Создание модели канала передачи данных ТВ изображений на основе OFDM модулятора цифрового наземного телевидения

Принципы цифрового кодирования телевизионного и звукового сигналов. Способы модуляции, используемые в телевидении. Преобразование данных и сигналов в передатчике и приемнике стандарта DVB-T. Разработка и моделирование алгоритма работы канального декодера.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 18.03.2015
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

В настоящее время переход отечественной телевизионной техники на цифровой формат является весьма актуальным, планируется перевести всё вещание к цифровой форме до 2015 год. В мировой практике ТВ вещания уже функционируют три основных системы DVB-T (Великобритания), ATSC (США) и ISDB-T (Япония), которые разрабатывались для одновременной передачи данных различных служб. Так для телевидения высокой четкости требуется большая скорость потока передаваемых данных; для служб звукового вещания и передачи, данных основное требование - мобильный прием на портативные переносные приемники в условиях одночастотных сетей. Для передачи информации от датчиков и компьютерных данных необходима высокая надежность и защита от возможных помех и шумов канала связи.

Необходимость перехода к цифровым системам видео и звука связано не только с требованиями повышения качества воспроизводимой информации. Такой переход с экономической точки зрения позволяет более эффективно использовать разрешенную ширину спектра сигнала, что удовлетворяет требованиям увеличения числа одновременно транслируемых телевизионных и радиовещательных программ при том же частотном распределении спектра.

Проведенные испытания выявили, что наиболее эффективной по таким параметрам как помехоустойчивость, электромагнитная совместимость, развитость и преемственность цифровых технологий является DVB (Digital Video Broadcasting).

Особенность системы DVB - возможность иерархической передачи и приема данных. Допускает два режима работы: 2k(2048 несущих) для одиночных передатчиков и малых сетей и 8k(8192 несущих) для больших сетей. Так же допускает гибкий обмен между скоростью передачи данных и помехозащищенностью.

В России разработана и распоряжением Правительства России от 21 декабря 2000 г. введена в действие концепция «О внедрении в Российской Федерации европейской системы цифрового телевизионного вещания DVB». Концепция предусматривает развертывание в России к 2015 году развитой сети наземного и кабельного цифрового вещания, базирующихся на общеевропейском стандарте DVB. В соответствии с этой Концепцией создание сети цифрового наземного ТВ вещания в России должна завершиться в 2015 году.

1. Теоретический раздел

1.1 Основные положения цифрового представления и обработки телевизионного и звукового сигналов

1.1.1 Принципы цифрового кодирования телевизионного и звукового сигналов

Процесс цифрового кодирования аналогового ТВ сигнала начинается с его дискретизации, которая представляет собой замену непрерывного аналогового сигнала U(t) последовательностью отдельных во времени отсчетов этого сигнала. Наиболее распространенной формой дискретизации является равномерная дискретизация с постоянным периодом, в основе которой лежит теорема Найквиста-Котельникова. Частота дискретизации fд, выбранная в соответствии с теоремой Найквиста-Котельникова, равна:

fд = 2fгр,

где fгр - верхняя граничная частота спектра ТВ сигнала. (Для отечественного вещательного ТВ стандарта fгр = 6.25 МГц).

В системах цифрового телевидения с импульсно-кодовой модуляцией (ИКМ) частоту дискретизации fд выбирают несколько выше минимально допустимой, определяемой теоремой Найквиста-Котельникова. Связано это с условием отсутствия перекрытия побочных спектров в спектре дискретизированного сигнала, обеспечивающего гарантированное исходное качество сигнала при его обратном преобразовании в аналоговую форму с помощью низкочастотной фильтрации. Поэтому при верхней граничной частоте fгр = 6.25 МГц/д должна выбираться не менее 12.5 МГц.

Выбор fд во многом зависит от вида структуры отсчетов, т. е. от относительного их положения на ТВ экране, которая может быть фиксированной (отсчеты располагаются на одних и тех же позициях в соседних кадрах) или подвижной (отсчеты меняют свое положение).

Искажения, возникающие в процессе дискретизации, менее заметны в фиксированных структурах дискретизации. Различают следующие виды фиксированных структур дискретизации: строчно-шахматную, кадрово-шахматную и ортогональную. В строчно-шахматной структуре используется строчное чередование точек, образованное в результате сдвига на половину интервала дискретизации отсчетов соседних строк данного поля. Кадрово-шахматная структура образуется путем сдвига отсчетов соседних полей на половину интервала дискретизации. Практическое применение получила фиксированная ортогональная структура, отсчеты которой расположены на ТВ экране вдоль вертикальных линий периодично по строкам, полям, кадрам. Позволяя суммировать соседние поля чересстрочного разложения без потери разрешающей способности по горизонтали и вертикали, ортогональная структура дискретизации идеальна для выполнения различных интерполяций в преобразователях стандартов, аппаратуре видеоэффектов, устройствах сокращения избыточности информации. Это обстоятельство явилось основным при выборе ортогональной структуры для базового стандарта цифрового кодирования.

За процессом дискретизации при преобразовании аналогового сигнала в цифровую форму следует процесс квантования. Квантование заключается в округлении полученных после дискретизации мгновенных значений отсчетов до ближайших из набора отдельных фиксированных уровней. Квантование представляет собой дискретизацию ТВ сигнала не во времени, а по уровню сигнала U(t).

Фиксированные уровни, к которым «привязываются» отсчеты, называют уровнями квантования. Разбивая динамический диапазон изменения сигнала U(t) уровнями квантования на отдельные области значений, называемые шагами квантования, образуют шкалу квантования. Следствием этого становится появление в сигнале специфических шумов, называемых шумами квантования. Ошибки квантования или шумы квантования на изображении могут проявляться по-разному, в зависимости от свойств кодируемого сигнала. Если собственные шумы аналогового сигнала невелики по сравнению с шагом квантования, то шумы квантования проявляются на изображении в виде ложных контуров. В этом случае плавные яркостные переходы превращаются в ступенчатые, и качество изображения ухудшается. Наиболее заметны ложные контуры на изображениях с крупными планами. Этот эффект усугубляется на подвижных изображениях. Когда собственные шумы аналогового сигнала превышают шаг квантования, искажения квантования проявляются уже не как ложные контуры, а как шумы, равномерно распределенные по спектру. Флуктуационные помехи исходного сигнала как бы подчеркиваются, изображение в целом начинает казаться более зашумленным.

Обычно используется линейная шкала квантования, при которой размеры зон одинаковы.

Число уровней квантования, необходимое для высококачественного раздельного кодирования составляющих цветового ТВ сигнала, определяется экспериментально. Очевидно, что с ростом этого числа точность передачи уровневой информации возрастает, шумы квантования снижаются, но при этом растет информационный поток и расширяется необходимая для передачи полоса частот. С другой стороны, при заниженном числе уровней квантования ухудшается качество изображения из-за появления на нем ложных контуров. Кроме того, слишком велики, а потому и заметны шумы квантования. Недостаточное число уровней квантования особенно неприятно сказывается на цветных изображениях. В этом случае шумы квантования проявляются в виде цветных узоров, особенно заметных на таких сюжетах, как лицо крупным планом, на плавных перепадах яркости.

