Автоматизированные системы управления

Понятие автоматизированного управления и его цель в технических системах. Жизненный цикл и процессы в структуре жизненного цикла АИС. Информационная технология проектирования системы. Характеристика основных обеспечивающих подсистем и их задачи.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 12.12.2013
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По аналогии с известным определением модели ЖЦ ПО и в соответствии с устоявшейся среди специалистов терминологией приведем определение модели ЖЦ АИС.

Модель жизненного цикла АИС - это структура, описывающая процессы, действия и задачи, которые осуществляются в ходе разработки, функционирования и сопровождения в течение всего жизненного цикла системы.

Модель ЖЦ АИС отражает состояние системы с момента осознания необходимости создания данной АИС до полной ее утилизации. Выбор модели жизненного цикла зависит от специфики, масштаба, сложности проекта и набора условий, в которых АИС создается и функционирует. Модель ЖЦ АИС включает:

- стадии;

- результаты выполнения работ на каждой стадии;

- ключевые события или точки завершения работ и принятия решений.

В соответствии с известными моделями ЖЦ ПО определяют модели ЖЦ АИС - каскадную, итерационную, спиральную.

Временные прототипы полезны для выяснения реакции пользователя на проект интерфейса. Он применяется при создании систем со сложным интерфейсом. Этот подход оправдывает свою эффективность при решении проблемы определения требования к интерактивным информационным системам.

Создание эволюционирующих прототипов в ходе инкрементной разработки, данный подход помогает при решении вопроса о том, достигнуты ли требуемые показатели производительности, а также при тестировании критически важных компонентов системы. Он также уменьшает степень риска, растягивая реализацию на более длительный период.

1. Каскадная модель

Каскадная модель описывает классический подход к разработке систем в любых предметных областях широко использовалась в 1970-80-х гг. Организация работ по каскадной схеме официально рекомендовалась и широко применялась в различных отраслях в связи с наличием теоретического обоснования, промышленных методик и стандартов, а также успешного использования модели в течение десятилетий.

Каскадная модель предусматривает последовательную организацию работ, причем основной особенностью модели является разбиение всей работы на этапы. Переход от предыдущего этапа к последующему происходит только после полного завершения всех работ предыдущего. Каждый этап завершается выпуском полного комплекта документации для того, чтобы иметь возможность при необходимости всегда продолжить разработку. Периодически названия стадий разработки в каскадной модели менялись, кроме того, в каждый период времени регламент приписывания определенных работ к конкретным этапам никогда не являлся жестким и однозначным. Тем не менее, выделяют пять устойчивых этапов разработки, практически не зависящих от предметной области (рис. 1).

На первом этапе проводится исследование проблемной области, формулируются требования заказчика. Результатом данного этапа является техническое задание (задание на разработку), согласованное со всеми заинтересованными сторонами.

В ходе второго этапа, согласно требованиям технического задания, разрабатываются те или иные проектные решения. В результате появляется комплект проектной документации.

Третий этап - реализация проекта; по существу, разработка программного обеспечения (кодирование) в соответствии с проектными решениями предыдущего этапа. Методы реализации при этом принципиального значения не имеют. Результатом выполнения этапа является готовый программный продукт.

На четвертом этапе проводится проверка полученного программного обеспечения на предмет соответствия требованиям, заявленным в техническом задании. Опытная эксплуатация позволяет выявить различного рода скрытые недостатки, проявляющиеся в реальных условиях работы АИС.

Последний этап -- сдача готового проекта, и главное здесь - убедить заказчика в том, что все его требования выполнены в полной мере.

Этапы работ в рамках каскадной модели часто называют частями проектного цикла АИС, поскольку этапы состоят из многих итерационных процедур уточнения требований к системе и вариантов проектных решений. ЖЦ АИС существенно сложнее и длиннее: он может включать в себя произвольное число циклов уточнения, изменения и дополнения уже принятых и реализованных проектных решений. В этих циклах происходит развитие АИС и модернизация отдельных ее компонентов.

Каскадная модель получила широкое распространение не только среди специалистов, так как обладает достоинствами, проявляющимися при выполнении различных разработок. Ниже приведены основные:

1) на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности. На заключительных этапах разрабатывается пользовательская документация, охватывающая все предусмотренные стандартами виды обеспечения АИС (организационное, информационное, программное, техническое и т. д.);

2) последовательное выполнение этапов работ позволяет планировать сроки завершения и соответствующие затраты.

Каскадная модель изначально разрабатывалась для решения различного рода инженерных задач и не потеряла своего значения для прикладной области до настоящего времени. Кроме того, каскадный подход идеально подходит для разработки АИС, так как уже в самом начале разработки можно достаточно точно и полно сформулировать все требования с тем, чтобы предоставить разработчикам свободу технической реализации. К таким АИС, в частности, относятся сложные расчетные системы и системы реального времени.

Тем не менее, модель имеет ряд недостатков, ограничивающих ее применение:

- существенная задержка в получении результатов;

- ошибки и недоработки на любом из этапов проявляются, как правило, на последующих этапах работ, что приводит к необходимости возврата;

- сложность параллельного ведения работ по проекту;

- чрезмерная информационная перенасыщенность каждого из этапов;

- сложность управления проектом;

- высокий уровень риска и ненадежность инвестиций. Задержка в получении результатов проявляется в том, что при последовательном подходе к разработке согласование результатов с заинтересованными сторонами производится только после завершения очередного этапа работ. В результате может оказаться, что разрабатываемая АИС не соответствует требованиям, и такие несоответствия могут возникать на любом этапе разработки; ошибки могут непреднамеренно вноситься и проектировщиками-аналитиками, и программистами, так как они не обязаны хорошо разбираться в тех предметных областях, для которых разрабатывается АИС. Кроме того, используемые при разработке АИС модели автоматизируемого объекта, отвечающие критериям внутренней согласованности и полноты, в силу различных причин могут устареть за время разработки (например, из-за внесения изменений в законодательство).

Возврат на более ранние стадии. Этот недостаток является одним из проявлений предыдущего: поэтапная последовательная работа над проектом может привести к тому, что ошибки, допущенные на более ранних этапах, обнаруживаются только на последующих стадиях. В результате проект возвращается на предыдущий этап, перерабатывается и только затем передается в последующую работу. Это может послужить причиной срыва графика и усложнения взаимоотношений между группами разработчиков, выполняющих отдельные этапы.

