z, х) папа (z, у), мама (у, х);

дедушка (z, х) папа (z, у), папа (у, х);

При наличии этих правил в памяти ЭВМ можно получить следующие вопросы о бабушках и дедушках:

? бабушка (z, Оля) - Кто бабушка у Оли?

z = Зина

? дедушка (z, Надя) - Кто дедушка у Нади?

нет

Принцип унификации в системе и языке Пролог является общим механизмом логического вывода ответов на сложные вопросы в базах знаний на Прологе и тем самым - конструктивной реализацией закона тождества для машинных систем искусственного интеллекта. Таким образом работа экспертных систем на ЭВМ основана строго на выполнении требований законов логики - закона тождества и закона достаточных оснований.

Вопросы

1. В чем состоит закон противоречия?

2. В чем заключается закон исключения третьего?

3. Как используется закон вывода следствий?

4. Как используется закон отрицания следствий?

5. В чем недостатки закона двойного отрицания?

6. В чем состоит закон достаточных оснований?

7. В чем заключается закон тождества?

8. В чем состоит принцип унификации?

9. Как согласуются ответы на сложные вопросы?

3адания

1. Укажите примеры двойного отрицания для утверждений:

а) «сегодня был дождь»; в) «х = 2» и «х = 3»;

б) «х = 0» или «у = 0»; г) «5 не делится на 2 и на 3».

2. Пусть утверждение А «прошел дождь», а утверждение В «на улице сыро». Истинны ли следующие суждения?

а) А В (прямое доказательство);

б) В А (обратное доказательство);

в) не А не В (противоположное доказательство);

г) не В не А (противоположное обратному).

3. Предложите систему признаков и понятий для описаний

а) класса «Млекопитающие»; в) класса «Рыбы»;

б) класса «Птицы»; г) класса «Насекомые».

В систему понятий введите следующие признаки: окрас, продолжительность жизни, умения ползать, летать, ходить и т. д.

4. Составьте базу знаний по всемирной географии. В базу знаний включите сведения о странах: название столицы, число жителей, тип государства, размеры страны, континент.

5. Составьте базу знаний по городам своей страны. В базу знаний включите сведения о размерах городов, числе жителей, расстоянии от столицы, названии самых крупных заводов, фабрик, музеев, стадионов и т. п.

6. Составьте базы данных

а) по литературе; г) по истории;

б) по зоологии; д) по ботанике;

в) об автомобилях; е) по кулинарии.

Глава 4. ОСНОВЫ АЛГОРИТМИЗАЦИИ И ПРОГРАММИРОВАНИЯ

4.1. Основные свойства алгоритмов

Алгоритм относится к фундаментальным понятиям информатики. На понятии алгоритма построено все основные принципы программирования - составления программ для вычислительных машин.

Алгоритм - это совокупность действий со строго определенными правилами выполнения. В информатике изучаются различного рода алгоритмы - диалоговые алгоритмы, алгоритмы обработки данных, вычислительные алгоритмы, алгоритмы управления роботами, станками и другими техническими устройствами.

Пример диалогового алгоритма:

Алгоритм Блок-схема

алг «приветствие»

нач запрос («Ваше имя=», NN)

запрос («Ваше имя=», NN)

вывод («Добрый день», NN) вывод («Добрый день», NN)

кон

Для описания алгоритмов используются блок-схемы, изображенные справа, или структурированная запись, приведенная слева. Блок-схемы наглядны. Однако блок-схемы трудно рисовать, в них сложно вносить изменения и исправления из-за сложности перерисовки рамок и стрелок. Однако блок-схемы до сих пор требуются отечественными стандартами на документирование программ.

Достоинство записи алгоритмов и программ в структурированной форме заключается в простоте их чтения и ввода с экрана ЭВМ, а также в простоте внесения изменений и исправлений с использованием даже самых простейших редакторов тестов. По этим причинам зарубежом блок-схемы уже давно не используются ни для документирования, ни для обучения, а все современные языки построены на принципах структурного программирования.

Приведем примеры описания алгоритма и программы в структурированной записи:

Алгоритм Программа

алг «приветствие» ' приветствие

нач сls

запрос («Ваше имя=», NN) input «Ваше имя=», NN$

вывод («Добрый день», NN) print «Добрый день», NN$

кон end

Алгоритм, приведенный слева, записан на псевдокоде. Псевдокод - это язык записи структурированных алгоритмов в качестве документации к программам для ЭВМ. Особенность псевдокода заключается в том, что описания на нем выполняются на родном языке -- русском, английском, украинском, казахском, немецком и т. п.

Программа, приведенная справа, записана на языке Бейсик - языке программирования персональных ЭВМ. Языками программирования называются формализованные языки, используемые для записи программ на ЭВМ. Одним из них является язык Бейсик.

Достоинства псевдокода заключаются в том, что описания алгоритмов, записанные на родном языке, намного проще читать и понимать, чем запись программ на языке с иностранной лексикой. По этим причинам псевдокод используется как основное средство документирования программ во всех ведущих фирмах, занимающихся разработкой программ.