Пороговая чувствительность глаза к перепадам яркости в условиях наблюдения, оптимальных для просмотра ТВ передач, по экспериментальным данным около 1%, а это значит, что два соседних фрагмента изображения, отличающихся по яркости на 1%, воспринимаются как раздельные части изображения. Таким образом, кодирование сигнала яркости с числом уровней квантования меньшим или равным 100 ведет к появлению на изображении ложных контуров, что заметно ухудшает его качество. Следовательно, ближайшее число S двоичных символов (битов) в каждой кодовой комбинации, при которой ложные контура не видны, будет равным 7 (S = 7). Чтобы сделать оптимальный выбор значения S, следует оценить уровень шумов квантования. Для количественной оценки влияния шумов квантования на качество ТВ изображения целесообразно использовать специальный параметр - отношение сигнал-шум квантования ?кв, дБ.

В случае линейной шкалы квантования отношение сигнал-шум квантования ?кв, дБ определяется следующей известной формулой [1]

Шкв, Дб = 20 lg = 6,02S + 10lg12? 6S + 10,8 (1)

где ДU - шаг квантования; т - число уровней квантования;

S - длина кодового слова, т. е. число бит, с помощью которых можно записать в двоичной форме любой номер уровня квантования до т включительно (т = 2);

m?U - размах сигнала, подвергаемого квантованию;

ДU/ - результирующее напряжение шума квантования.

Если S = 7, то ?кв,= 52,8 дБ. Очевидный недостаток семиразрядного квантования заключается в близости к порогу по шумам квантования и ложным контурам. Дальнейшие исследования показали, что для высококачественного раздельного кодирования ТВ сигнала необходимо, как минимум, 8-битовое квантование. Фактически используются не все 256 уровней 8-разрядного квантования (от 0 до 255), а несколько меньше. Обычно не используют полный динамический диапазон аналого-цифрового преобразователя (АЦП), если существует опасность его превышения в процессе эксплуатации. На практике превышение динамического диапазона АЦП может возникать из-за эксплуатационной нестабильности уровня видеосигнала, появления выбросов при использовании фильтров с резким ограничением амплитудно-частотной характеристики (АЧХ), переходных процессов схемы фиксации уровня и др. Учитывая это, для аналого-цифрового преобразования видеосигнала предложено выделить только 220 уровней, а уровню черного и номинальному уровню белого поставить в соответствие уровни 16 и 235. Таким образом, предусматривается запас в 16 уровней «снизу» и 20 уровней «сверху» при положительной полярности видеосигнала. Это различие учитывает неодинаковость восприятия возникающих помех дискретизации на черном и белом.

Результаты вышеназванных исследований вошли в Рекомендацию Международного консультативного комитета по радио (МККР) 11/601, разработанную в 1982 г. для цифрового телевидения, в которой приводятся значения основных параметров цифрового кодирования ТВ сигнала для АСК телецентров, работающих со стандартом разложения как на 625 строк, так и на 525. После вхождения МККР в состав Международного союза электросвязи (МСЭ) данная Рекомендация получила обозначение МСЭ-Р601. В соответствии с этой Рекомендацией предложено осуществлять раздельное кодирование яркостного Eу и цветоразностных сигналов ER.y и Eb-y. Причем для сигнала Еу частота дискретизации выбрана 13.5 МГц. С учетом необходимости образования общего цифрового потока и фиксированной структуры отсчетов, выбранная частота дискретизации цветоразностных сигналов равна половине частоты дискретизации сигнала яркости, т. е. 6.75 МГц. Поэтому стандарт цифрового кодирования условно обозначается соотношением 4:2:2, что отражает соотношение частот дискретизации сигнала яркости и двух цветоразностных сигналов, а также одновременность их передачи. При этом яркостный и цветоразностные сигналы подвергаются 8-разрядному квантованию, т. е. S = 8 [2]. Рекомендация МСЭ-Р601 учитывает, что исходные аналоговые сигналы EY, Ery, Ев.у являются гамма-корректированными, т. е. их получают путем матрицирования гамма-корректированных цветоделенных сигналов ER, EG, Ев видеодатчика. Обработка негамма-корректированных видеосигналов требует увеличения разрядности квантования по крайней мере до 11 бит, чтобы избежать заметности помех квантования в области черного. При использовании стандарта цифрового кодирования 4:2:2 путем объединения цифровых потоков яркостного и цветоразностных сигналов в случае 5=8 суммарная скорость передачи цифровой информации равна 216 Мбит/с.

На практике внедрение стандарта цифрового кодирования 4:2:2 уменьшает отличие между основными стандартами разложения 625/50 и 525/60 и обеспечивает более высокий уровень их совместимости. Это достигнуто унифицированием длительности активной части строки в двух системах развертки и выбором одинакового числа отсчетов на активной части ТВ строки: для сигнала яркости 720 отсчетов, а для каждого из цветоразностных сигналов -- по 360 отсчетов.

Для получения более высокого качества изображения необходим стандарт с использованием широкополосных сигналов основных цветов R, G, В (или сигнала яркости и двух цветоразностных сигналов) и частоты дискретизации не ниже 13,5 МГц для каждого из них (условное обозначение 4:4:4). Скорость цифрового потока при этом стандарте составит 324 Мбит/с. Предусмотрена возможность применения стандарта более низкого уровня (например, для комплексов видеожурналистики) с условным обозначением 2:1:1 (частоты дискретизации соответственно равны 6,75 МГц и 3,375 МГц). Таким образом, создается иерархия (семейство) совместимых стандартов цифрового кодирования.

Рисунок 1 - Структура дискретизации для форматов 4:2:2, 4:1:1, 4:2:0

Требование совместимости семейства стандартов цифрового кодирования заключается в сравнительно простом переходе от одного стандарта к другому. Если учесть, что все стандарты базируются на ортогональной структуре дискретизации, то, например переход от стандарта 4:4:4 и 4:2:2 получается отбрасыванием каждого второго отсчета цветоразностных сигналов, а переход от стандарта 4:2:2 к 4:1:1 осуществляется отбрасыванием каждых трех отсчетов (рисунок 1). Аналогично переход от стандарта 4:1:1 к стандартам 4:2:2 и 4:4:4 будет заключаться в восстановлении недостающих отсчетов цветоразностных сигналов.