Самый плохой вариант, когда недоработки предыдущего этапа обнаруживаются не на следующем этапе, а позднее. Например, на стадии опытной эксплуатации могут проявиться ошибки в описании предметной области. Это означает, что часть проекта должна быть возвращена на начальный этап работы. Вообще, работа может быть возвращена с любого этапа на любой предыдущий. Одной из причин возникновения данной ситуации является то, что в качестве экспертов, участвующих в описании предметной области, часто выступают будущие пользователи системы, которые иногда не могут четко сформулировать требования к АИС. Кроме того, заказчики и исполнители часто неправильно понимают друг друга, так как заказчики далеки от программирования, а исполнители обычно не являются специалистами в предметной области.

Сложность параллельного ведения работ связана с необходимостью постоянного согласования различных частей проекта. Чем сильнее взаимозависимость отдельных частей проекта, тем чаще и тщательнее должна выполняться синхронизация, тем сильнее зависят друг от друга группы разработчиков. В результате преимущества параллельного ведения работ просто теряются; отсутствие параллелизма негативно сказывается и на организации работы всего коллектива.

В частности, пока производится анализ предметной области, проектировщики, разработчики и те, кто занимается тестированием и администрированием, почти не загружены. Кроме того, при последовательной разработке крайне сложно внести изменения в проект после завершения этапа и передачи проекта на следующую стадию. Так, если после передачи проекта на следующий этап группа разработчиков нашла более эффективное решение, оно не может быть реализовано, поскольку предыдущее решение уже, возможно, реализовано и увязано с другими частями проекта.

Проблема информационной перенасыщенности возникает вследствие сильной зависимости между различными группами разработчиков. Дело в том, что при внесении изменений в одну из частей проекта, необходимо оповещать тех разработчиков, которые использовали (могли использовать) ее в своей работе. При наличии большого числа взаимосвязанных подсистем синхронизация внутренней документации становится отдельной важнейшей задачей: разработчики должны постоянно знакомиться с изменениями и оценивать, как скажутся (или уже сказались) эти изменения на полученных результатах.

В итоге может потребоваться повторное тестирование и внесение изменений в уже готовые части проекта. Причем эти изменения, в свою очередь, необходимо отразить во внутренней документации и разослать другим группам разработчиков. Как следствие, резко возрастет объем документации и, соответственно, понадобится больше времени для ознакомления с ней.

Помимо изучения нового материала, не отпадает необходимость и в изучении старой информации. Ведь вполне вероятно, что в процессе разработки изменится кадровый состав и новым разработчикам понадобится информация о сделанном ранее. Причем, чем сложнее проект, тем больше времени требуется, чтобы ввести нового разработчика в курс дела.

Сложность управления проектом в основном обусловлена строгой последовательностью стадий разработки и наличием сложных взаимосвязей между различными частями проекта. Регламентированная последовательность работ приводит к тому, что одни группы разработчиков должны ожидать результатов работы других команд, поэтому требуется административное вмешательство для согласования сроков и состава передаваемой документации.

В случае же обнаружения ошибок в работе необходим возврат к предыдущим этапам; текущая работа тех, кто ошибся, прерывается. Следствием этого обычно является срыв сроков выполнения как исправляемого, так и нового проектов.

Упростить взаимодействие между разработчиками и уменьшить информационную перенасыщенность документации можно, сокращая количество связей между отдельными частями проекта, но далеко не каждую АИС можно разделить на слабо связанные подсистемы.

Высокий уровень риска. Чем сложнее проект, тем дольше длится каждый этап разработки и тем сложнее взаимосвязи между отдельными частями проекта, количество которых также увеличивается. Причем результаты разработки можно реально увидеть и оценить лишь на этапе тестирования, т. е. после завершения анализа, проектирования и разработки - этапов, выполнение которых требует значительного времени и средств.

Запоздалая оценка порождает серьезные проблемы при выявлении ошибок анализа и проектирования -- требуется возврат на предыдущие стадии и повторение процесса разработки. Однако возврат на предыдущие стадии может быть связан не только с ошибками, но и с изменениями, произошедшими в предметной области или в требованиях заказчика за время разработки. При этом никто не гарантирует, что предметная область снова не изменится к тому моменту, когда будет готова следующая версия проекта. Фактически это означает, что существует вероятность «зацикливания» процесса разработки: расходы на проект будут постоянно расти, а сроки сдачи готового продукта постоянно откладываться.

Таким образом, сложные проекты, разрабатываемые по каскадной схеме, имеют повышенный уровень риска. Этот вывод подтверждается практикой: по сведениям консалтинговой компании The Standish Group в США более 31% проектов корпоративных информационных систем (IT-проектов) заканчивается неудачей; почти 53 % IT-проектов завершается с перерасходом бюджета (в среднем на 189 %, т. е. почти в 2 раза); и только 16,2 % проектов укладывается и в срок, и в бюджет.

Помимо приведенных недостатков каскадной модели есть еще один. Он связан с возникновением конфликтов (не всегда явных) между разработчиками, которые обусловлены тем, что возврат части проекта на предыдущую стадию обычно сопровождается поиском виновных. Поскольку однозначно персонифицировать виноватого не всегда возможно, отношения в коллективе усложняются.

Как следствие, в рабочей группе часто ценится не тот руководитель, который имеет высокую квалификацию и больший опыт, а тот, кто умеет «отстоять» своих подчиненных, обеспечить им более удобные условия работы и т. п. В результате появляется опасность снижения и квалификации, и творческого потенциала всей команды. Соответственно, техническое руководство проектом начинает в большей степени подменяться организационным, более детальной проработкой должностных инструкций и более формальным их исполнением.

Тот, кто не умеет организовать работу, обречен бороться за дисциплину. И здесь возникает проблема несовместимости дисциплины и творчества. Чем строже дисциплина, тем менее творческой становится атмосфера в коллективе. Такое положение вещей может привести к тому, что наиболее одаренные кадры со временем покинут коллектив.

2. Итерационная модель

Построение итерационной модели заключается в серии коротких циклов (шагов) по планированию, реализации, изучению, действию.