С точки зрения информатики алгоритмы, записанные в такой обобщенной записи, позволяют выразить общую логику работы программ, независимо от используемых языков программирования и типов ЭВМ. При этом алгоритмы, записанные в такой обобщенной форме, могут быть реализованы с помощью различных языков программирования для самых различных типов ЭВМ.

В качестве примера приведем реализацию этого же диалогового алгоритма на самой ранней версии языка Бейсик, использовавшегося на самых первых персональных компьютерах:

Алгоритм Программа

алг «приветствие» 10 ' приветствие

нач 20 сls

запрос («Ваше имя=», NN) 30 input «Ваше имя=», NN$

вывод («Добрый день», NN) 40 print «Добрый день», NNS

кон 50 end

Основные свойства алгоритмов и программ для вычислительных машин - однозначность, результативность, правильность и массовость. Этими свойствами алгоритмы отличаются от различного рода расплывчатых и неоднозначных предписаний, инструкций и кулинарных рецептов, которые могут толковаться и исполняться многими способами.

Однозначность алгоритмов - это однозначность правил их выполнения. Следствием этого свойства алгоритмов является однозначность результатов их выполнения в одинаковых начальных условиях. Это не всегда верно для кулинарных рецептов, когда разные исполнители в одних и тех же условиях могут придавать различный вкус и пикантность одним и тем же блюдам.

Результативность - это завершение выполнения алгоритмов определенными результатами. Результативность - наиболее важное свойство алгоритмов и программ, предназначенных для решения прикладных задач. Алгоритмы и программы, не дающие результатов или ведущие к сбоям и отказам, никому не нужны.

Массовость - это возможность применения алгоритмов в различных конкретных исходных условиях. Массовые алгоритмы особенно важны для решения прикладных задач, когда алгоритмы и программы должны обеспечить решение целого класса задач, различающихся исходными данными.

Правильность алгоритмов определяется правильностью результатов, получаемых с их помощью. По этой причине правильность алгоритмов и программ является относительным понятием. Оценка правильности может проводиться только при наличии требований к конечным результатам.

Алгоритм считается правильным, если он дает правильные результаты для любых допустимых начальных условиях. Правильность алгоритмов гарантирует правильность результатов их выполнения.

Алгоритм содержит ошибки, если его выполнение может привести к отказам, сбоям или неправильным результатам, либо вовсе не дает никаких результатов. Эти ошибки называются алгоритмическими. Алгоритмы и программы, содержащие такие ошибки, могут нанести вред или ущерб тем, кто захочет ими воспользоваться.

Для оценки правильности алгоритмов и программ необходимо уметь оценивать результаты выполнения составляющих их действий и конечные результаты их выполнения в целом.

Простейшие виды машинных операций - операции присваивания. С помощью присваивании в алгоритмах описываются вычисления в программах для ЭВМ. Рассмотрим примеры операций присваивания и описания результатов их выполнения.

Присваивания: Результаты:

а := 0 а = 0

b := а + 1 b ' = а + 1 = 1

b := b + 1 b " = b' + 1 = 2

Запись присваиваний читается:

а := 0 - «переменной а присвоить значение 0»;

b := b + 1 - «переменной b присвоить значение b + 1».

Записи в колонке результатов читаются так:

а = 0 - «значение а равно 0»;

b' = b + 1 - «значение b' равно b + 1».

Здесь а и b - программные переменные - область машинной памяти, в которой хранятся их значения а и b. В отличии от обычных математических переменных программные переменные могут получать новые значения. В частности, присваивание b: = b + 1 записывает в программную переменную b новое значение b', равное величине b + 1, где b - прежнее значение переменной b.

Для описания результатов выполнения алгоритмов и программ могут и должны использоваться спецификации. Спецификации - это точные, математически строгие описания. Примерами спецификаций могут служить сценарии диалоговых программ.

Сценарии диалоговых алгоритмов и программ - это совокупность текстов, картинок и сообщений, появляющихся на экранах ЭВМ. Рассмотрим в качестве примера сценарий алгоритма рисования домика на экране ЭВМ.

Сценарий «Домик»

Решение - следующие алгоритм и программа, результатом работы которых должен быть приведенный выше рисунок:

Алгоритм Программа

алг «Домик» ' Домик

нач screen 2,0

линия (130,40)-( 100,100), красная line (150,40)-(100,100),8

линия (130,40)-(200,100), красная line (150,40)-(200,100),8

рамка(100,100)-(200,200), белая line (100,100)-(200,200),15,b

рамка(130,120)-(170,160), синяя line (130,120)-(170,160),3,b

кон end

Однако результатом выполнения приведенных алгоритма и программы будет следующий рисунок:

Экран ЭВМ

Причиной того, что на этом рисунке крыша «поехала» влево, являются алгоритмические ошибки - неправильный расчет координат крыши в алгоритме, из-за чего составленная программа дает не тот рисунок, который указан в сценарии.