Современный прогресс технологии интегральных микросхем позволил начать промышленный выпуск 10-разрядных АЦП и ЦАП для кодирования и декодирования ТВ сигналов, что дает возможность разработчикам студийной ТВ аппаратуры особо высокого класса качества перейти от 8-разрядного к 10-разрядому кодированию. В данном случае одним из ключевых моментов является уровень шума квантования. Видеосигнал с 8-битовым квантованием может иметь отношение сигнал-шум, равное 58.8 дБ, с 10-битовым квантованием - до 70.8 дБ. При этом следует учесть, что в некоторых аналоговых устройствах отношение сигнал-шум уже достигает 65 дБ. Это и определяет соответствующие требования к цифровому оборудованию. Кроме того, по ряду ответственных операций, например, микширования, монтажа 8-битовое квантование не обеспечивает требуемого качества, а в некоторых случаях, например, в цифровых ТВ камерах, необходимо даже 14-битовое квантование.

Разрабатываемые системы ТВЧ имеют примерно удвоенную разрешающую способность по вертикали и, как минимум, удвоенную разрешающую способность по горизонтали. К настоящему времени для целей студийного производства (в АСК) и ТВ вещании предложено два стандарта: 1125/60/2:1 и 1250/50/2:1. Непосредственно для производства и международного обмена программами ТВЧ предлагаются стандарты: 1080/25/1:1, 1080/30/1:1, 1080/50/1:1, 1080/60/1:1, 1080/50/2:1, 1080/60/2:1. Кроме того, в последнее время предложен стандарт 1080/24/1:1, который использует частоту кадров 24 Гц при прогрессивной развертке. Следует заметить, что подобная частота смены кадров применяется в кинематографе. Поэтому благодаря этому стандарту электронная и киноверсия кинофильма совпадают, что облегчает международный обмен кинопрограммами, которые редактируются в электронном виде и могут передаваться по цифровым каналам связи. Таким образом, на основе цифровых технологий впервые удалось эффективно объединить интересы ТВЧ вещания и массового электронного кинематографа.

Использование цифровых методов в ТВЧ позволило во многом унифицировать множество предложенных стандартов за счет применения единого формата (16:9) изображения ТВЧ, предусматривающего 1080 активных строк в кадре с чересстрочным или прогрессивным разложением при 1920 отсчетах в активной части строки для яркостного сигнала (для цветоразностных сигналов число отсчетов в активной части строки установлено равным 960). Предполагается переключаемая частота кадров 24, 25, 30 кадров в с при частоте полей 50/60 полей в с. (Рекомендация МСЭ-Р ВТ.709Д принятая в июне 1999 г. [3]). Формат 16:9 означает формирование квадратной структуры отсчетов, что соответствует квадратным элементам изображения на экране, обычно используемым в компьютерной технике.

Разработка Рекомендации МСЭ-Р ВТ.709-3 впервые в мировой практике позволяет создать единую линейку студийного цифрового оборудования, удовлетворяющего требованиям видео и кинопроизводства, а также обмена передачами ТВЧ.

Основные параметры цифрового кодирования вещательных стандартов ТВЧ, согласованные в соответствии с Рекомендацией МСЭ-Р ВТ.709-3, приведены в таблице 1.

Таким образом, при реализации цифровых способов кодирования ТВ изображений, основанных на классической ИКМ, необходимо оперировать с высокой скоростью цифрового потока, достигающей нескольких сотен или даже полутора тысяч (в случае ТВЧ) Мбит/с и это рождает много проблем как при передаче видеоданных по каналам связи, так и при их обработке, например, консервации, т. е. записи. Снизить указанные скорости цифрового потока позволяют методы эффективного сокращения объемов психофизиологической и статистической избыточности составляющих видеоинформации, например, разработанные на их основе способы видеокомпрессии, являющиеся ключевыми процессами цифровых технологий.

Таблица 1 - Параметры цифрового кодирования вещательных стандартов ТВЧ

Наименование параметра

Значение основных параметров

1125/60/2:1

1250/50/2:1

Частота дискретизации сигнала яркости EY, МГц

74,25 (33х2,25)

72 (33х2,25)

Частота дискретизации цветоразностных сигналов ER-Y, EB-Y, МГц

37,125 (33/2х2,25)

26 (33/2х2,25)

Вид кодирования

Линейное, 8 или 10 бит для каждого сигнала

Линейное, 8 или 10 бит для каждого сигнала

Скороть результирующего цифрового потока при 8-битовом кодировании, Мбит/с

1188

1152

Скороть результирующего цифрового потока при 10-битовом кодировании, Мбит/с

1485

1440

Форматы цифрового преобразования в звуковых устройствах различного назначения существенно отличаются. У них не совпадают законы кодирования отсчетов, способы защиты от ошибок, число звуковых каналов в одном потоке, характер и объем служебной информации.

Отношение сигнал-шум квантования для звуковых сигналов ?кв дБ можно оценить по следующему выражению:

Шкв,Дб = 6S - 20lgP + 4,8 (2)

где Р - значение пик-фактора звукового сигнала. Для сигнала звукового сопровождения ТВ передач значение пик-фактора зависит от характера ТВ программ и меняется в пределах от 7 до 25 дБ (в логарифмических единицах измерения). В среднем считается, что он равен 12... 15 дБ, поэтому для вещательного телевидения Шзв дБ = 6S - 8.2.

Учитывая более высокую чувствительность слухового аппарата к шумам квантования по сравнению со зрительным аппаратом, в оборудовании студийных аппаратных применяют равномерное квантование отсчетов с числом разрядов не менее 16 и дискретизацию с частотой 48 кГц. В пультах звукорежиссера и устройствах шумоподавления применяется даже 24-битовое квантование звуковых сигналов.

В системах записи на оптические диски аналоговый звуковой сигнал дискретизируется с частотой 44.1 кГц, а число бит, приходящихся на один отсчет дискретизации, равно 32, т. е. по 16 бит (2 байта) соответственно для правого и левого каналов стереозвука.

1.2 Способы модуляции, используемые в цифровом телевидении

1.2.1 Общие требования к способам модуляции

Как известно, для передачи прямоугольных импульсов без искажений требуется теоретически бесконечно большая полоса частот. Однако реальные каналы связи могут обеспечить лишь ограниченную полосу частот, поэтому необходимо согласовывать передаваемые сигналы с параметрами каналов. Такое согласование выполняется благодаря кодированию исходных данных за счет обеспечения специальной формы импульсов, переносящих данные, например, путем сглаживания прямоугольной формы спектральной плотности импульса по косинусоидальному закону, а также с помощью различных видов модуляции.

Если сообщения передаются двоичными символами, то скорость передачи данных не может превышать значения 2AFK бит/с или 2 бит/с на 1 Гц полосы пропускания канала связи AFK. Предел удельной скорости передачи данных с помощью двоичных символов, равный 2 (6ит/с)/Гц, называется также «барьером Найквиста» [8]. Теоретически «барьер Найквиста» может быть преодолен за счет повышения отношения сигнал-шум в канале связи до очень большого значения, что практически невозможно. Поэтому для повышения удельной скорости передачи данных (преодоления «барьера Найквиста») необходимо перейти к многопозиционной (комбинированной) модуляции, при которой каждая электрическая посылка несет более 1 бита информации.