Создание сложных АИС предполагает проведение согласований проектных решений, полученных при реализации отдельных задач. Подход к проектированию «снизу -- вверх» обусловливает необходимость таких итераций возвратов, когда проектные решения по отдельным задачам объединяются в общие системные решения. При этом возникает потребность в пересмотре ранее сформировавшихся требований.

Преимущество итерационной модели в том, что межэтапные корректировки обеспечивают меньшую трудоемкость разработки по сравнению с каскадной моделью.

Недостатки итерационной модели:

- время жизни каждого этапа растягивается на весь период разработки;

- вследствие большого числа итераций возникают рассогласования выполнения проектных решений и документации;

- запутанность архитектуры;

трудности использования проектной документации на стадиях внедрения и эксплуатации вызывают необходимость перепроектирования всей системы.

3. Спиральная модель

Спиральная модель, в отличие от каскадной, но аналогично предыдущей предполагает итерационный процесс разработки АИС. При этом возрастает значение начальных этапов, таких как анализ и проектирование, на которых проверяется и обосновывается реализуемость технических решений путем создания прототипов.

Каждая итерация представляет собой законченный цикл разработки, приводящий к выпуску внутренней или внешней версии изделия (или подмножества конечного продукта), которое совершенствуется от итерации к итерации, чтобы стать законченной.

Таким образом, каждый виток спирали соответствует созданию фрагмента или версии программного изделия, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы на следующем витке спирали. Каждая итерация служит для углубления и последовательной конкретизации деталей проекта, в результате этого выбирается обоснованный вариант окончательной реализации.

Использование спиральной модели позволяет осуществлять переход на следующий этап выполнения проекта, не дожидаясь полного завершения текущего, -- недоделанную работу можно будет выполнить на следующей итерации. Главная задача каждой итерации -- как можно быстрее создать работоспособный продукт для демонстрации пользователям. Таким образом, существенно упрощается процесс внесения уточнений и дополнений в проект.

Спиральный подход к разработке программного обеспечения позволяет преодолеть большинство недостатков каскадной модели и, кроме того, обеспечивает ряд дополнительных возможностей, делая процесс разработки более гибким. Преимущества итерационного подхода:

- итерационная разработка существенно упрощает внесение изменений в проект при изменении требований заказчика;

- при использовании спиральной модели отдельные элементы АИС интегрируются в единое целое постепенно. Поскольку интеграция начинается с меньшего количества элементов, то возникает гораздо меньше проблем при ее проведении (при использовании каскадной модели интеграция занимает до 40 % всех затрат в конце проекта);

- снижение уровня рисков (следствие предыдущего преимущества, так как риски обнаруживаются именно во время интеграции). Уровень рисков максимален в начале разработки проекта, по мере продвижения разработки он снижается. Данное утверждение справедливо при любой модели разработки, однако при использовании спиральной снижение уровня рисков происходит с наибольшей скоростью, так как интеграция выполняется уже на первой итерации. На начальных итерациях выявляются многие аспекты проекта (пригодность используемых инструментальных средств, программного обеспечения, квалификация разработчиков и т. п.).

- итерационная разработка обеспечивает большую гибкость в управлении проектом, давая возможность внесения тактических изменений в разрабатываемое изделие. Так, можно сократить сроки разработки за счет снижения функциональности системы или использовать в качестве составных частей продукцию сторонних фирм вместо собственных разработок (актуально при рыночной экономике, когда необходимо противостоять продвижению изделия конкурентов);

- итерационный подход упрощает повторное использование компонентов, поскольку гораздо проще выявить (идентифицировать) общие части проекта, когда они уже частично разработаны, чем пытаться выделить их в самом начале проекта. Анализ проекта после нескольких начальных итераций позволяет выявить общие многократно используемые компоненты, которые на последующих итерациях будут совершенствоваться;

- спиральная модель позволяет получить более надежную и устойчивую систему. Это связано с тем, что по мере развития системы ошибки и слабые места обнаруживаются и исправляются на каждой итерации. Одновременно корректируются критические параметры эффективности, что в случае каскадной модели доступно только перед внедрением системы;

- итерационный подход позволяет совершенствовать процесс разработки -- в результате анализа в конце каждой итерации проводится оценка изменений в организации разработки; на следующей итерации она улучшается.

Основная проблема спирального цикла -- трудность определения момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Иначе процесс разработки может превратиться в бесконечное совершенствование уже сделанного.

При итерационном подходе полезно следовать принципу «лучшее -- враг хорошего». Поэтому завершение итерации должно производиться строго в соответствии с планом, даже если не вся запланированная работа закончена. Планирование работ обычно проводится на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков. В основе спиральной модели жизненного цикла лежит применение прототипной - Rapid Application Development, RAD-технологии. Эта технология обеспечивает создание на ранней стадии реализации действующей интерактивной модели системы так называемой системы-прототипа, позволяющей наглядно продемонстрировать пользователю будущую систему, уточнить его требования, оперативно модифицировать интерфейсные элементы - формы ввода сообщений, меню, выходные документы, структуру диалога, состав реализуемых функций.

В процессе работы с системой-прототипом пользователь реально осознает возможности будущей системы и определяет наиболее удобный для него режим обработки данных, что значительно повышает качество создаваемых систем. Осуществляется проверка принципиальных проектных решений по составу и структуре АИС и оценка основных ее эксплуатационных характеристик.

Вовлечение пользователей в процесс проектирования и конструирования приложения позволяет получать замечания и дополнения к требованиям непосредственно в процессе проектирования приложения, сокращая время разработки. Представители заказчика получают возможность контролировать процесс создания системы и влиять на ее функциональное наполнение. Результатом является сдача в эксплуатацию системы, учитывающей большинство потребностей заказчиков.

4. Временные прототипы

Временные прототипы можно применять для уточнения требований пользователя. Особенно полезен этот подход для выяснения реакции пользователя на проект интерфейса, его стоит применять при создании систем со сложным интерфейсом.

Приступать к разработке временных прототипов лучше после предварительной спецификации требований. Дав пользователю возможность поэкспериментировать с прототипом, вы получите ценнейшую информацию, раздобыть которую иным способом весьма затруднительно.

