Алгоритм маршрутизации. Проблема кратчайших путей всех пар. Алгоритм Флойда-Уолша
Реализация алгоритмов обработки графовых структур. Поиск кратчайших путей между вершинами, проверка связности. Алгоритм Флойда-Уолша. Выбор необходимого алгоритма и структуры для представления графов. Построение остовых деревьев минимальной стоимости.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 26.03.2019 |
Размер файла | 263,9 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Изучение основных понятий и определений теории графов. Рассмотрение методов нахождения кратчайших путей между фиксированными вершинами. Представление математического и программного обоснования алгоритма Флойда. Приведение примеров применения программы.
контрольная работа [1,4 M], добавлен 04.07.2011Постановка задач линейного программирования. Примеры экономических задач, сводящихся к задачам линейного программирования. Допустимые и оптимальные решения. Алгоритм Флойда — алгоритм для нахождения кратчайших путей между любыми двумя узлами сети.
контрольная работа [691,8 K], добавлен 08.09.2010Методология и технология разработки программного продукта. Решение задачи поиска кратчайших путей между всеми парами пунктов назначения, используя алгоритм Флойда. Разработка интерфейса программы, с использованием среды Delphi Borland Developer Studio.
курсовая работа [2,0 M], добавлен 26.07.2014Блок-схема алгоритма Флойда. Разработка его псевдокода в программе Microsoft Visual Studio. Программа реализации алгоритмов Беллмана-Форда. Анализ трудоемкости роста функции. Протокол тестирования правильности работы программы по алгоритму Флойда.
курсовая работа [653,5 K], добавлен 18.02.2013Анализ алгоритмов нахождения кратчайших маршрутов в графе без отрицательных циклов: Дейкстры, Беллмана-Форда и Флойда-Уоршалла. Разработка интерфейса программы на языке C++. Доказательство "правильности" работы алгоритма с помощью математической индукции.
курсовая работа [1,5 M], добавлен 26.07.2013Понятие и сущность графы, методы решения задач по поиску кратчайших путей в ней. Особенности составления программного кода на языке программирования Pascal с использованием алгоритма Форда-Беллмана, а также порядок ее тестирования с ручным просчетом.
курсовая работа [1,2 M], добавлен 31.07.2010Алгоритмы нахождения кратчайшего пути: анализ при помощи математических объектов - графов. Оптимальный маршрут между двумя вершинами (алгоритм Декстры), всеми парами вершин (алгоритм Флойда), k-оптимальных маршрутов между двумя вершинами (алгоритм Йена).
курсовая работа [569,6 K], добавлен 16.01.2012Корректность определения кратчайших путей в графе и рёбра отрицательной длины. Анализ алгоритмов Дейкстры, Беллмана-Форда, Флойда-Уоршелла. Вычисление кратчайших расстояний между всеми парами вершин графа. Топологическая сортировка ориентированного графа.
презентация [449,3 K], добавлен 19.10.2014Описание систем управления процессами маршрутизации пакетов, передаваемых через компьютерную сеть. Изучение методов теории выбора кратчайших путей. Разработка программы маршрутизации данных и определение кратчайших путей их маршрутов методом Дейкстры.
курсовая работа [495,7 K], добавлен 24.06.2013Понятие и классификация алгоритмов маршрутизации. Основное определение теории графов. Анализ и разработка алгоритмов Дейкстры и Флойда на языке программирования C# для определения наилучшего пути пакетов, передаваемых через сеть. Их сравнительный анализ.
курсовая работа [1,2 M], добавлен 16.05.2015Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.
реферат [39,6 K], добавлен 06.03.2010Графы: определения, примеры, способы изображения. Смежные вершины и рёбра. Путь в ориентированном и взвешенном графе. Матрица смежности и иерархический список. Алгоритм Дейкстры - алгоритм поиска кратчайших путей в графе. Работа в программе "ProGraph".
презентация [383,8 K], добавлен 27.03.2011Разработка модифицированных алгоритмов поиска оптимального маршрута в графе. Задание дополнительных условий и ограничений. Реализация модели для внутреннего представления транспортной сети. Создание программного комплекса в среде Visual Studio 2010.
курсовая работа [1,1 M], добавлен 16.04.2015Особливість знаходження найкоротшого шляху між кожною парою вершин у графі. Формалізація алгоритму Флойда-Уоршелла. Багатократне застосування алгоритму Дейкстри з послідовним вибором кожної вершини графу. Аналіз допущення наявності дуг з від’ємною вагою.
отчет по практике [151,8 K], добавлен 04.12.2021Использование понятий из теории графов при разработке сетей и алгоритмов маршрутизации. Построение матрицы смежности и взвешенного ориентировочного графа. Результаты работы алгоритмов Дейкстры и Беллмана-Форда. Протоколы обмена маршрутной информацией.
курсовая работа [334,1 K], добавлен 20.01.2013Теоретическое исследование вопроса и практическое применение. Общие сведения о графах. Алгоритм Дейкстры. Особенности работы в среде. Программная реализация. Описание алгоритма и структуры программы. Описание программных средств. Текст программы.
курсовая работа [1,0 M], добавлен 27.11.2007Значение сетевых структур в системах искусственного интеллекта, их применение для построения семантических сетей, фреймов и других логических конструкций. Составление программного кода на языке программирования Pascal, тестирование с ручном просчетом.
курсовая работа [1,2 M], добавлен 31.07.2010Использование информационных технологий для планирования размещения оптимальных точек водоснабжения, используя теорию графов. Функциональные возможности разрабатываемого приложения. Программная реализация основных модулей на основе алгоритма Флойда.
курсовая работа [818,3 K], добавлен 31.01.2012Разработка алгоритма реализации на ЭВМ процесса поиска кратчайшего пути в графе методом Дейкстры. Программная реализация алгоритма поиска кратчайшего пути между двумя любыми вершинами графа. Проверка работоспособности программы на тестовых примерах.
реферат [929,8 K], добавлен 23.09.2013Понятие и основной принцип действия алгоритмов сортировки информации. Сравнительное исследование и анализ эффективности методов сортировки Шелла и Флойда в виде графиков зависимостей количества сравнений и числа перестановок элементов от объёма данных.
контрольная работа [573,6 K], добавлен 09.11.2010