Примером прикладного алгоритма и программы может служить следующий алгоритм расчета прибыли:

Алгоритм Программа

алг «расчет прибыли» ' расчет прибыли

нач сls

запрос («доходы =», d) input «доходы =», d

запрос («расходы =», r) input «расходы =», r

р: = d - r р = d - r

вывод («прибыль =», р) print «прибыль =», р

кон end

Сценарий диалога Протокол диалога

доходы =?<d> доходы =? 1000

расходы =? <г> расходы =? 700

прибыль = <р> прибыль = 300

Для проверки правильности алгоритма и программы необходима постановка задачи. Приведем строгую постановку решаемой задачи.

Задача: расчет прибыли.

Треб.: р - прибыль.

Дано: r - расходы;

d - доходы.

Где: d = r + р.

При: d > 0.

Для оценки правильности полученных результатов нужно сверить расходы и прибыль с доходами. В нашем случае это должно быть 700 + 300 = 1000, что выражает правильный конечный результат при указанных данных.

Для оценки правильности алгоритма и программы необходимо рассмотреть конечные результаты их выполнения при произвольных значениях данных d и г. Вычисляемая величина р по алгоритму будет равна

Операция Результат

р := d - r р = d - r

Подставляя в условие постановки задачи это значение, получаем:

d = r + p = r + (d - r) = d - верное тождество.

Таким образом, при любых значениях исходных данных результаты выполнения приведенного алгоритма будут правильными.

Вопросы

1. Что такое алгоритм?

2. Каковы основные виды алгоритмов?

3. Что такое однозначность алгоритмов?

4. Что такое результативность алгоритмов?

5. Что такое правильность алгоритмов?

6. Что такое массовость алгоритмов?

7. Что такое алгоритмические ошибки?

Задачи

1. Составьте сценарий, алгоритм и программу:

а) поздравления с Новым годом;

б) поздравления с Днем рождения;

в) регистрации даты рождения;

г) регистрации фамилии и имени.

2. Составьте сценарии диалога, алгоритм и программу:

а) расчета сдачи за товар;

б) расчета остатка от прибыли;

в) пересчета рубль/доллар;

г) расчета остатка времени до 18.00.

3. Составьте сценарий, алгоритм и программу вычислений:

а) времени движения по длине пути и скорости;

б) длины пути по времени и скорости движения;

в) средней скорости по времени и длине пути.

4. Составьте картинки, алгоритмы и программу рисования:

а) российского флага; г) украинского флага;

б) шведского флага; д) французского флага;

в) японского флага; е) британского флага.

5. Составьте сценарий, алгоритмы и программу на Бейсике вывода изображений:

а) яхты; д) автомобиля;

б) трактора; е) усадьбы;

в) дерева; ж) цветка;

г) рыбы; з) птицы.

4.2 Базовые средства программирования

Базовыми средствами программирования для персональных компьютеров считаются языки семейства Basic (Бейсик). Эти языки программирования имеются на всех персональных компьютерах и широко используются для обучения началам программирования в школах и вузах.

Бейсик является примером одного из лучших языков диалогового программирования для ЭВМ. По этой причине Бейсик оказался самым первым языком программирования самых первых персональных компьютеров, созданных фирмой Microsoft.

На персональных компьютерах IBM PC язык Бейсик имеет три версии, связанные с операционными системами для этих компьютеров, созданных и развиваемых фирмой Microsoft:

1) традиционный Бейсик (без ОС),

2) структурный Бейсик(МS DOS),

3) графический Бейсик (Windows).

Традиционный Бейсик полностью воспроизводит язык программирования самых первых персональных компьютеров, на которых отсутствовали операционные системы. В связи с прекращением производства этих компьютеров данная версия языка Бейсик потеряла свое прежнее значение и не используется на современных ЭВМ.

Структурный Бейсик под именем Quick Basic был создан вместе с первыми моделями персональных компьютеров IBM PC как базовое средство программирования в операционной системе MS DOS. Интерпретатор этой версии Бейсика имеется на всех персональных компьютерах IBM PC в качестве стандартной компоненты операционной системы MS DOS.

Графический Бейсик под именем язык Visual Basic был создан фирмой Microsoft в качестве базового средства программирования для новейших моделей компьютеров IBM PC с операционной системой Windows. Этот язык может использоваться только в среде Windows и только на старших моделях IBM PC.

Пример программы на традиционном языке Бейсик с комментариями, в которых записан реализованный в ней алгоритм.

Программа Алгоритм

10 ' поздравление ' алг «поздравление»

20 сls ' нач

30 nm$ = «Оля» ' пт$ = «Оля»

40 dn$ = «с днем рождения» ' dn$ = «с днем рождения»

50 print «Дорогая» + nm$ ' вывод «Дорогая» + пт$

60 print «Поздравляю тебя» ' вывод «Поздравляю тебя»

70 print dn$ ' вывод dn$

80 print «Желаю счастья» ' вывод «Желаю счастья»

90 print «Твой папа» ' вывод «Твой папа»

100 end ' кон

Программы на Бейсике состоят из операторов и комментариев. Каждый оператор соответствует некоторой операции, которую может выполнить компьютер. Комментарии включаются в тексты программ для их документирования.