Высказанные замечания помогут скорректировать спецификации требований. Дальнейшая разработка протекает в соответствии с традиционным жизненным циклом.

Временные прототипы (в особенности пользовательского интерфейса) доказали свою эффективность при решении проблемы определения требования к интерактивным информационным системам.

Этот подход можно также применять для создания экспериментальных прототипов проекта. Он способствует решению вопроса о том, являются ли выбранные алгоритмы логически правильными и достигнута ли требуемая производительность.

5. Создание эволюционирующих прототипов в ходе инкрементной разработки

Подход на основе эволюционирующих прототипов - один из видов инкрементной разработки, когда последовательно создаются промежуточные прототипы со все более широкой функциональностью (рис. 7), пока не будет получена готовая система.

Этот подход помогает при решении вопроса о том, достигнуты ли требуемые показатели производительности, а также при тестировании критически важных компонентов системы. Он также уменьшает степень риска, растягивая реализацию на более длительный период. При выделении подмножества системы, включаемого в очередное расширение, удобно использовать диаграммы последовательности событий.

Одна из целей создания эволюционирующих прототипов - получить работающее подмножество системы как можно раньше, а затем наращивать его. Особенно хорошо, если первую версию системы удается полностью протестировать - от приема входных данных до получения результата.

Кроме того, к числу преимуществ следует отнести верификацию проекта системы, уверенность в том, что некоторые ключевые алгоритмы позволяют достичь требуемой производительности, и постепенное наращивание системы.

Вопросы для самоконтроля

1. Что такое модель ЖЦ АИС?

2. Чего зависит выбор модели ЖЦ?

3. Что включает в себя модель ЖЦ АИС?

4. Что описывает каскадная модель?

5. Что является основной особенностью каскадной модели?

6. Что проводится на первом и втором этапах разработки?

7. Что проводится на третьем и четвертом этапах разработки?

8. Что проводится на последнем этапе разработки?

9. Перечислите основные достоинства каскадной модели?

10. Перечислите недостатки каскадной модели?

11. В чем заключается построение итерационной модели?

12. В чем преимущество итерационной модели?

13. Недостатки итерационной модели?

14. Суть спиральной модели?

15. Основная проблема спирального цикла?

16. Решение проблемы спирального цикла?

17. Для чего полезен подход «временные прототипы»?

18. Что такое подход на основе эволюционирующих прототипов?

19. Одна из целей создания эволюционирующих прототипов?

Список используемой литературы:

1. Попов И.И. Автоматизированные информационные системы (по областям применения): учеб. пособие / под ред. К.И. Курбакова. М.: Изд-во Рос. экон. акад., 1998. 103 с.

2. Информационные технологии: толковый словарь аббревиатур / Э. Каян; пер. с англ. К.Г. Финогенова. М.: БИНОМ; Лаборатория знаний, 2003. 646 с.

3. Проектирование экономических информационных систем / Г.-'Н. Смирнова и др. М.: Финансы и статистика, 2003. 512 с.

4. Балдин К.В., Уткин В.Б. Информационные системы в экономике: учебник. 2-е изд. М.: Дашков и К°, 2006. 395 с.

5. Информационные технологии управления: учеб. пособие для вузов /под ред. проф. Г.А. Титоренко. 2-е изд., доп. М.: ЮНИТИ-ДАНА, 2004. 439 с.

6. ГОСТ 34.601--90. Автоматизированные системы. Стадии создания. Комплекс стандартов на автоматизированные системы. ИПК «Издательство стандартов», 1997.

7. Балдин К.В. Моделирование жизненного цикла сложных систем. Ч. I и II. М.: Издательство РДЛ, 2000.

8. Трояновский В.М. Проектирование информационных систем. М.: МИЭТ, 2002. 108 с.

9. Вендров А.М. Проектирование программного обеспечения экономических информационных систем. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2005. 180 с.

10. Грекул В.И. Проектирование информационных систем. http://www.intuit.ru.

11. Модели и методологии разработки информационных систем. http://www.stormsystemst.ru.

Лекция №4

Последовательность разработки автоматизированной системы

Вопросы лекции:

Введение.

1. Технология проектирования АИС.

2. Стадии и этапы создания АИС.

3. Техническое задание.

4. Эскизный проект АИС.

5. Технический проект АИС.

6. Стадии «Рабочая документация», «Ввод в действие», «Сопровождение АИС».

Введение

Современные методологии и реализующие их технологии проектирования АИС поставляются в электронном виде вместе с CASE-средствами и включают библиотеки процессов, шаблонов, методов, моделей и других компонентов, предназначенных для построения ПО того класса систем, на который ориентирована методология. Электронные методологии и технологии составляют ядро комплекса согласованных инструментальных средств разработки АИС. Особенности современных методологических решений проектирования АИС невозможно реализовать без определенных технологий проектирования, соответствующих масштабу и специфике проекта.

1. Технология проектирования АИС

Технология проектирования АИС - это совокупность методов и средств проектирования АИС, а также методов и средств организации проектирования (управление процессом создания и модернизации проекта АИС). В основе технологии проектирования лежит технологический процесс (ТП), который определяет действия, их последовательность, состав исполнителей, средства и ресурсы, требуемые для выполнения этих действий.

ТП проектирования АИС представляет собой совокупность последовательно-параллельных, связанных и соподчиненных цепочек действий, каждое из которых может иметь свой предмет. Действия, которые выполняются при проектировании АИС, могут быть определены как неделимые технологические операции или как подпроцессы технологических операций. Все действия могут быть собственно проектировочными, которые формируют или модифицируют результаты проектирования, и оценочными, которые вырабатывают по установленным критериям оценки результатов проектирования.

Таким образом, технология проектирования задается регламентированной последовательностью технологических операций, выполняемых в процессе создания проекта на основе того или иного метода.

Предметом выбираемой технологии проектирования должно служить отражение взаимосвязанных процессов проектирования на всех стадиях жизненного цикла АИС.

Основные требования, предъявляемые к выбираемой технологии проектирования, следующие:

созданный с помощью этой технологии проект должен отвечать требованиям заказчика;

технология должна максимально отражать все этапы цикла жизни проекта;

технология должна обеспечивать минимальные трудовые и стоимостные затраты на проектирование и сопровождение проекта;

технология должна способствовать росту производительности труда проектировщиков;

технология должна обеспечивать надежность процесса проектирования и эксплуатации проекта;

технология должна способствовать простому ведению проектной документации.