К способам многопозиционной модуляции, используемым в системах цифрового телевидения, относятся: квадратурная амплитудная модуляция (QAM), квадратурная фазовая манипуляция или четырехпозиционная фазовая манипуляция (QPSK), частотное уплотнение с ортогональными несущими (OFDM - Orthogonal Frequency Division Multiplexing) и восьмиуровневая амплитудная модуляция с частично подавленной несущей и боковой полосой частот (8-VSB - Vestigial Side Band).

При выборе метода модуляции очень важно учитывать характеристики канала передачи. Для каналов спутниковой и кабельной цифровых систем телевидения в качестве оптимальных (обеспечивающих заданное качество при минимальной сложности ТВ приемников) были выбраны способы модуляции одной несущей. Причем в системах цифрового спутникового ТВ вещания, использующих каналы связи с полосой 27 МГц для непосредственного ТВ вещания и 30, 33, 36, 40, 46, 54 и 72 МГц для фиксированных служб спутниковой связи, целесообразно применять модуляцию типа QPSK. При этом обеспечиваются достаточно выгодное соотношение мощности и полосы пропускания бортового оборудования искусственного спутника Земли (ИСЗ), возможность работы в условиях характерной для транспондеров нелинейности, обусловленной амплитудной и фазовой характеристиками бортового усилителя, и простота реализации декодеров, встроенных в спутниковые приемники. В противоположность наземным вещательным и кабельным каналам на спутниковый канал линейные помехи оказывают меньшее влияние. Модуляция типа QPSK применяется совместно со схемой опережающей коррекции ошибок FEC, основанной на взаимодействии алгоритмов кода коррекции ошибок Рида-Соломона и сверточного кода.

При этом сверточный код должен иметь гибкую структуру для работы при разных кодовых скоростях, равных 1/2, 2/3, 3/4, 5/6, 7/8. (Знаменатель численного значения кодовой скорости соответствует общему количеству битов кодовой комбинации, а числитель -- числу информационных битов, следовательно, по значению кодовой скорости можно оценить число проверочных символов, добавляемых в каждую кодовую комбинацию). В приемных устройствах в этом случае используются последовательная демодуляция и мягкое декодирование Витерби. Применение QPSK-модуляции позволяет обеспечить устойчивый прием при соотношении сигнал-шум на входе спутникового ТВ приемника до 6 дБ.

Для цифровых кабельных ТВ систем, не имеющих ограничений по мощности, позволяющих регулировать отношение сигнал-шум и использующих каналы связи с полосой пропускания 8 МГц, предложено применить модуляцию типа QAM. За счет применения в кабельных цифровых ТВ системах модуляции типа QAM отсутствует необходимость во внутреннем коде системы опережающего исправления ошибок.

Каналы связи наземного телевидения со стандартными полосами частот 6-8 МГц значительно отличаются от каналов спутникового и кабельного телевидения. Практически в любом канале связи наземного телевидения возникают помехи из-за многолучевого приема, обусловленного рельефом местности, и отражений, вызванных как статическими объектами, например зданиями, так и динамическими объектами, самолетами.

Каналы связи наземного телевидения отличает высокий уровень промышленных помех. Из-за переполнения частотного диапазона, в котором возможно наземное вещание, велика вероятность интерференционных помех за счет взаимодействия с сигналами совмещенных и соседних каналов. При выборе способа модуляции в наземном цифровом телевидении следует учитывать способность работы в условиях приема на комнатные антенны и антенны, портативных ТВ приемников, а также возможность функционирования в одночастотных сетях.

При этом прием сигналов цифрового телевидения в мобильных условиях рассматривается не как обязательное требование, а как желательная возможность. Способность работы в условиях быстроменяющихся характеристик канала связи также не является абсолютным условием. В данном случае примером одночастотной сети может служить сеть радиопередатчиков малой мощности, располагающихся в зонах плохого приема сигнала основного передатчика и работающих на той же самой частоте, что и основной. Из всех известных способов модуляции сформулированным выше требованиям отвечают два вида многопозиционной модуляции: 8-VSB и OFDM [9].

1.2.2 Требования к цифровому наземному телевидению

Основные требования для канала цифровой наземной ТВ системы следующие:

высокое качество телевизионного изображения;

высокое качество звукового сопровождения: объемное звучание и дополнительные возможности (например, для слабослышащих людей);

пропускная способность должна рассматриваться и для неких контейнеров данных, которые могут содержать различные виды услуг, передаваемых одновременно с ТВ сигналом;

система предназначается для мобильного, стационарного и статичного комнатного приема;

¦ система должна быть пригодна для борьбы с интерференцией.

Система разрабатывается в соответствии с указанными выше требованиями. Основная задача заключалась в передаче с высокой скоростью данных, на как можно дальнее расстояние, по каналам связи с замиранием, интерференцией сигнала и различными видами помех. OFDM подразумевает наличие цифрового блока ОБПФ и аналогового квадратурного модулятора. Организация ОБПФ требует больше количество вычислений, зависящих от количества точек преобразования Фурье.

1.2.3 Обзор существующих систем цифрового телевидения высокой четкости

Существует три основные системы цифрового наземного телевидения высокой четкости: ATSC, DVB-T, ISDN.

На американском континенте главенствующая роль в разработке стандартов на цифровое ТВ вещание принадлежит Комитету по усовершенствованным системам телевидения - ATSC (Advanced Television Systems Committee). Разработанный этим Комитетом стандарт на наземное цифровое ТВ вещание ATSC в части кодирования и структурирования информации также основывается на алгоритме MPEG-2, но принципиально отличается от Project DVB по методам модуляции и обработки радиосигнала, кодирования звука и программной навигации, что было сделано исходя из особенностей построения сети наземного ТВ вещания США.

Стандарты, разрабатываемые в рамках Project DVB, применяются в системах цифрового аудио и видеовещания и передачи данных по спутниковым, кабельным и наземным сетям и определяют соответствующие системные рекомендации для кабельного (DVB-C), наземного (DVB-T) и спутникового (DVB-S) ТВ вещания, а также для микроволнового многоточечного распределения DVB-MC-системы мм диапазона, работающие на частотах менее 10 ГГц; DVB-MS-системы мм диапазона, работающие на частотах, превышающих 10 ГГц.

Системы DVB-MS относятся к классу сотовых систем телевидения).

В Японии компанией NHK разработана концепция цифрового ТВ вещания с интеграцией служб ISDB (Integrated Services Digital Broadcasting), которая является общей для наземных, спутниковых и кабельных сетей. Спецификация системы цифрового наземного ТВ вещания ISDB-T была одобрена Советом по телекоммуникационным технологиям министерства почт и телекоммуникаций Японии. Причем стандарты ISDB-T и DVB-T во многом схожи, отличия заключаются в возможности в системе ISDB-T использовать для передачи информации нескольких разнесенных полос частотного спектра.