Та же самая программа на структурном Бейсике:

Программа Алгоритм

' поздравление ' алг «поздравление»

сls ' нач

nm$ = «Оля» ' пт$ = «Оля»

dn$ = «с днем рождения» ' dn$ = «с днем рождения»

print «Дорогая» + nm$ ' вывод «Дорогая» + пт$

print «Поздравляю тебя» ' вывод «Поздравляю тебя»

print dn$ ' вывод dn$

print «Желаю счастья» ' вывод «Желаю счастья»

print «Твой папа» ' вывод «Твой папа»

end ' кон

Результатом выполнения на компьютере и той и другой программы будет появление на экране одного и того же текста:

Дорогая Оля

Поздравляю тебя

с днем рождения

Желаю счастья.

Твой папа.

В системе программирования QBasic на IBM PC программы могут записываться в обоих формах - с нумерацией и без нумерации строк. В версиях Бейсика для ЭВМ, не имеющих операционных систем, строки должны быть пронумерованы.

Основными свойствами программ для ЭВМ как одной из форм описания и разновидностей машинных алгоритмов является их выполнимость, мобильность, эффективность и правильность.

Выполнимость программ - возможность их выполнения на данном типе компьютеров. Возможность выполнения зависит от типа ЭВМ, наличия внешних устройств, надлежащего объема оперативной и внешней памяти, операционной системы и системы программирования.

Мобильность программ - возможность переноса программы на другой тип ЭВМ. Примером мобильности является возможность выполнения в системе структурного программирования Qbasic программ, записанных на традиционном Бейсике.

Эффективность программ - обычно это минимальность времени их выполнения на ЭВМ. Однако, если созданные программы содержат ошибки, то утверждения об их эффективности не имеют никакого смысла.

Правильность программ - правильность результатов, получаемых с их помощью.

Правильность результатов определяется соответствием документации или другими описаниями программ.

Программы содержат ошибки, если их выполнение на ЭВМ приводит к возникновению отказов, сбоев или неправильных результатов. От использования программ, содержащих ошибки, следует отказываться.

Основные типы операторов языка Бейсик:

- операторы ввода-вывода;

- графические операторы;

- присваивания;

- обращения к функциям;

- описания данных;

- управляющие операторы;

- обращения к подпрограммам.

Примеры операторов ввода-вывода на экран.

Оператор Действие

print «привет» вывод («привет»)

print «корень=»; х вывод («корень =», х)

input «a=»; а запрос («а=», а)

input n ввод (п)

locate st, ps позиция (st,ps)

Примеры графических операторов:

Оператор Действие

pset(x,y),c точка(х,у),с

line(x,y)-(u,v),c линия(х,у)-(и, v), с

line(x,y)-(u,v),c,b рамка(х,у)-(и,у),с

circle(x,y),r,c окружность(х,у), r,с

circle(x,y),r,c,al,a2 дуга(х,у), r,с,а1,а2

paint(x,y),c закраска(х,у),с

сls очистка_экрана

screen 0,0 текстовый_экран

screen 1,0 графический_экран1

screen 2,0 графический_экран2

Примеры операторов присваивания.

Присваивания Действие Результат

а = 0 а = 0 а = 0

b = а + 1 b = a + 1 b = а + 1 = 1

с = 2*b + 3 с = 2b + 3 с = 2 b + 3 = 5

d = b/c d = b/c d = -b/c = 0.2

b = b + 1 b = b + 1 b' = b + 1 = 2

b = b + 1 b = b + 1 b" = b' + 1 = 3

Математические функции с примерами обращения.

Функция Смысл Пример Результат

rnd - случайное число от 0 до 1 rnd

int (x) - целая часть числа х int (5/3) 1

abs (x) - абсолютное значение числа abs (-2) 2

sqr (x) - квадратный корень числа sqr (16) 4

sin (x) - синус sin (0) 0

cos (x) - косинус cos (0) 1

tan (x) - тангенс tan (0) 0

atn (x) - арктангенс atn (0) 0

exp (x) - экспонента ехр (0) 1

log (x) - логарифм натуральный log (1) 0

К числу управляющих операторов можно отнести условные операторы, имеющие следующие форму записи и смысл:

Условный оператор: Действия ЭВМ:

if <условие> then <оператор> если <условие> то <действие>

где <оператор> - это один или несколько операторов, разделяемых двоеточием, а <условие> - это некоторое логическое условие, при соблюдении которого будут выполняться указанные операторы.

Примеры записи условии - простых и сложносоставных:

Условие: Запись:

х = у х = у

х у х у

х > у х > у

х < у х < у

х у х <= у

х у х >= у

не (х = 1) not (x = 1)

(х > 0) и (у > 0) (х > 0) and (у > 0)

(а = 0) или (b = 0) (а = 0) or (b = 0)

Алгоритм и программа выбора по меню, соответствующие этому сценарию:

Алгоритм Программа

алг «выбор по меню» ' выбор по меню

нач cls

вывод («Меню») print «Меню:»

вывод («I. Новый год») print («1. Новый год»)

вывод («2. День рождения») print («1. День рождения»)

вывод («З. День знаний») print («3. День знаний»)

запрос («выбор=», п) input «выбор=», n

если п = 1 то if n = I then

вывод («1 января») print «1 января»

если п = 2 то if n = 2 then

вывод («1 декабря») print «1 декабря»

если п = 3 то if n = 3 then

вывод («1 сентября») print «1 сентября»

кон end

Правильность диалоговых алгоритмов и программ можно оценить сопоставлением их со сценарием диалога. Любое отклонение результатов выполнения алгоритмов и программ от сценария диалога - это ошибка. Диалоговый алгоритм - правильный, если результаты их выполнения строго соответствуют сценарию.

