Простейшие усилительные каскады на биполярных транзисторах
Схемотехника усилительных каскадов на биполярных транзисторах, особенности их построения. Вычисления коэффициентов усиления, входного и выходного сопротивления. Типовые схемные решения усилительного каскада с общими эмиттером и базой, их анализ.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 09.04.2015 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Рис. 5.25. Зависимость относительного изменения входного сопротивления от коэффициента трансформации при согласованной нагрузке
Как видно из рис. 5.25, введение в усилительный каскад с ОБ цепи реактивной ООС на базе широкополосного трансформатора приводит к некоторому росту входного сопротивления. Причем по мере увеличения глубины ООС (по мере уменьшения ) входное сопротивление продолжает расти. В общем случае можно констатировать, что (при применении одних и тех же элементов) в каскаде с ООС (рис. 5.23) входное сопротивление увеличивается примерно в 1,5...2,5 раза по сравнению с входным сопротивлением схемы без цепи обратной связи (рис. 5.21).
Выше мы отмечали, что входное сопротивление высокочастотных транзисторов в схеме с ОБ обычно лежит в диапазоне 20...100 Ом. Однако это более или менее соблюдается только для достаточно маломощных (~100 мВт) германиевых и кремниевых приборов. В приборах с рассеиваемой мощностью 200...300 мВт входное сопротивление в схеме с ОБ может составлять единицы ом, а при мощности около 1 Вт и выше -- десятые доли ома. В таких случаях применение схемы с ОБ в виде, представленном на рис. 5.21, становится крайне затруднительным даже в высокочастотных усилителях. Поэтому увеличение входного сопротивления, достигаемое в каскаде с трансформаторной ООС (рис. 5.23) оказывается как нельзя кстати. Более того, анализ формулы (5.24) показывает, что при уменьшении эта величина практически перестает влиять на полное входное сопротивление усилителя, которое теперь целиком определяется значениями и . А если сейчас взглянуть на рис. 5.26, то можно видеть, что именно конструктивный параметр трансформатора более всего воздействует на .
Рис. 5.26 .Зависимость относительного изменения входного сопротивления от относительного изменения параметра широкополосного трансформатора при согласованной нагрузке
В высокочастотных устройствах широкое распространение получила 50-омная техника. При построении усилителя с ОБ по схеме на рис. 5.23 значение Ом может оказаться недостижимым из-за технологических ограничений. В этом случае на входе каскада добавляется еще один согласующий широкополосный трансформатор, как это показано на рис. 5.27. Коэффициент трансформации такого трансформатора может оказаться как больше, так и меньше единицы (обычно =0,7... 1,3), в зависимости от того, какой вид рассогласования (> 50 Ом или < 50 Ом, где -- входное сопротивление каскада без дополнительного согласующего трансформатора) мы устраняем. Следует только помнить, что дополнительный трансформатор неизбежно вносит некоторое затухание в полезный сигнал (~0,5... 1 дБ) и ухудшает шумовые свойства усилителя.
Отрицательной чертой анализируемого каскада является зависимость входного сопротивления от сопротивления нагрузки (вообще, влияние параметров выходной цепи на входные параметры присуще всем типам усилителей с обратными связями). Это означает, что при возникновении рассогласования на выходе автоматически возникает рассогласование и по входу. Т.е. в многокаскадном усилителе, построенном на базе схемы с рис.5.23 или 5.27, при любых проблемах на выходе будет наблюдаться цепной эффект, приводящий к значительному снижению общего коэффициента усиления мощности.
Рис. 5.27. Высокочастотный усилительный каскад с дополнительным согласующим трансформатором на входе
Как будет показано в дальнейшем, конструктивные особенности широкополосного трансформатора в цепи ООС оказывают большое влияние не только на входное сопротивление, но и на многие другие свойства рассматриваемого каскада. Причем заметим, что значение здесь имеют не только свойства линии, образуемой скрученными обмотками , но и характер размещения этих обмоток на сердечнике и друг относительно друга.
Выходное сопротивление () усилительного каскада, эквивалентная схема которого представлена на рис. 5.24, при условии полного согласования на входе и выходе находится по формуле:
.