Технология проектирования АИС реализует определенную методологию проектирования. В свою очередь, методология проектирования предполагает наличие некоторой концепции, принципов проектирования и реализуется набором методов и средств. Методы проектирования АИС можно классифицировать по степени использования средств автоматизации, типовых проектных решений, адаптивности к предполагаемым изменениям.

По степени автоматизации различают:

ручное проектирование, при котором проектирование компонентов АИС осуществляется без использования специальных инструментальных программных средств; программирование производится на алгоритмических языках;

компьютерное проектирование, при котором генерация или конфигурация (настройка) проектных решений производится с использованием специальных инструментальных программных средств.

По степени использования типовых проектных решений различают:

* оригинальное (индивидуальное) проектирование, когда проектные решения разрабатываются «с нуля» в соответствии с требованиями к АИС;

* типовое проектирование, предполагающее конфигурациюАИС из готовых типовых проектных решений (программных модулей).

Оригинальное проектирование АИС предполагает максимальный учет особенностей автоматизированного объекта.

Типовое проектирование выполняется на основе готовых решений и является обобщением опыта, полученного ранее при создании родственных проектов.

По степени адаптивности проектных решений различаются следующие методы:

реконструкция - адаптация проектных решений выполняется путем переработки соответствующих компонентов (перепрограммирования программных модулей);

параметризация - проектные решения настраиваются в соответствии с заданными и изменяемыми параметрами;

реструктуризация модели - изменяется модель предметной области, что приводит к автоматическому переформированию проектных решений.

Сочетание различных признаков классификации методов проектирования обусловливает характер используемой технологии проектирования АИС. Выделяются два основных класса технологии проектирования: каноническая и индустриальная (табл. 1). Индустриальная технология проектирования в свою очередь разбивается на два подкласса: автоматизированное (использование CASE-технологий) и типовое (параметрически-ориентированное или модельно-ориентированное) проектирование. Использование индустриальных технологий проектирования не исключает использования в отдельных случаях канонической технологии.

Таблица 1 - Характеристики классов технологий проектирования

Класс технологии проектирования

Степень автоматизации

Степень типизации

Степень адаптивности

Каноническое проектирование

Ручное проектирование

Оригинальное проектирование

Реконструкция

Индустриальное автоматизированное проектирование

Компьютерное проектирование

То же

Реструктуризация модели

Индустриальное типовое проектирование

То же

Типовое сборочное проектирование

Параметризация и реструктуризация модели

Каноническое проектирование АИС ориентировано на использование главным образом каскадной модели жизненного цикла АИС. Стадии и этапы работы такого проектирования описаны в ГОСТ 34.601-90.

В зависимости от сложности объекта автоматизации и набора задач, требующих решения при создании конкретной АИС, стадии и этапы работ могут иметь различную трудоемкость. Допускается объединять последовательные этапы и исключать некоторые из них на любой стадии проекта. Допускается также начинать выполнение работ следующей стадии до окончания предыдущей.

2. Стадии и этапы создания АИС

Стадии и этапы создания АИС, выполняемые организациями-участниками, прописываются в договорах и технических заданиях на выполнение работ.

Стадия 1. Формирование требований к АИС:

обследование объекта и обоснование необходимости создания АИС;

формирование требований пользователей к АИС;

оформление отчета о выполненной работе и тактико-технического задания на разработку.

Стадия 2. Разработка концепции АИС:

* изучение объекта автоматизации;

проведение необходимых научно-исследовательских работ;

разработка вариантов концепции АИС, удовлетворяющих требованиям пользователей;

оформление отчета и утверждение концепции.

Стадия 3. Техническое задание:

* разработка и утверждение технического задания на создание АИС.

Стадия 4. Эскизный проект:

разработка предварительных проектных решений по системе и ее частям;

разработка эскизной документации на АИС и ее части.

Стадия 5. Технический проект:

разработка проектных решений по системе и ее частям;

разработка документации на АИС и ее части;

разработка и оформление документации на поставку комплектующих изделий;

разработка заданий на проектирование в смежных частях проекта.

Стадия 6. Рабочая документация:

разработка рабочей документации на АИС и ее части;

разработка и адаптация программ.

Стадия 7. Ввод в действие:

* подготовка объекта автоматизации;

подготовка персонала;

комплектация АИС поставляемыми изделиями (программными и техническими средствами, программно-техническими комплексами, информационными изделиями);

строительно-монтажные работы;

пусконаладочные работы;

проведение предварительных испытаний;

проведение опытной эксплуатации;

проведение приемочных испытаний.

Стадия 8. Сопровождение АИС:

выполнение работ в соответствии с гарантийными обязательствами;

послегарантийное обслуживание.

Рассмотрим специфику составляющих некоторых стадий подробнее.

Обследование - это изучение и анализ организационной структуры предприятия, его деятельности и существующей системы обработки информации. Материалы, полученные в результате обследования, используются для:

обоснования разработки и поэтапного внедрения систем;

составления технического задания на разработку систем;

разработки технического и рабочего проектов систем.

На этапе обследования целесообразно выделить две составляющие: определение стратегии внедрения АИС и детальный анализ деятельности организации.

Основная задача первого этапа обследования - оценка реального объема проекта, его целей и задач на основе выявленных функций и информационных элементов автоматизируемого объекта высокого уровня. Эти задачи могут быть реализованы или заказчиком АИС самостоятельно, или с привлечением консалтинговых организаций. Этап предполагает тесное взаимодействие с основными потенциальными пользователями системы и бизнес-экспертами. Основная задача взаимодействия - получить полное и однозначное понимание требований заказчика. Как правило, нужная информация может быть получена в результате интервью, бесед или семинаров с руководством, экспертами и пользователями.

По завершении стадии обследования появляется возможность определить вероятные технические подходы к созданию системы и оценить затраты на ее реализацию (на аппаратное обеспечение, на закупаемое программное обеспечение и на разработку нового программного обеспечения).