Сравнение текста программы с описанием алгоритма, а затем алгоритма со сценарием диалога подтверждает полное соответствие программы заданному сценарию «выбор по меню». Таким образом, правильность программ может проверяться через правильность реализованных в них алгоритмов.

Вопросы

1. Что такое программа?

2. Что такое язык программирования?

3. Каковы основные свойства программ?

4. Какие есть графические операторы?

5. Какие есть операторы ввода- вывода?

6. Какие есть математические функции?

7. Как записываются логические условия?

Задачи

1. Составьте сценарий, алгоритм и программу с выбором из меню:

а) поздравления с Новым годом;

б) поздравления с Днем рождения;

в) регистрации даты рождения;

г) регистрации фамилии и имени.

2. Составьте сценарий, алгоритм и программу для следующих вычислений с выбором из меню:

а) расчета сдачи за товар;

б) расчета остатка от прибыли;

в) пересчета рубль/доллар;

г) расчета остатка времени до 18.00.

3. Составьте сценарий, алгоритм и программу рисования с выбором из меню изображений:

а) российского флага; г) украинского флага;

б) шведского флага; д) французского флага;

в) японского флага; е) британского флага.

4. Составьте сценарий, алгоритм и программу с выбором из меню следующих вычислений:

а) времени движения по длине пути и скорости;

б) длины пути по времени и скорости движения;

в) средней скорости по времени и длине пути.

5. Составьте сценарий, алгоритм и программу рисования следующих изображений с выбором из меню:

а) домика; г) автомобиля;

б) дерева; д) цветка;

в) рыбы; е) птицы.

4.3 Основы структурного программирования

Алгоритмизация - это составление алгоритмов для последующей реализации в виде программ для ЭВМ. Знание и использование систематических методов превращают алгоритмизацию - в строгую дисциплину, позволяющую составлять программы на ЭВМ без ошибок.

На практике широко используются два подхода к алгоритмизации:

1) традиционный подход (с использованием блок-схем);

2) структурный подход (с использованием структурной записи);

Традиционный подход к составлению алгоритмов с применением блок-схем грешит большим числом ошибок в программах из-за их громоздкости и запутанности. Из-за этого традиционный подход к составлению программ чреват большим числом ошибок в создаваемых программах.

Структурный подход к программированию заключается в обязательном предварительном составлении структурированных алгоритмов с записью их на псевдокоде. Простота чтения, понимания и исправления структурированных описаний позволяет существенно уменьшить количество ошибок в алгоритмах и программах и сократить время их отладки на ЭВМ.

При структурном подходе к составлению алгоритмов и программ используются три основных правила композиции:

1) альтернативный выбор;

2) циклический повтор;

3) вспомогательные алгоритмы (подпрограммы).

Структурированными считаются алгоритмы и программы составленными только с использованием указанных трех правил структурной композиции. Неструктурированными считаются алгоритмы и программы, в которых используются операторы goto ... или отсутствует ступенчатая запись циклов и альтернатив.

Основные правила структурной композиции алгоритмов с примерами записи их на языке структурированного Бейсика:

1. Альтернативный выбор:

Алгоритм Запись

если х > 0 то if х > 0 then

у := х у = х

иначе else

у := -х у = -х

кесли end if

2. Циклический повтор:

Алгоритм Запись

пока х > 1 цикл do while х > 1

х: = х/2 х = х/2

кцикл loop

3. Вспомогательные алгоритмы (подпрограммы).

Алгоритм Подпрограмма

алг «у = |х|» mod: 'у = |х|

нач '

если х > 0 то if х > 0 then

у := х у = х

иначе else

у := -х у = -х

все end if

кон return

Обращение к алгоритму Обращение к подпрограмме

«у = |х|» gosub mod

Реализация данного алгоритма в виде структурированной программы:

Алгоритмы: Программа:

алг «Галерея картинок» 'Галерея картинок

нач cls

вывод («Список картинок:») print «Список картинок:»

вывод («1. треугольник») print «1. треугольник»

вывод («2. прямоугольник») print «2. прямоугольник»

вывод («З. кольцо») print «3. кольцо»

запрос(«номер =», n) input «номер =», n

если n = 1 то if n = 1 then

рисунок_треугольника gosub treug

инеc n = 2 то if n = 2 then

рисунок_прямоугольника gosub box

инеc n = 3 то if n = 3 then

рисунок_кольца gosub ring

инеc п < 1 или n > 3 то if n < 1 or n >3 then

вывод («нет такого рисунка») print «нет такого рисунка»