(5.25)
Анализ формулы (5.25) показывает, что свойства выходного сопротивления рассматриваемого каскада во многом схожи с описанными выше свойствами входного сопротивления. Наибольшее значение здесь по-прежнему имеют конструктивные параметры широкополосного трансформатора. Характер зависимостей относительного изменения выходного сопротивления от относительного изменения величины при различных значениях , и а совершенно аналогичен тому, что изображено на рис. 5.26 для относительного изменения входного сопротивления. Величина входного сопротивления транзистора в схеме с ОБ может сколь-либо., существенно влиять на выходное сопротивление усилителя только в том случае, когда она имеет тот же или больший порядок, что и величина волнового сопротивления . И наконец, глубина обратной связи (определяемая коэффициентом трансформации ) также может оказывать некоторое незначительное воздействие на выходное сопротивление, которое будет почти линейно снижаться по мере уменьшения . Следует отметить, что одна из основных функций широкополосного трансформатора в рассматриваемом каскаде состоит в обеспечении согласования на выходе. Поэтому для получения требуемого выходного сопротивления его конструкция (количество и конфигурация обмоток) может претерпевать значительные изменения. Например, в схеме на рис. 5.28 используется высокочастотный трансформатор с шестью обмотками, а выход сигнала симметричен.
Рис. 5.28. Высокочастотный усилительный каскад с ОБ с цепью обратной связи на базе широкополосного трансформатора с симметричным выходом
Коэффициент усиления по напряжению схемы на рис. 5.24 определяется по формуле:
. (5.26)
Коэффициент усиления по напряжению схемы на рис. 5.24 определяется по формуле:
. (5.26)
Коэффициент усиления по току :
. (5.27)
Коэффициент усиления по мощности находится перемножением соотношений (5.26), (5.27):
.
. (5.28)
Рис. 5.29. Пример зависимостей коэффициентов усиления по напряжению, току и мощности от коэффициента трансформации для усилительного каскада по схеме на рис. 5.23 при полном согласовании по входу и выходу.
На рис. 5.29, 5.30 представлены графики зависимостей коэффициентов усиления по напряжению, току и мощности от значения коэффициента трансформации при условии полного согласования по входу и выходу и от величины напряжения нагрузки при согласовании на входе. При детальном рассмотрении всех этих графиков видно, что они ни в чем не противоречат здравому смыслу. Действительно, увеличение глубины ООС (уменьшение ) ведет к падению коэффициента усиления по мощности, о чем мы уже не раз говорили выше. Заметим, кстати, что данное падение достаточно плавное, сопровождается повышением устойчивости и расширением динамического диапазона усилителя. Кроме того, общий коэффициент усиления по мощности зависит от величины сопротивления нагрузки. Максимум усиления достигается, когда сопротивление нагрузки согласовано с выходным импедансом усилителя . Причем некоторое увеличение сопротивления нагрузки от оптимального значения влияет на коэффициент усиления каскада в гораздо меньшей мере, чем уменьшение этого сопротивления.
В заключение отметим еще одну важную особенность каскада с трансформаторной обратной связью по схеме на рис. 5.23. Анализ полученных соотношений для всех параметров каскада показывает, что они крайне слабо зависят от величины коэффициента передачи тока эмиттера а применяемого транзистора (вообще говоря, данное свойство в некоторой мере присуще всем видам усилителей с ОБ, но здесь оно выражается особенно сильно). Это означает, что характеристики схемы практически полностью определяются ее топологией, а не параметрами конкретного экземпляра транзистора. Кроме того, в значительно меньшей мере проявляются частотные зависимости параметров каскада, поскольку влияние на них частотных свойств транзистора минимально. Как результат мы имеем очень равномерную амплитудно-частотную характеристику в широкой полосе частот.
Рис. 5.30. Зависимости коэффициентов усиления по напряжению, току и мощности от сопротивления нагрузки для усилителя по схеме на рис. 5.23
Отрицательной чертой рассматриваемой схемы (рис. 5.23), несмотря на наличие внутрикаскадной ООС, остается ее потенциальная неустойчивость и относительно узкий динамический диапазон. Для уменьшения вероятнсти возбуждения каскада на вывод коллектора транзистора может надеваться маленькое ферритовое колечко.
Иногда забываемым недостатком каскада с ОБ с трансформаторной ООС является высокий коэффициент передачи с выхода на вход. Заметим, что в отличие от рассмотренного ранее похожего усилителя с ОЭ здесь обмотка обратной связи включается непосредственно во входную цепь и ее влияние на источник сигнала гораздо выше, многих случаях обратное прохождение сигнала может вызвать значительные нелинейные искажения, нарушение устойчивости и ухудшение многих других характеристик усилителя. Поэтому при проектировании схем всегда необходимо следить за возможностью такого прохождения и пользовать специальные заградительные цепи, если это необходимо.
Выше мы не раз отмечали, что в высокочастотных каскадах цепи задания смещения по постоянному току могут быть полностью отделены от сигнальных цепей. Схема с ОБ в этом плане наиболее показательна, поскольку здесь обычно приходится использовать различные виды включении транзистора для постоянного и переменного токов. По постоянному току это может быть включение с ОЭ или с ОК, а по переменному, естественно, с ОБ. Причем на работу транзистора в полосе частот усиливаемого сигнала способ задания смещения влияния не оказывает (значение имеет только стабильность рабочей точки). Таким образом, схема на рис. 5.21 отражает лишь один из возможных вариантов построения усилительного каскада. На практике могут применяться любые рассмотренные в главе 3 способы задания смещения И стабилизации рабочей точки по постоянному току (например, показанные на рис. 5.31). При этом все приведенные соотношения для параметров каскада в рабочей полосе частот остаются неизменными.