Результатом этапа определения стратегии является документ (технико-экономическое обоснование (ТЭО) проекта), где четко сформулировано, что получит заказчик, если согласится финансировать проект, когда он получит готовый продукт (график выполнения работ) и сколько это будет стоить (для крупных проектов - это график финансирования на разных этапах работ). В документе желательно отразить не только затраты, но и выгоду проекта, например время окупаемости проекта, ожидаемый экономический эффект (если его удается оценить).

Примерное содержание ТЭО:

ограничения, риски, критические факторы, которые могут повлиять на успешность проекта;

совокупность условий, при которых предполагается эксплуатировать будущую систему, архитектура системы, аппаратные и программные ресурсы, условия функционирования, обслуживающий персонал и пользователи системы;

сроки завершения отдельных этапов, форма приемки/сдачи работ, привлекаемые ресурсы, меры по защите информации;

описание выполняемых системой функций;

возможности развития и модернизации системы;

интерфейсы и распределение функций между человеком и системой;

требования к ПО и системам управления базами данных (СУБД).

На этапе детального анализа деятельности организации изучаются деятельность, обеспечивающая реализацию функций управления, организационная структура, штаты и содержание работ по управлению предприятием, а также характер подчиненности вышестоящим органам управления. Здесь следует наметить инструктивно-методические и директивные материалы, на основании которых определяются состав подсистем и перечень задач, а также возможности применения новых методов решения задач.

Аналитики собирают и фиксируют информацию в двух взаимосвязанных формах:

функции - информация о событиях и процессах, которые происходят в автоматизируемой организации;

сущности - информация о классах объектов, имеющих значение для организации и о которых собираются данные.

При изучении каждой функциональной задачи управления определяются:

наименование задачи; сроки и периодичность ее решения;

степень формализуемости задачи;

источники информации, необходимые для решения задачи;

показатели и их количественные характеристики;

порядок корректировки информации;

действующие алгоритмы расчета показателей и возможные методы контроля;

действующие средства сбора, передачи и обработки информации;

действующие средства связи;

принятая точность решения задачи;

трудоемкость решения задачи;

действующие формы представления исходных данных и результатов их обработки в виде документов;

потребители результатной информации по задаче.

Одной из наиболее трудоемких, хотя и хорошо формализуемых, задач этого этапа является описание документооборота организации. При обследовании документооборота составляется схема маршрута движения документов, которая должна отразить:

количество документов;

место формирования показателей документов;

взаимосвязь документов при их формировании;

маршрут и длительность движения документа;

место использования и хранения данного документа;

внутренние и внешние информационные связи;

объем документа в знаках.

По результатам обследования устанавливают перечень задач управления, подлежащих автоматизации, и очередность их разработки.

На этапе обследования следует классифицировать планируемые функции системы по степени важности. Один из возможных форматов представления такой классификации - MuSCoW. Эта аббревиатура расшифровывается так: Must have - необходимые функции; Should have - желательные функции; Could have - возможные функции; Won't have - отсутствующие функции.

Функции первой категории обеспечивают критичные для успешной работы системы возможности. Реализация функций второй и третьей категорий ограничивается временными и финансовыми рамками: разрабатывается необходимое, а также максимально возможное в порядке приоритета число функций второй и третьей категорий. Последняя категория функций особенно важна, поскольку нужно четко представлять границы проекта и набор функций, которые будут отсутствовать в системе.

Модели деятельности организации создаются в двух видах:

модель «как есть» («as is») - отражает существующие в организации бизнес-процессы;

модель «как должно быть» («to be») - отражает необходимые изменения бизнес-процессов с учетом внедрения АИС.

Уже на этапе анализа необходимо привлекать к работе группы тестирования для решения следующих задач:

* получения сравнительных характеристик предполагаемых к использованию аппаратных платформ, операционных систем, СУБД и т. п.;

• разработки плана работ по обеспечению надежности АИС и ее тестирования.

Привлечение тестировщиков на ранних этапах разработки является целесообразным для любых проектов. Чем позже обнаружены ошибки в проектных решениях, тем дороже обходится их исправление; худший вариант - их обнаружение на этапе внедрения. Таким образом, чем раньше группы тестирования начнут выявлять ошибки в АИС, тем ниже стоимость работы над системой. Время на тестирование системы и на исправление обнаруженных ошибок должно быть предусмотрено не только на этапе разработки, но и на этапе проектирования.

Облегчить и увеличить эффективность тестирования призваны специальные системы отслеживания ошибок. Их использование позволяет иметь единое хранилище ошибок, отслеживать их повторное появление, контролировать скорость и эффективность исправления ошибок, видеть наиболее нестабильные компоненты системы, а также поддерживать связь между группой разработчиков и группой тестирования.

Результаты обследования представляют объективную основу для формирования технического задания на АИС.

3. Техническое задание

Техническое задание - это документ, определяющий цели, требования и основные исходные данные, необходимые для разработки автоматизированной системы управления.

При разработке технического задания (ТЗ) необходимо решить следующие задачи:

установить общую цель создания АИС;

установить общие требования к проектируемой системе;

разработать и обосновать требования, предъявляемые к информационному, математическому, программному, техническому и технологическому обеспечению;

определить состав подсистем и функциональных задач;

разработать и обосновать требования, предъявляемые к подсистемам;

определить этапы создания системы и сроки их выполнения;

провести предварительный расчет затрат на создание системы и определить уровень экономической эффективности ее внедрения;

определить состав исполнителей.

Типовые требования к составу и содержанию технического задания приведены в табл. 2.

Таблица 2 - Состав и содержание технического задания (ГОСТ 34.602-89)

Раздел

Содержание

Общие сведения

Полное наименование системы и ее условное обозначение. Шифр темы или шифр (номер) договора.

Наименование предприятий разработчика и заказчика системы, их реквизиты.

Перечень документов, на основании которых создается ИС.

Плановые сроки начала и окончания работ.

Сведения об источниках и порядке финансирования работ.