Сравнивая преимущества и недостатки систем, надо иметь в виду, что все стандарты предполагают использование компрессии MPEG-2, поэтому во всех системах данные об изображении и звуке передаются в виде пакетов транспортного потока MPEG-2. Принципиальные различия между системами проявляются лишь в том, как передаются от передатчика к приемнику кодированные данные, т. е. на уровне модуляции. Поэтому именно в соперничестве способов модуляции (VSB и OFDM) будут определяться судьбы систем цифрового телевидения.

1.2.4 Квадратурная амплитудная модуляция (QAM)

Данный способ модуляции относится к комбинированным. В случае QAM промодулированный сигнал представляет собой сумму двух ортогональных несущих: косинусоидальной и синусоидальной, амплитуды, которых принимают независимые дискретные значения.

UQAM(t)= Uc[c1(t)cos(щc•t)+ c2(t)cos(щc•t)] (3)

где Uc - амплитуда сигнала; щc - частота несущей,

c1(t), c2(t) - модулирующие сигналы в квадратурных каналах.

При приеме сигнала с QAM производится когерентное детектирование.

UQAM-16 (t) = ) (4)

Если модулирующие сигналы c1(t), c2(t) принимают значения ±1, то получим QAM-4 (четырехпозиционную QAM). Если же для модуляции как в синфазном, так и в квадратурном каналах используются четырехуровневые сигналы c(t) = ±1; ±3, то при этом получается 16-позиционная QAM (QAM-16), которую можно описать выражением (4) и представить в фазово-амплитудном пространстве в виде специального рисунка 2, где точками показаны положения концов вектора сигнала At при различных значениях i. Оси координат на рисунке 2 соответствуют синфазной J и квадратурной Q составляющим сигнала. Кроме модуляции типа QAM-16 в системах цифрового телевидения широко используется QAM-64. В данном случае числа в обозначениях типа модуляции означают количество вариантов суммарного сигнала.

Рисунок 2 - Векторная диаграмма возможных состояний сигнала при QAM-16 (х = 1).

Расположение сигнальных точек в фазово-амплитудном пространстве при различных типах QAM определяют сигнальные созвездия модулированных сигналов.

Практически используются как обычные равномерные, так и неравномерные сигнальные созвездия с различными расстояниями между двумя ближайшими точками созвездия в смежных квадрантах, что количественно оценивается коэффициентом неравномерности сигнального созвездия х- Данный параметр равен отношению расстояния между соседними точками в двух разных квадрантах к расстоянию между точками в одном квадранте. Применительно к модуляции типа QAM-16 и 64 рекомендуются три значения коэффициента х.

X = 1 соответствует обычной QAM с равномерным сигнальным созвездием (рис. 2); % = 2 характеризует QAM с неравномерным сигнальным созвездием, когда расстояние между двумя ближайшими точками созвездия в смежных квадрантах в два раза больше расстояния в пределах одного квадранта (рис. 3,а); %= 4 оценивает QAM с неравномерным сигнальным созвездием, когда различие расстояний между точками внутри и между квадрантами является четырехкратным (рис. 3,6).

Применение неравномерной структуры сигнальных созвездий с коэффициентами %=2, Х=4 обеспечивает улучшение декодирования потока данных, модулированных методами QAM-16 и QAM-64. Однако при этом требуется увеличение отношения сигнал-шум для потока данных, так как шумы и помехи трансформируют сигнальные точки созвездия в «облака». Центром «облака» остается сигнальная точка, а его «размытость» характеризует остаточный уровень несущей, нарушение баланса уровней сигналов J и Q, коэффициент модуляционных состояний сигнала при QAM-16 (х = 2) состояний сигнала при QAM-16 (х = 4) ошибок и другие параметры.

При очень сильном шуме различить сигнальные точки внутри квадрантов становится практически невозможным. Однако благодаря введенной неравномерности в сигнальные созвездия сигнальные точки между квадрантами различаются достаточно хорошо, т. е. декодирование может осуществляться с приемлемой вероятностью ошибок.

Для получения QAM сигнала можно использовать квадратурную схему модулятора, показанную на рис. 4.

Последовательность двоичных символов х0, xh х2, подается на последовательно-параллельный преобразователь ППП. Здесь двоичные символы группируются в модуляционные символы по N бит. Старшие разряды x 0, x 1 выделяются отдельно и служат для управления фазовращателями УФ 1 , УФQв каналах I и Q. Фазовращатели изменяют фазу несущего колебания на 180°,, если х0 = 1 и x 1= 1.

Рисунок 4 - Структурная схема модулятора QAM

Таким образом, определяется квадрант сигнального созвездия, в котором будут находиться позиции суммарного вектора несущей U? . Сочетание 00 соответствует первому квадранту, 10 -- второму, 11 -- третьему, 01 -- четвертому. Младшие разряды модуляционного символа разделяются на четные х2, х4, .. и нечетные х3, х5, которые затем поступают в кодер Грея. В этом кодере производится перекодировка полученных символов в код Грея для того одном бите. В Таблице 2 представлены натуральные двоичные числа и соответствующие им коды Грея.

Таблица 2- натуральные двоичные числа и соответствующие им коды Грея

Десятичное число

0

1

2

3

4

5

6

7

Натуральный двоичный код

000

001

010

011

100

101

110

111

Код Грея

000

001

011

010

110

111

101

100

Кодированные по коду Грея модуляционные символы в каналах I и Q поступают в цифро-аналоговые преобразователи ЦАП. Уровни, которые получаются на их выходах ЦАП, определяют напряжения на выходах балансных модуляторов. В таблице 3 показаны возможное соответствие между уровнями ЦАП и входными кодами.

Таблица 3 - возможное соответствие между уровнями ЦАП и входными кодами

Код 16-QAM

1

0

--

--

Код 64-QAM

11

10

01

00

Уровень на выходе ЦАП

1

3

5

7

На практике модуляция типа QAM 16 обеспечивает удельную скорость передачи данных, равную 3.9 (бит/с)/Гц, a QAM-64 - 4.5 (бит/с)/Гц.

В кабельных сетях модуляция QAM-64 позволяет, при соотношении сигнал-шум на входе цифрового ТВ приемника 24 дБ, обеспечивать устойчивый прием и пропускная способность кабельной сети с полосой канала 8 МГц составляет 38.5 Мбит/с.