все 'все

кон end

алг «рисунок треугольника» treug: 'рисунок треугольника

нач cls

графический_экран screen 2,0

линия (150,50)-( 100,100) line (150,50)-(100,100),3

линия (150,50)-(200,100) line (150,50)-(200,100),3

линия (100,100)-(200,100) line (100,100)-(200,100),3

кон return

алг «рисунок прямоугольника» box: 'рисунок прямоугольника

нач cls

графический_экран screen 2,0

рамка (50,50)-(150,100) line (50,50)-(150,100),3,b

кон return

алг «рисунок кольца» ring: 'рисунок кольца

нач cls

графический_экран screen 2,0

окружность (100,100),20 circle (100,100),20

окружность (100,100),50 circle (100,100),50

кон return

Данный подход - составление структурированных алгоритмов может применяться к составлению структурированных программ для любых ЭВМ на любых языках программирования - Паскаль, Си, Ада, Модула и т. д.

На практике используется более широкий набор правил структурной композиции алгоритмов и программ, принятых в современных языках программирования, ~ правила альтернативного выбора, а также циклы с выходами и со счетчиками.

1. Условные действия.

если у < 0 то if у < 0 then

вывод («недопустим») print «недопустим»

кесли end if

2. Многоальтернативный выбор.

если х > 1 то if х > 1 then

у: = 1 у = 1

инес х < -1 то elseif х < -1 then

у: = -1 у = -1

иначе else

у: = х у = х

кесли end if

3. Циклы со счетчиком:

от k = 1 до п цикл for k = 1 to n

вывод (kk) print k*k

кцикл next k

4. Циклы с выходами.

цикл do

s: = s + x s = s + x

при х < 1 выход if х < 1 then exit do

х: = x/2 x = x/2

кцикл loop

В циклах в общем случае возможны несколько выходов. Дополнительные выходы считаются допустимыми даже для циклов со счетчиками. Приведем примеры решения задач с использованием дополнительных правил структурирования алгоритмов и программ.

Пример записи структурированных алгоритмов и программ с использованием циклов для алгоритма игры-эксперимента «звездное небо»:

Алгоритм Программа

алг «звездное небо» ' звездное небо»

нач сls

цикл do

запрос(«звезд=», п) input «звезд=», n

при п <= 0 выход if n <= 0 then exit do

графический_экран screen 2,10

от k = 1 до п цикл for k = 1 to n

х: = случайное [0:200] х = rnd*200

у: = случайное [0:200] у = rnd*200

точка (х,у) pset (x,y),3

кцикл next k

кцикл end do

кон end

Пример структурированного алгоритма и программы с применением многоальтернативного выбора и циклов с несколькими выходами:

Алгоритм Программа

алг «угадай-ка» ' угадай-ка

нач cls

вывод («Угадай-ка число») print «Угадай-ка число»

вывод («от 1 до 100») print от 1 до 100»

z: = случайное [0:100] z = int (rnd*100)

цикл do

запрос («число =», х) input «число =», х

при х = z вых if х = z then exit do

если х < z то if х < z then

вывод («мало») print «мало»

инеc х > z тo elseif х > z then

вывод («много») print «много»

все end if

кцикл end do

вывод («молодец, умница») print «молодец, умница»

кон end

Вопросы

1. Что такое алгоритмизация?

2. Что такое структурированные алгоритмы?

3. Что такое неструктурированные алгоритмы?

4. В чем достоинства структурированных программ?

5. В чем недостатки неструктурированных программ?

6. Можно ли гарантировать отсутствие ошибок в программах?

Задачи

1. Постройте вспомогательные алгоритмы и подпрограммы с выделением параметров для рисования следующих блоков:

а) крыша;

б) дерево;

в) стена с окном;

г) столб.

2. Предложите рисунки и составьте алгоритмы рисования, используя вспомогательные алгоритмы из предыдущего задания, для следующих строений:

а) домика с окном и деревом;

б) домика с двумя окнами;

в) домика с собачьей будкой;

г) двухэтажного домика,

3. Составьте алгоритм вывода на экран полной таблицы умножения.

4. Составьте, используя вспомогательные алгоритмы из предыдущих задач, алгоритмы изображения на экране:

а) многосекционных домов с различным числом секций;

б) многоэтажных домов с различным числом этажей и секций.

4.4 Основы безошибочного программирования

Основной недостаток традиционной практики составления программ для ЭВМ заключается в том, что при таком подходе никто не может гарантировать отсутствие в них ошибок. Особенностью традиционной практики является поиск ошибок в программах при их отладке на ЭВМ.

Однако, так как число ошибок в программах заранее неизвестно, то неизвестна заранее и продолжительность отладки программ на ЭВМ. Более того даже после «завершения» отладки никто не может гарантировать отсутствие ошибок. Естественно, что использование таких программ, приводит к возникновению отказов, сбоев и получению неверных результатов.

Структурный подход снижает количество ошибок в алгоритмах и программах. Однако и при этом подходе число ошибок также заранее неизвестно. Хотя структурная форма записи и упрощает поиск и исправление ошибок в текстах программ, гарантии отсутствия ошибок структурный подход не дает.

