Разработка метода нечеткой оценки проектных характеристик обучаемого инженера для автоматизированных обучающих систем САПР
Современные методы оценки, применяемые в автоматизированных обучающих системах. Архитектура нечеткой нейронной сети Кохонена, алгоритм обучения. Принцип оценки обучаемого инженера на базе нечеткой нейронной сети Кохонена. Реализация разработанного метода.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 19.01.2018 |
Размер файла | 27,8 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа [2,3 M], добавлен 25.03.2014Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
лабораторная работа [36,1 K], добавлен 05.10.2010Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа [2,2 M], добавлен 12.11.2010Построение векторной модели нейронной сети. Проектирование и разработка поискового механизма, реализующего поиск в полнотекстовой базе данных средствами нейронных сетей Кохонена с применением модифицированного алгоритма расширяющегося нейронного газа.
курсовая работа [949,0 K], добавлен 18.07.2014Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Этап предварительной обработки данных, классификации, принятия решения. Изображения обучающих рукописных символов, тестового символа. Выход нейронной сети для тестового символа. График тренировки нейронной сети. Последовательность точек. Входные вектора.
статья [245,7 K], добавлен 29.09.2008Анализ нормативно-правовой базы, обоснование направлений создания обеспечения комплексной защиты информации в автоматизированных системах. Разработка методики оценки, выбор путей повышения эффективности защитных мероприятий в автоматизированных системах.
дипломная работа [368,5 K], добавлен 17.09.2009Анализ обучающих программ, систем для создания обучающих дисков, оценки качества обучающих систем, информационных технологий, состояния в области проектирования программных продуктов. Описание диаграммных методик. Разработка математической модели.
дипломная работа [1,7 M], добавлен 17.07.2009Изучение и реализация системы, использующей возможности Microsoft Azure для распределенного обучения нейронной сети. Рассмотрение функционирования распределенных вычислений. Выбор задачи для исследования; тестирование данного программного ресурса.
дипломная работа [2,0 M], добавлен 20.07.2015Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа [1019,5 K], добавлен 05.05.2015Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Основные характеристики современных автоматизированных обучающих систем. Требования к электронным образовательным ресурсам. Технологии создания электронных учебно-методических комплексов. Основные принципы применения компьютерных обучающих систем.
дипломная работа [2,1 M], добавлен 16.06.2015Изучение методов разработки систем управления на основе аппарата нечеткой логики и нейронных сетей. Емкость с двумя клапанами с целью установки заданного уровня жидкости и построение нескольких типов регуляторов. Проведение сравнительного анализа.
курсовая работа [322,5 K], добавлен 14.03.2009Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация [98,6 K], добавлен 16.10.2013Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.
реферат [78,9 K], добавлен 22.01.2015Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.
курсовая работа [549,7 K], добавлен 03.03.2015Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Модель и задачи искусственного нейрона. Проектирование двуслойной нейронной сети прямого распространения с обратным распространением ошибки, способной подбирать коэффициенты ПИД-регулятора, для управления движения робота. Комплект “LEGO Mindstorms NXT.
отчет по практике [797,8 K], добавлен 13.04.2015