Порядок оформления и предъявления заказчику результатов работ по созданию системы, ее частей и отдельных средств

Назначение и цели создания (развития) системы

Вид автоматизируемой деятельности. Перечень объектов, на которых предполагается использование системы. Наименования и требуемые значения технических, технологических, производственно-экономических и др. показателей объекта, которые должны быть достигнуты при внедрении ИС

Характеристика объектов автоматизации

Краткие сведения об объекте автоматизации. Сведения об условиях эксплуатации и характеристиках окружающей среды

Требования к системе

Требования к системе в целом:

* требования к структуре и функционированию системы (перечень подсистем, уровни иерархии, степень централизации, способы информационного обмена, режимы функционирования, взаимодействие со смежными системами, перспективы развития системы);

* требования к персоналу (численность пользователей, квалификация, режим работы, порядок подготовки);

* показатели назначения (степень приспособляемости системы к изменениям процессов управления и значений параметров)

* требования к надежности, безопасности, эргономике, транспортабельности, эксплуатации, техническому обслуживанию и ремонту, защите и сохранности информации, защите от внешних воздействий, к патентной чистоте, по стандартизации и унификации.

Требования к функциям (по подсистемам):

* перечень подлежащих автоматизации задач;

* временной регламент реализации каждой функции;

* требования к качеству реализации каждой функции, к форме представления выходной информации, характеристики точности, достоверности выдачи результатов;

* перечень и критерии отказов.

Требования к видам обеспечения:

* математическому (состав и область применения математических моделей и методов, типовых и разрабатываемых алгоритмов);

• информационному (состав, структура и организация данных, обмен данными между компонентами системы, информационная совместимость со смежными системами, используемые классификаторы, СУБД, контроль данных и ведение информационных массивов, процедуры придания юридической силы выходным документам);

* лингвистическому (языки программирования, языки взаимодействия пользователей с системой, системы кодирования, языки ввода-вывода);

* программному (независимость программных средств от платформы, качество программных средств и способы его контроля, использование фондов алгоритмов и программ);

* техническому;

* метрологическому;

* организационному (структура и функции эксплуатирующих подразделений, защита от ошибочных действий персонала);

* методическому (состав нормативно-технической документации)

Состав и содержание работ по созданию системы

Перечень стадий и этапов работ. Сроки исполнения. Состав организаций-исполнителей работ. Вид и порядок экспертизы технической документации. Программа обеспечения надежности. Программа метрологического обеспечения

Порядок контроля и приемки системы

Виды, состав, объем и методы испытаний системы.

Общие требования к приемке работ по стадиям.

Статус приемной комиссии

Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу системы в действие

Преобразование входной информации к машиночитаемому виду. Изменения в объекте автоматизации. Сроки и порядок комплектования и обучения персонала

Требования к документированию

Перечень подлежащих разработке документов.

Перечень документов на машинных носителях

Источники разработки

Документы и информационные материалы, на основании которых разрабатывается ТЗ и система

4. Эскизный проект АИС

Эскизный проект предусматривает разработку предварительных проектных решений по системе и ее частям. Выполнение эскизного проектирования не является строго обязательной стадией. Если основные проектные решения определены ранее или достаточно очевидны для конкретной АИС и объекта автоматизации, то эта стадия может быть исключена из обшей последовательности работ.

Содержание эскизного проекта задается в ТЗ на систему. Как правило, на этапе эскизного проектирования определяются:

функции АИС;

функции подсистем, их цели и ожидаемый эффект от внедрения;

состав комплексов задач и отдельных задач;

концепция информационной базы и ее укрупненная структура;

функции системы управления базой данных;

состав вычислительной системы и других технических средств;

функции и параметры основных программных средств.

По результатам проделанной работы оформляется, согласовывается и утверждается документация в объеме, необходимом для описания полной совокупности принятых проектных решений и достаточном для дальнейшего выполнения работ по созданию системы.

В соответствии с ГОСТ 19.102-77 стадия эскизного проектирования содержит два этапа: разработку эскизного проекта; утверждение эскизного проекта.

Первый этап разработки состоит из:

предварительной разработки структуры входных и выходных данных;

уточнения методов решения задачи;

разработки общего описания алгоритма решения задачи;

разработки технико-экономического обоснования;

разработки пояснительной записки.

При этом допускается объединение и исключение некоторых работ.

Ниже приведен набор документов, который должен и может быть подготовлен по окончании эскизного проектирования.

Обязательные документы:

уточненное техническое задание на проектирование и разработку АИС;

спецификация квалификационных требований на АИС;

комплект спецификаций требований на функциональные программные компоненты и описания данных;

спецификация требований на внутренние интерфейсы компонент и интерфейсы с внешней средой;

5) описание системы управления базой данных, структуры и распределения программных и информационных объектов в базе данных;

6) проект руководства по защите информации и обеспечению надежности функционирования АИС;

7) предварительный вариант руководства администратора АИС;

предварительный вариант руководства пользователя АИС;

уточненный план реализации проекта;

10) уточненный план управления обеспечением качества АИС;

11) пояснительная записка предварительного проекта АИС;

12) уточненный контракт (договор) с заказчиком на детальное проектирование АИС.

Документы, оформляемые по согласованию с заказчиком:

предварительное описание функционирования АИС;

схема потоков данных между функциональными компонентами АИС;

уточненная схема архитектуры АИС, взаимодействия программных и информационных компонент, организации вычислительного процесса и распределения ресурсов;

описание показателей качества компонент и требований к ним по этапам разработки АИС;

отчет о технико-экономических показателях, графике реализации проекта, распределении ресурсов и бюджета;

таблица распределения специалистов по компонентам и по этапам работ;

аттестаты разработчиков на право использования технологии и средств автоматизации разработки АИС;

описание требований к составу и формам результирующих документов по этапам работ;

план отладки программных компонент, обеспечения ее методами и средствами автоматизации тестирования;

предварительное руководство для детального проектирования, программирования и отладки компонент АИС;

предварительный план продажи и внедрения;

описание предварительной структуры базы данных.

На основе технического задания и эскизного проекта разрабатывается технический проект АИС.

5. Технический проект АИС

Технический проект системы - это техническая документация, содержащая общесистемные проектные решения, алгоритмы решения задач, а также оценку экономической эффективности АИС и перечень мероприятий по подготовке объекта к внедрению.

На этом этапе осуществляется комплекс научно-исследовательских и экспериментальных работ для выбора основных проектных решений и расчет экономической эффективности системы. Состав и содержание технического проекта приведен в табл. 3.