Однозначные суждения об отсутствии или наличии ошибок в алгоритмах и программах возможны только при наличии описаний конечных результатов их выполнения. Такие описания принято называть спецификациями.

Спецификации программ - это точные, математически строгие описания результатов выполнения алгоритмов и программ. Только при наличии спецификаций возможно создание алгоритмов и программ, в которых можно гарантировать отсутствие ошибок.

Более того, при систематическом использовании спецификаций возможен не только анализ правильности алгоритмов и программ, но и становится возможным составление программ с одновременным доказательством правильности.

Безошибочное программирование - это составление алгоритмов и программ с гарантиями отсутствия в них ошибок. А составление алгоритмов и программ с одновременным доказательством правильности называется доказательным программированием. И в том и другом подходе необходимо составление спецификаций.

Для составления программ на любом языке программирования весьма полезно предварительное составление реализуемых в них алгоритмов. Эти описания алгоритмов вместе со спецификациями позволяют в полной мере оценить правильность составленных программ.

Данный подход к составлению алгоритмов и программ с использованием спецификаций - позволяет реализовать основную идею безошибочного программирования - создание алгоритмов и программ, правильных по построению. Такой подход может применяться к составлению алгоритмов и программ для любых современных языков программирования - Паскаль, Си, Ада, Модула, Бейсик и т. д.

Приведем примеры составления сложных алгоритмов и программ с циклами с использованием спецификаций. Первый пример - построение алгоритма и программы изображения на экране картинки «Звездное небо» из n случайных точек:

В приводимом ниже алгоритме для формирования и вывода последовательности случайных точек на экране используется цикл со счетчиком и датчик случайных чисел для генерации координат «звезд».

Алгоритм Программа

алг «звездное небо» ' звездное небо

нач сls

запрос(«звезд=», п) input «звезд=», n

графический_экран screen 2,0

от k = 1 до п цикл for k = 1 to n

x: = случайное [0:200] х = rnd*200

у: = случайное [0:200] у = rnd*200

точка (х,у) pset (x,y),3

кцикл next k

кон end

Второй пример - составление с использованием спецификаций алгоритма и программы игры «Угадай-ка». В этой игре ЭВМ «загадывает» число от 0 до 100, а человек должен его отгадать, вводя пробные числа с клавиатуры. Для составления алгоритма и программы примем следующий сценарий:

Сценарий «Угадай-ка»

Угадай число от 0 до 100

число = х

*

мало

много

молодец, умница

Для реализации этого сценария воспользуемся циклом с выходом, в котором задается вопрос число=? и проверяются числа, вводимые человеком. Выход из цикла происходит после совпадения ответа с числом, задуманным ЭВМ:

Алгоритм Программа

алг «угадай-ка» ' угадай-ка

нач сls

вывод («Угадай число») print «Угадай число»

вывод («от 1 до 100») print «от 1 до 100»

z: = случайное [0:100] z = int (rnd* 100)

цикл do

запрос( «число=», х) input «число=», х

при х = z вых if х = z then exit do

если х < z то if х < z then

вывод («мало») print «мало»

инеc х > z то elseif х > z then

вывод («много») print «много»

все end if

кцикл loop

вывод («молодец, умница») print «молодец, умница»

кон end

Сравнение алгоритма со сценарием показывает их полное соответствие друг другу.

Вопросы

1. Сколько ошибок содержится в программах?

2. Как долго длится отладка программ?

3. Что такое спецификации программ?

4. Зачем нужны спецификации?

5. Можно ли гарантировать отсутствие ошибок в программах?

6. Что такое систематический подход к алгоритмизации?

Задачи

1. Составьте сценарий и алгоритм диалога «Распорядок дня», с помощью которого можно узнать, что запланировано на заданный час дня.

2. Составьте сценарий и алгоритм диалога с выбором по меню;

а) национальных флагов;

б) каталога строительных блоков;

в) набора рисунков;

г) каталога строений.

3. Предложите сценарии и алгоритмы рисования на экране абстрактных рисунков:

а) из случайных разноцветных точек;

б) из случайных разноцветных отрезков;

в) из случайных разноцветных рамок;

г) из случайных разноцветных окружностей;

д) из случайных разноцветных кругов;

е) из случайных разноцветных окошек.

4. Составьте сценарий и алгоритм, моделирующий на экране броуновское движение частиц.

4.5 Средства обработки данных

Автоматизированная обработка данных - одна из основных массовых проблем, решаемых с помощью ЭВМ. На персональных компьютерах IBM PC базовым средством обработки данных является язык программирования Basic. В операционной системе Windows это язык считается основным языком разработки программ для компьютеров IBM PC.

...

Подобные документы

  • Цели и задачи дисциплины "Технология программирования". Программные средства ПК. Состав системы программирования и элементы языка. Введение в систему программирования и операторы языка Си. Организация работы с файлами. Особенности программирования на С++.

    методичка [126,3 K], добавлен 07.12.2011

  • Модульная структура программного продукта и типовые управляющие структуры алгоритмов обработки данных различных программных модулей в основе структурного программирования. Особенности пошаговой разработки программ. Основные типы базовых конструкций.