Рис. 5.31 Принципы усилителей с ОБ с различными цепями смещения
4. Схема с общим коллектором
Типовое схемное решение усилительного каскада с ОК и его анализ
На рис. 5.32 приведена схема усилительного каскада на биполярном транзисторе р-п-р-типа, включенном с ОК (для транзистора п-р-п-типа все останется прежним, только полярность источника питания, а соответственно, и направление токов изменятся на противоположные).
Прежде всего отметим, что единственное принципиальное отличие данной схемы от схемы усилительного каскада с ОЭ (рис. 5.1) состоит в том, что выходной сигнал снимается не с коллекторного, а с эмиттерного вывода транзистора. Мы, конечно, могли бы сказать, что кроме этого в схеме с ОК входной сигнал подается не на эмиттерный, а на коллекторный переход (точнее, между базой транзистора и минусом источника питания, являющимся на рис. 5.32 землей схемы). Однако, если глубоко вникнуть в данный вопрос, оказывается, что речь здесь идет только лишь о формальном выборе точки отсчета. Т.е. мы можем совершенно произвольно называть "входным сигналом" разность напряжений между базой и любым из полюсов источника питания. При этом изменятся лишь некоторые математические соотношения, отражающие работу усилителя, но не физические процессы в нем. Естественно, мы должны позаботиться о том, чтобы полезный сигнал (тот, который мы хотим усилить) подавался именно так, как мы предполагали, проектируя усилитель, но это уже задача внешних по отношению к усилительному каскаду цепей.
Рис. 5.32 Схема усилительного каскада с ОК
С1, С2 -- разделительные конденсаторы (являются элементами межкаскадных связей, предотвращают проникновение постоянной составляющей сигнала с выхода одного каскада усиления на вход другого, могут использоваться для коррекции частотных характеристик);
С3 -- фильтрующий конденсатор (предотвращает проникновение переменной составляющей сигнала в цепи питания).
Указанные обстоятельства показывают, что на практике разница между усилительными каскадами с ОЭ и с ОК очень невелика. Иногда даже бывает трудно идентифицировать тип того или иного усилителя. Тем не менее не стоит забывать, что мелкие, на первый взгляд, отличия могут стать определяющими в формировании общих характеристик каскада. Например, одним из таких важнейших отличий является отсутствие инверсии сигнала в усилителе с ОК (напомним, что сигнал, снимаемый с эмиттера транзистора в усилителе с ОЭ, поворачивается по отношению ко входному сигналу на 180°).
Теперь так же, как и для остальных видов усилительных каскадов, рассматривавшихся в настоящей книге, займемся детальным анализом усилителя с ОК (рис.5.32). Его полная эквивалентная схема для переменных токов и напряжений представлена на рис. 5.33.
При построении эквивалентной схемы в данном случае мы руководствовались теми же принципами, что были описаны в разделе 5.2 для каскада с ОЭ. Внимательный читатель заметит, что в схеме на рис. 5.33 условно-положительные направления переменных токов на электродах транзистора, а также направление источника тока в коллекторной цепи оказались противоположны тому, что было задано на рис. 5.2 в эквивалентной схеме каскада с ОЭ. Это совершенно логично, если вспомнить, что в данном случае мы рассматриваем усилитель на п-р-п-транзисторе (в схеме на рис. 5.2 мы полагали использование транзистора п-р-п-типа, и нам было удобно выбирать условно-положительные направления другими). По эквивалентной схеме сразу видно, что направления входного и выходного напряжений совпадают, именно это и означает, что инверсии сигнала в данном каскаде нет.
Сопротивление отражает общее сопротивление входных цепей каскада переменному току и в нашем случав равно: .
Рис. 5.33. Эквивалентная схема усилительного каскада с ОК (рис. 5.1) для переменных составляющих токов и напряжений
Входное сопротивление эквивалентной схемы на рис. 5.33 определяется как параллельное включение цепи смещения базы, и входного сопротивления транзистора :, .
Запишем уравнение Кирхгофа для входной цепи транзистора (Б -- Корпус):
Тогда:
. (5.29)
Таким образом, общее входное сопротивление транзисторного усилительного каскада по схеме с ОК определяется: параметрами делителя напряжения ,; коэффициентом передачи тока базы ; сопротивлением отрицательной обратной связи в цепи эмиттера . Более глубокий анализ показывает, что входное сопротивление в любом случае не превышает величины:
.