1.2.5 Способ частотного уплотнения с ортогональными несущими (OFDM)

При использовании модуляции типа OFDM поток данных передается с помощью большого числа несущих. Подобно квадратурной модуляции, способ OFDM использует ортогональные несущие, но в отличие от квадратурной модуляции частоты этих несущих не являются одинаковыми, они расположены в некотором диапазоне частот, отведенном для передачи данных путем модуляции и кратны некоторой основной частоте, в данном случае ?0. На практике частоты несущих соответствуют уравнению

(t) = +)t] (5)

где fo - начало интервала, в котором производится частотное уплотнение;

п - номер несущей, находящийся в диапазоне от 0 до (N - 1), т. е. всего несущих N;

Ts- длительность интервала передачи одного символа.

Анализ данного выражения подтверждает, что несущие действительно являются ортогональными, т. е. их среднее (по времени) произведение равно нулю. Это означает возможность их разделения на приеме даже при частичном перекрытии их боковых полос.

Сначала последовательный поток передаваемых данных демультиплексируется (рис. 5), т. е. разделяется на большое число (N) параллельных потоков, трансформируясь в параллельную форму. Каждый из параллельных сигналов поступает на свой модулятор, в котором одна из ортогональных несущих подвергается модуляции какого-либо типа. Например, в качестве первичного метода модуляции отдельных несущих могут использоваться дифференциальная относительная фазовая модуляция (ДОФМ) и квадратурная амплитудная модуляция типа 16-QAM или 64-QAM.

Таким образом, каждая несущая переносит поток данных, уменьшенный в число раз, равное количеству несущих N. После сложения модулированных ортогональных колебаний формируется результирующих сигнал OFDM.

Рисунок 5 - Функциональная схема устройства модуляции OFDM

Даже в условиях сравнительно небольшой скорости потока данных, переносимого каждой несущей, возможны межсимвольные искажения, бороться с которыми позволяет защитный интервал перед каждым передаваемым символом. Причем структура и заполнение защитного интервала должны сократить ортогональность принимаемых несущих. Поэтому защитный интервал - это не просто пауза между полезными символами, достаточная для угасания сигнала символа до начала следующего. В защитном интервале передается фрагмент полезного сигнала, что и гарантирует сохранение ортогональности несущих принятого сигнала. Это обеспечивается только в том случае, если эхо-сигнал при многолучевом распространении задержан не более чем на длительность защитного интервала. Поэтому величина защитного интервала зависит от расстояния между радиопередатчиками в одночастотных сетях ТВ вещания или от задержки естественного эхо-сигнала в сетях вещания с традиционным распределением частотных каналов. Чем больше время задержки, тем больше должна быть длительность защитного интервала.

С другой стороны, для обеспечения максимальной скорости передаваемого потока данных защитный интервал должен быть как можно короче. Практически одна четвертая часть от величины полезного интервала является достаточной оценкой максимального значения длительности защитного интервала.

Предварительные исследования показали, что если одночастотные сети будут строиться в основном с использованием существующих радиопередатчиков, то абсолютная величина защитного интервала должна быть около 250 мкс. Это позволяет создавать большие одночастотные сети регионального уровня.

Если защитный интервал в 250 мкс составляет четвертую часть полезного интервала, то длительность самого полезного интервала должна быть установлена на уровне около 1 мс. Величина шага частот несущих связана с шириной основного лепестка спектра одного модулированного несущего колебания и определяется величиной, обратной длительности полезного интервала, поэтому расстояние между соседними несущими будет равно примерно 1 кГц. При ширине полосы частот канала 8 МГц и шаге 1 кГц число несущих должно быть равно 8000.

Можно задаться вопросом об объеме данных, которые необходимо передавать с помощью одной несущей. Если он окажется слишком велик, то потребуется использовать многопозиционные модулирующие сигналы и помехозащищенность системы будет невелика. Для передачи данных даже в системе ТВЧ достаточно скорости потока данных 20 Мбит/с (с учетом применения компрессии), в этом случае за 1 мс (время одного символа) должно быть передано 20 Кбит, что дает меньше 3 битов на одну несущую за время одного символа. Такая величина может быть реализована с использованием 8-позиционных символов, что дает довольно высокую степень помехозащищенности.

При числе несущих в несколько тысяч возникает естественный вопрос о практической реализации функциональной схемы, представленной на рисунке 5. Применение восьми тысяч синтезаторов несущих колебаний и восьми тысяч модуляторов сделало бы такую систему передачи очень громоздкой и практически невозможной для реализации. Но разработки алгоритмов и промышленный выпуск интегральных схем процессоров быстрого преобразования Фурье позволили решить эту проблему (рис. 6). Ведь перемножение некоторых коэффициентов на гармонические колебания разных частот, удовлетворяющих вышеприведенным условиям, и суммирование полученных произведений представляет собой не что иное, как вычисление обратного преобразования Фурье (на схеме рис. 6 соответствующий блок обозначен как ОБПФ -- обратное быстрое преобразование Фурье), коэффициентами, для вычисления которого являются распараллеленные потоки данных.

Поскольку все вычисления производятся в цифровой форме, то на выходе появляется ЦАП. Демодуляция может быть построена на базе прямого преобразования Фурье (рис. 5,6), где БПФ - устройство быстрого преобразования Фурье. Естественно, что в этом случае на входе должен стоять АЦП.

В большинстве быстрых алгоритмов Фурье размер массива, подвергающегося преобразованию, кратен целой степени числа 2. Поэтому можно использовать, например, размер массива N - 8192 = 8А: или N = 2048 = 2к (здесь к = 210 = 1024). На практике число несущих меньше, часть несущих не используется, поскольку между полосами соседних каналов должен быть оставлен некоторый зазор. В двух предложенных в настоящее время режимах используются 6817 и 1705 несущих, но по размерности массива быстрого преобразования Фурье системы модуляции называются соответственно 8к OFDM и 2к OFDM.

Режим 2к пригоден для вещания одиночным передатчиком и для построения малых одночастотных сетей с ограниченными расстояниями между передатчиками. Режим 8к применяется в тех случаях, когда необходимо построение больших одночастотных сетей. В канале связи с шириной полосы 8 МГц система модуляции OFDM занимает полосу 7.61 МГц, а разнос несущих равен 4464 Гц (режим 2к) или 1116 Гц (режим 8к).

Передаваемый сигнал, модулированный способом OFDM, организован в кадры. Четыре кадра образуют суперкадр. Каждый кадр, состоит из 68 символов, каждый символ - из 6817 несущих (режим 8к = 8192), из которых часть используется для синхронизации и управлении. Число полезных несущих равно 6048. Для режима 2к = 2048 из 1705 несущих, полезными являются 1512 [8, 11, 12].

Однако многолучевое распространение радиосигнала в точку приема (довольно типичное для наземного телевидения) приводит к ослаблению и даже полному подавлению некоторых несущих вследствие интерференции прямого и задержанного сигналов. Решению этой проблемы помогает кодирование с целью обнаружения и исправления ошибок в канале передачи данных.