    контрольная работа [163,7 K], добавлен 04.06.2013

  • Сущность языка программирования, идентификатора, структуры данных. Хранение информации, алгоритмы их обработки и особенности запоминающих устройств. Классификация структур данных и алгоритмов. Операции над структурами данных и технология программирования.

    контрольная работа [19,6 K], добавлен 11.12.2011

  • Электронно-вычислительная машина (ЭВМ) как средство обработки информации. Аппаратные и программные средства ЭВМ. Системы счисления и представления информации. Элементы структурного программирования. Построение блок-схем алгоритмов решения задач.

    презентация [152,5 K], добавлен 26.07.2013

  • Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа [728,4 K], добавлен 10.07.2017

  • Обзор образовательных стандартов педагогического образования в области искусственного интеллекта. Построение модели предметной области в виде семантических сетей. Характеристика проблемного обучения. Основные средства языка программирования Пролог.

    дипломная работа [387,8 K], добавлен 01.10.2013

  • Автоматизация сбора и обработки данных. Основы, таблицы и средства для работы с базами данных. Инструментальные средства и компоненты. Технология создания приложения. Работа с псевдонимами и со связанными таблицами. Система управления базами данных.

    методичка [1,5 M], добавлен 06.07.2009

  • Понятие большой системы управления. Модель структурного сопряжения элементов. Организация многоуровневой структуры управления. Общая задача линейного программирования. Элементы динамического программирования. Постановка задачи структурного синтеза.

    учебное пособие [1,3 M], добавлен 24.06.2009

  • Программное обеспечение как один из видов интеллектуальной собственности, принципы разработок. Общая технология программирования, используемые языки и их функционал. Введение в Object Pascal, его назначение, структура и основные элементы, основы работы.

    учебное пособие [2,0 M], добавлен 12.04.2012

  • Основы Интернет-технологий и элементы управления, построение информационных систем в сети Интернет, стандартизация пользовательского интерфейса, механизм работы элементов управления, технология статистической и динамической публикации, база данных.

    курсовая работа [738,0 K], добавлен 22.06.2011

  • Рассмотрение функциональных возможностей графического редактора Paint. Запуск и элементы окна. Создание и сохранение рисунка. Элементы панели инструментов и палитры цветов. Характеристика оборудования, необходимого для подключения к сети Интернет по ADSL.

    контрольная работа [3,1 M], добавлен 14.02.2012

  • Дискретная математика; функции и автоматы. Множества и операции над ними. Отношение как базовое понятие в реляционных базах данных. Логические элементы компьютера: триггеры, классификация сумматоров. Элементы теории алгоритмов, двоичное кодирование.

    презентация [270,4 K], добавлен 27.02.2014

  • Основы языка программирвоания C++. Элементы управления в Microsoft Visual C++. Алгоритмические конструкции языка программирования Visual C++ и базовые элементы управления. Глобальные константы и переменные. Управление программой с помощью клавиатуры.

    курсовая работа [1,7 M], добавлен 08.04.2015

  • Основные этапы решения задач на ЭВМ. Элементы управления и пользовательская форма VBA. Ввод и вывод информации. Открытие и закрытие файла. Операторы цикла и подпрограммы. Реализация разветвляющихся алгоритмов в VBA. Типы данных, переменные и константы.

    учебное пособие [1,4 M], добавлен 21.05.2009

  • Назначение и функции информационной системы как программно-аппаратного комплекса, предназначенного для хранения и обработки данных какой-либо предметной области. Каскадная схема создания ИС с обратной связью. Основные элементы языка программирования С++.

    контрольная работа [1,7 M], добавлен 14.05.2012

  • Факторы, влияющие на пропускную способность в беспроводных сетях. Использование скриптового языка программирования PHP для разработки базы данных интернет-магазина, его основные преимущества. Современные методы и средства тестирования web-приложений.

    дипломная работа [3,5 M], добавлен 10.07.2015

  • Системы программирования и их графические возможности. Разработка мультимедиа курса, способствующего эффективному усвоению учащимися базовой школы темы "Графические возможности языка программирования" (на примере языков программирования Basic и Pascal).

    дипломная работа [588,3 K], добавлен 29.12.2010

  • Теоретические и практические основы Web-программирования. Проблемы и перспективы Интернет-магазинов. Типы данных, используемые в PHP. Работа с базой данных. Особенности встраивания РНР кода. Схема работы Интернет-магазина. Язык Web-программирования РНР.

    курсовая работа [3,8 M], добавлен 27.12.2012

  • Технология программирования, основные этапы развития. База данных, понятие,характеристика, основные типы баз. Действие и структура программы С++. Процесс подготовки и решения задач на компьютерах. Написание и отладка программы на языке программирования.

    курсовая работа [32,8 K], добавлен 26.01.2011

  • Общая характеристика дистанционного образования. Описание приложений и ресурсов, с помощью которых осуществляется дистанционное обучение. Правила размещения курсов в СДО "Moodle". Разработка структуры курса "Правовые основы прикладной информатики".

    курсовая работа [1,8 M], добавлен 20.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.