Таблица 3 - Содержание технического проекта

Раздел

Содержание

Пояснительная записка

Основания для разработки системы. Перечень организаций разработчиков. Краткая характеристика объекта с указанием основных технико-экономических показателей его функционирования и связей с другими объектами. Краткие сведения об основных проектных решениях по функциональной и обеспечивающим частям системы.

Функциональная и организационная структура системы

Обоснование выделяемых подсистем, их перечень и назначение, Перечень задач, решаемых в каждой подсистеме, с краткой характеристикой их содержания. Схема информационных связей между подсистемами и между задачами в рамках каждой подсистемы

...

Подобные документы

  • Исследование основных стадий жизненного цикла информационной системы. Планирование, анализ требований и проектирование информационной системы. Стандарты и типы моделей жизненного цикла. Верификация и модернизация системы, полное изъятие из эксплуатации.

    презентация [1,6 M], добавлен 12.02.2017

  • Методология проектирования и особенности организации технического обслуживания информационных систем. Понятие, сущность, стадии, стандарты, структура и процессы жизненного цикла информационной системы, а также анализ достоинств и недостатков его моделей.

    реферат [66,1 K], добавлен 07.05.2010

  • Жизненный цикл информационных систем. Процессы документирования и управления конфигурацией. Использование каскадного и спирального подходов к построению ИС. Их преимущества и недостатки. Процесс разработки программного обеспечения по каскадной схеме.

    презентация [350,6 K], добавлен 09.11.2015

  • Особенности основных, вспомогательных и организационных процессов жизненного цикла автоматизированных информационных систем. Основные методологии проектирования АИС на основе CASE-технологий. Определение модели жизненного цикла программного продукта.

    курсовая работа [1,8 M], добавлен 20.11.2010

  • Процессы Oracle CDM. Стадии и этапы выполнения работ по созданию автоматизированной системы (АС). Основные модели жизненного цикла ПО. Требования к содержанию документов. Основная проблема спирального цикла. Работы, выполняемые при разработке проекта.

    презентация [194,1 K], добавлен 14.10.2013

  • Стадии жизненного цикла ИС и его стандарты. Методологии, поддерживающие спиральную модель. Каскадная и инкрементная модели, их достоинства и недостатки. Основные, вспомогательные и организационные процессы жизненного цикла. Сравнительный анализ моделей.

    курсовая работа [186,4 K], добавлен 21.05.2015

  • Жизненный цикл автоматизированных информационных систем. Основы методологии проектирования автоматизированных систем на основе CASE-технологий. Фаза анализа и планирования, построения и внедрения автоматизированной системы. Каскадная и спиральная модель.

    курсовая работа [1,1 M], добавлен 20.11.2010

  • Требования к технологии проектирования программного обеспечения (ПО). Состав и описание стадий полного жизненного цикла ПО. Классификация моделей жизненного цикла ПО, их особенности. Методологии разработки ПО, приёмы экстремальный программирование.

    презентация [874,4 K], добавлен 19.09.2016

  • Основы методологии проектирования информационных систем, понятие их жизненного цикла. Основные модели жизненного цикла. Методология функционального моделирования SADT. Состав функциональной модели. Моделирование данных, характеристика case-средств.

    реферат [327,5 K], добавлен 28.05.2015

  • Информационная система как совокупность обеспечивающих подсистем. Типы обеспечивающих подсистем. Унифицированные системы документации. Схемы информационных потоков. Математическое и программное обеспечение. Правовое обеспечение и его основные цели.

    реферат [165,6 K], добавлен 03.04.2010

  • Понятие технологии разработки программы. Основа проектирования программного обеспечения. Модели жизненного цикла, возникшие исторически в ходе развития теории проектирования программного обеспечения. Спиральная (spiral), каскадная и итерационная модели.

    презентация [1,0 M], добавлен 11.05.2015

  • Информационные и автоматизированные системы управления технологическими процессами на промышленных предприятиях. Базы данных в автоматизированных системах управления. Системы планирования ресурсов предприятия, сбора и аналитической обработки данных.

    контрольная работа [486,7 K], добавлен 29.10.2013

  • Роль и место профессиональных компьютерных программ в современном обществе. Программы автоматизированного рабочего места (АРМ), системы автоматизированного проектирования (САПР), автоматизированные системы научных исследований (АСНИ) и управления (АСУ).

    реферат [105,7 K], добавлен 30.04.2014

  • Понятие, сущность и структура жизненного цикла программного обеспечения, описание технологии его проектирования, разработки и сопровождения. Сущность и основные положения международного стандарта ISO/IEC 12207. Перечень основных принципов методологии RAD.

    реферат [39,3 K], добавлен 30.11.2010

  • Понятие и этапы жизненного цикла информационной системы. Классификация и характеристика бизнес-процессов. Проектирование архитектуры автоматизированной системы управления документооборотом и баз данных. Разработка интерфейса пользовательской части.

    дипломная работа [549,9 K], добавлен 09.02.2018

  • Анализ структуры и управления предприятием. Функции, виды деятельности, организационная и информационная модели предприятия, оценка уровня автоматизации. Перспективы развития автоматизированных систем обработки информации и управления на предприятии.

    отчет по практике [243,3 K], добавлен 10.09.2012

  • Понятие информационной технологии. Характеристика основных подсистем швейной системы автоматизированного проектирования. Визуализация внешнего вида изделия до создания лекал и самого изделия. Способы определения антропометрических особенностей.

    реферат [1,0 M], добавлен 21.12.2014

  • Предпосылки внедрения систем автоматизированного проектирования. Условная классификация САПР. Анализ программ, которые позволяют решать инженерные задачи. Система управления жизненным циклом продукта - Product Lifecycle Management, ее преимущества.

    контрольная работа [1,3 M], добавлен 26.09.2010

  • Жизненный цикл программного обеспечения. Основные этапы разработки информационной системы (ИС), методики ее внедрения. Модели жизненного цикла ИС, традиционные и альтернативные модели ее создания. Разработка стратегии автоматизации. Проекты создания ИС.

    презентация [105,5 K], добавлен 27.04.2013

  • Основные составляющие информационной технологии. Классические принципы построения архитектуры ЭВМ. Принцип последовательного выполнения операций. Перспективы применения экспертных систем в землеустроительных системах автоматизированного проектирования.

    контрольная работа [13,8 K], добавлен 13.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.