Кодирование превращает OFDM в CFDM (Coded Orthogonal Frequency Division Multiplexing). COFDM более эффективна в условиях многолучевого приема, чем система передачи с одной несущей. Если по каналу связи, с резко выраженной неравномерностью частотной характеристики, передается одна модулированная несущая, то ослабление отдельных частотных составляющих можно компенсировать с помощью частотного корректора (хотя и за счет уменьшения отношения сигнал-шум), но если какая-нибудь составляющая подавлена полностью, то корректирующий фильтр помочь не может и сигнал претерпевает необратимые искажения. Если данные передаются с помощью частотного уплотнения, то даже полное исчезновение сигналов отдельных несущих не является столь важным, поскольку данные, переносимые этими несущими, могут быть восстановлены за счет канального кодирования.

Контейнер данных COFDM отлично приспособлен к условиям передачи данных в наземном телевидении благодаря возможности раздельной обработки сигналов большого числа несущих. Благодаря применению COFDM возможна организация сетей ТВ вещания с перекрытием частот передающих станций, работающих на одной частоте.

Скорость передачи данных в канале связи с модуляцией типа COFDM зависит от вида модуляции несущих, установленных значений кодовой скорости и защитного интервала между символами. Если кодовая скорость находится в пределах от 1/2 до 7/8 (разность между знаменателем и числителем равна числу добавленных проверочных битов), то скорость цифровой передачи составляет: при ДОФМ - 4.98...10.56 Мбит/с; при 16-QAM-9.95...21.11 Мбит/с; при 64-QAM - 14.93...31.67 Мбит/с.

Для достижения требуемой помехоустойчивости модулирующие потоки данных могут кодироваться кодами с разными скоростями.

1.3 Стандарт цифрового наземного телевидения DVB-T

1.3.1 Концепция стандарта DVB-T

Документ EN 300 744 [11] описывает систему передачи данных для цифрового наземного телевидения. Передаваемые данные представляют собой информацию об изображении и звуковом сопровождении, а также любые дополнительные сведения. Условие передачи этой информации в системе DVB-T только одно - данные должны быть закодированы в виде пакетов транспортного потока MPEG-2. В этом смысле стандарт описывает контейнер, приспособленный для доставки пакетированных данных в условиях наземного телевидения. Для системы DVB-T ни содержание контейнера, ни происхождение данных не имеют значения, она лишь приспосабливает выходные данные транспортного мультиплексора MPEG-2 к свойствам и характеристикам канала передачи наземного ТВ вещания, стремясь наиболее эффективно донести их к приемнику.

То есть, стандарт определяет структуру передаваемого потока данных, систему канального кодирования и модуляции для мультипрограммных служб наземного телевидения, работающих в форматах ограниченной, стандартной, повышенной и высокой четкости [8].

Для обеспечения совместимости устройств различных производителей, стандарт определяет параметры цифрового модулированного радиосигнала и описывает преобразования данных и сигналов в передающей части системы цифрового наземного ТВ вещания (рис. 7).

Рис.7 - Структурная схема преобразователя данных и сигналов в передатчике стандарта DVB-T

Отличительной особенностью DVB-T как контейнера для передачи транспортных пакетов MPEG-2 является гармоничное сочетание системы канального кодирования и способа модуляции OFDM. Обработка сигналов в приемнике не регламентируется стандартом и остается открытой.

Это не означает, что создатели стандарта не предвидели принципов построения приемника DVB-T, но отсутствие жесткого стандарта на приемник обостряет конкуренцию между производителями телевизоров и стимулирует усилия по созданию высококачественных и дешевых аппаратов. Примерный вариант схемы приемника приведен на рис. 8.

Система DVB-T разрабатывалась для цифрового вещания, но она должна встраиваться в существующее аналоговое окружение, поэтому в системе следует обеспечить защиту от интерференционных помех соседнего и совмещенного каналов, обусловленных действующими передатчиками PAL / SECAM. Поскольку речь идет о наземном вещании, то должна быть обеспечена максимальная эффективность использования частотного диапазона, реализуемая в результате оптимального сочетания одиночных передатчиков, многочастотных и одночастотных сетей. Система DVB-T должна успешно бороться с типичными для наземного телевидения эхо-сигналами и обеспечивать устойчивые прием в условиях многолучевого распространения радиоволн. Является желательным создание условий для приема в движении и на комнатные антенны. Все эти требования были выполнены в DVB-T благодаря применению новой системы модуляции OFDM.

Рис. 8 - Структурная схема устройства преобразования сигналов и данных в приемнике DVB-T

OFDM отличается передачей сигнала с использованием большого количества несущих колебаний. Несущие являются ортогональными, что делает возможной демодуляцию модулированных колебаний даже в условиях частичного перекрытия полос отдельных несущих.

Применение какой-либо одной системы кодирования не дает желаемого эффекта в условиях наземного телевидения, для которого типично проявление разнообразных шумов, помех и искажений, приводящих к возникновению ошибок с разными статистическими свойствами. В таких условиях необходим более сложный алгоритм исправления ошибок. В системе DVB-T используется сочетание двух видов кодирования - внешнего и внутреннего, рассчитанных на борьбу с ошибками различной структуры, частоты и статистических свойств и обеспечивающих при совместном применении практически безошибочную работу (такой подход типичен и для других сфер, например, для цифровой видеозаписи). Если благодаря работе внутреннего кодирования частота ошибок на выходе внутреннего декодера не превышает величины 2><10"4, то система внешнего кодирования доводит частоту ошибок на входе демультиплексора MPEG-2 до значения 10"11, что соответствует практически безошибочной работе (ошибка появляется примерно один раз в течение часа).

Кодирование обязательно связано с введением в поток данных некоторой избыточности и соответственно с уменьшением скорости передачи полезных данных, поэтому наращивание мощности кодирования за счет увеличения объема проверочных данных не всегда соответствует требованиям практики. Для увеличения эффективности кодирования, без снижения скорости кода, применяется перемежение данных. Кодирование позволяет обнаруживать и исправлять ошибки, а перемежение увеличивает эффективность кодирования, поскольку пакеты ошибок дробятся на мелкие фрагменты, с которыми справляется система кодирования.

1.3.2 Защитный интервал OFDM

В системе OFDM данные передаются с использованием некоторого количества несущих колебаний. Если таких несущих много, то поток данных, переносимых одной несущей, характеризуется сравнительно небольшой скоростью, то есть частота модуляции каждой несущей невелика. Однако межсимвольные искажения проявляются и при малой скорости следования модуляционных символов.

Для того, чтобы избежать межсимвольных искажений, перед каждым символом вводится защитный интервал. Но надо отметить, что защитный интервал - это не просто пауза между полезными символами, достаточная для угасания сигнала символа до начала следующего. В защитном интервале передается фрагмент полезного сигнала, что гарантирует сохранение ортогональности несущих принятого сигнала (но только в том случае, если эхо-сигнал при многолучевом распространении задержан не больше, чем на длительность защитного интервала).

Концепция защитного интервала не является принципиально новой, но использование защитного интервала требуемой величины в цифровом телевидении возможно лишь при использовании частотного уплотнения с большим числом несущих.

1.3.3 Оценка параметров OFDM

Выбор параметров системы OFDM связан с обеспечением работы в одночастотных сетях ТВ вещания, а также с возможностью использования заполнителей пробелов и мертвых зон в области охвата вещанием. Однако на начальном этапе развития цифрового телевидения одночастотные сети найдут небольшое применение из-за необходимости сосуществования с аналоговыми передатчиками и ограничений в распределении частотных диапазонов. Кроме того, в некоторых странах вообще не планируется использование одночастотной сети. Следовательно, система вещания должна допускать наиболее эффективное использование частотного диапазона в рамках уже существующих сетки частот и сети передатчиков.

...

Подобные документы

  • Основные параметры и тактико-технические характеристики цифрового телевизионного передатчика. Организация интерактивной системы в наземном цифровом телевещании. Разработка возбудителя для канального кодирования и модуляции сигнала по стандарту DVB-T.

    дипломная работа [5,7 M], добавлен 06.06.2014

  • Проектирование устройства преобразования цифровой информации в аналоговую и наоборот для цифрового магнитофона. Описание используемых интегральных микросхем. Разработка структурной и принципиальной схемы цифрового канала звукозаписи без кодера и декодера.

    курсовая работа [1,8 M], добавлен 18.10.2010

  • Обоснование необходимости проектирования цифрового эфирного телевидения. Состав радиотелевизионной передающей станции. Выбор цифрового передатчика. Обоснование проектируемой одночастотной сети цифрового наземного эфирного телевизионного вещания.

    дипломная работа [3,1 M], добавлен 28.11.2014

  • Разработка алгоритма нахождения оптимальной сети наземного цифрового телевизионного вещания. Программная реализация поиска точного решения задачи полным перебором множества проектов сетей. Обзор и схема коммуникационных операций типа точка-точка.

    дипломная работа [1,3 M], добавлен 22.08.2016

  • Особенности развития современных систем телевизионного вещания. Понятие цифрового телевидения. Рассмотрение принципов организации работы цифрового телевидения. Характеристика коммутационного HDMI-оборудования. Анализ спутникового телевидения НТВ Плюс.

    курсовая работа [2,0 M], добавлен 14.09.2012

  • Вычисление информационных параметров сообщения. Характеристика статистического и помехоустойчивого кодирования данных. Анализ модуляции и демодуляция сигналов. Расчет функции корреляции между принимаемым входным сигналом и ансамблем опорных сигналов.

    курсовая работа [544,1 K], добавлен 21.11.2021

  • Обзор методов кодирования информации и построения системы ее передачи. Основные принципы кодово-импульсной модуляции. Временная дискретизация сигналов, амплитудное квантование. Возможные методы построения приемного устройства. Расчет структурной схемы.

    дипломная работа [823,7 K], добавлен 22.09.2011

  • Разработка системы адаптивного аналого-цифрового преобразования (АЦП) на базе однокристального микроконтроллера. Сравнение АЦП различных типов. Анализ способов реализации системы, описание ее структурной схемы, алгоритма работы, программного обеспечения.

    дипломная работа [3,0 M], добавлен 29.06.2012

  • Структурная схема системы передачи данных. Принципиальная схема кодера и декодера Хэмминга 7,4 и Манчестер-2, осциллограммы работы данных устройств. Преобразование последовательного кода в параллельный. Функциональная схема системы передачи данных.

    курсовая работа [710,0 K], добавлен 19.03.2012

  • Сведения о характеристиках и параметрах сигналов и каналов связи, методы их расчета. Структура цифрового канала связи. Анализ технологии пакетной передачи данных по радиоканалу GPRS в качестве примера цифровой системы связи. Определение разрядности кода.

    курсовая работа [2,2 M], добавлен 07.02.2013

  • Актуальность цифрового радиовещания в современных условиях развития радиосистем. Основные технические характеристики системы цифрового радиовещания. Блок-схема передающей части, последовательный интерфейс. Логические уровни, разработка структурной схемы.

    дипломная работа [2,2 M], добавлен 05.07.2012

  • Выбор метода модуляции, разработка схемы модулятора и демодулятора для передачи данных, расчет вероятности ошибки на символ. Метод синхронизации, схема синхронизатора. Коррекция фазо-частотной характеристики канала. Система кодирования циклического кода.

    контрольная работа [294,2 K], добавлен 12.12.2012

  • Временные функции, частотные характеристики и энергия сигналов. Граничные частоты спектров сигналов. Технические характеристики аналого-цифрового преобразователя. Информационная характеристика канала и расчёт вероятности ошибки оптимального демодулятора.

    курсовая работа [1,2 M], добавлен 06.11.2011

  • Разработка проекта системы наземного телевизионного вещания, которая обеспечивала бы устойчивый прием программ цифрового телевидения на всей территории микрорайона поселка Северный г. Белгорода. Внутренняя структура данной системы и ее эффективность.

    курсовая работа [4,2 M], добавлен 08.12.2013

  • Факторы, сдерживающие развитие цифрового телевидения в разных странах. Перспективы дальнейшего развития цифрового радиовещания. Организация наземного, спутникового и кабельного телевизионного вещания. Компенсация помех многолучевого распространения.

    курсовая работа [46,6 K], добавлен 06.12.2013

  • Понятие цифрового сигнала, его виды и классификация. Понятие интерфейса измерительных систем. Обработка цифровых сигналов. Позиционные системы счисления. Системы передачи данных. Режимы и принципы обмена, способы соединения. Квантование сигнала, его виды.

    курсовая работа [1,0 M], добавлен 21.03.2016

  • Предназначение канала связи для передачи сигналов между удаленными устройствами. Способы защиты передаваемой информации. Нормированная амплитудно-частотная характеристика канала. Технические устройства усилителей электрических сигналов и кодирования.

    контрольная работа [337,1 K], добавлен 05.04.2017

  • Понятие цифрового интерактивного телевидения. Классификация интерактивного телевидения по архитектуре построения сети, по способу организации обратного канала, по скорости передачи данных, по степени интерактивности. Мировой рынок платного телевидения.

    курсовая работа [276,4 K], добавлен 06.02.2015

  • Принципы построения цифрового телевидения. Стандарт шифрования данных Data Encryption Standard. Анализ методов и международных рекомендаций по сжатию изображений. Энтропийное кодирование видеосигнала по методу Хаффмана. Кодирование звука в стандарте Mpeg.

    дипломная работа [2,4 M], добавлен 18.11.2013

  • Структурная схема цифровых систем передачи и оборудования ввода-вывода сигнала. Методы кодирования речи. Характеристика методов аналого-цифрового и цифро-аналогового преобразования. Способы передачи низкоскоростных цифровых сигналов по цифровым каналам.

    презентация [692,5 K], добавлен 18.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.