Сравнивая выражение (5.29) с формулой для входного сопротивления усилительного каскада с ОЭ (5.1), можно видеть, что отличия между ними минимальны и обусловлены только включением в эмиттерную цепь транзистора нагрузки , несколько шунтирующей резистор и снижающей тем самым входное сопротивление. На практике, однако, в каскадах с ОК обычно достигаются большие значения входного сопротивления, чем в каскадах с ОЭ. Причина здесь в том, что в каскаде с ОК резистор , обеспечивающий отрицательную обратную связь по току, как правило выбирается достаточно большим по сравнению с резистором , который в пределе может и вообще отсутствовать (эмиттерный повторитель).
Выходное сопротивление () эквивалентной схемы на рис. 5.33 определяется при отключенной нагрузке по переменному току и нулевом входном сигнале, т.е. = 0. Рассмотрим случай, когда к точкам схемы Э-- Корпус приложено напряжение сигнала стороннего генератора подключаемого вместо нагрузки ) . Сопротивление обычно достаточно велико, и его можно исключить из дальнейшего рассмотрения. Уравнение Кирхгофа для напряжения ( будет иметь следующий вид:
Выходное сопротивление в точках схемы Э -- Корпус соответствует формуле , где:
.
Таким образом, выражение для полного выходного сопротивления схемы принимает вид:
. (5.30)
Сразу видно, что полученный в формуле (5.30) результат даже близко не лежит со значениями выходного сопротивления в каскадах с ОЭ (5.2) и с ОБ (5.20). В схеме с ОК выходное сопротивление оказывается очень малым, поскольку определяется только дифференциальным сопротивление эмиттерного перехода транзистора . У современных маломощных транзисторов величина обычно лежит в пределах 1...100 Ом. Она сильно зависит от постоянного ток эмиттера. В некотором приближении можно считать: . Т.е. при токе 10 мА выходное сопротивление каскада будет не более 3 Ом. Столь низкое выходное сопротивление каскада с ОК позволяет подключать к нему низкоомные нагрузки, обеспечивая при этом хороший КПД (напомним, что большой КПД достигается при значительнее превышении сопротивления нагрузки над выходным сопротивлением источника сигнала).
Коэффициент усиления по току Ток в нагрузке зависит от токораспределения в выходной цепи:
.
Поэтому
.
С учетом получаем:
,
где .--коэффициент передачи тока выходной цепи
Подобно схеме с ОЭ, входной ток в схеме с ОК также содержит две составляющие:
-- ток делителя, определяющий часть мощности входного сигнала, рассеиваемой в цепи делителя;
-- ток базы, определяющий часть мощности входного сигнала, затрачиваемой на управление выходным током.
Поэтому коэффициент передачи тока входной цепи выражается так же, как и в схеме с ОЭ:
;
Коэффициент усиления по току определяется как отношение тока нагрузки ко входному току :
. (5.31)
Максимум коэффициента усиления по току достигается при и .
Коэффициент усиления по напряжению . Для напряжения выходного сигнала в схеме на рис. 5.33 можно записать:
В свою очередь, уравнение Кирхгофа для входной цепи имеет вид:
.
Дифференциальное сопротивление прямовключенного эмиттерного перехода на практике оказывается достаточно малым, и его влиянием в дальнейших вычислениях можно пренебречь.
Коэффициент усиления по напряжению равен отношению напряжения на нагрузке ко входному напряжению . И для него с учетом полученных выше соотношений можно записать:
(5.32)
Из полученной формулы видно, что каскад с ОК не обеспечивает усиления по напряжению (даже наоборот -- имеется некоторое незначительное затухание сигнала). Может показаться, что такой каскад совершенно бесполезен (или, по крайней мере, неприменим в усилительных схемах), но это не так. Не обладая усилением по напряжению, схема с ОК имеет высокий коэффициент усиления по току, что позволяет использовать ее для усиления мощности. Коэффициент усиления по мощности, как мы сейчас покажем, здесь; достаточно высок.
Коэффициент усиления по мощности Перемножение соотношений (5.3 1) и (5.32) дает формулу для :
. (5.33)
Первый же взгляд на полученные нами соотношения (5.29) ... (5.33) показывает, что параметры каскада с ОК практически не зависят от величины сопротивления в коллекторной цепи транзистора. Естественно, возникает вопрос: а зачем тогда вообще нужно данное сопротивление? Может быть, оно оказывает какое-то положительное воздействие на стабильность исходной рабочей точки по постоянному току? Однако коэффициент нестабильности тока коллектора при выбранном способе построения цепей смещения будет тем меньше, чем большее сопротивление имеет резистор в эмиттерной цепи транзистора, образующий внутрикаскадную последовательную ООС по току. Это означает, что при заданной величине питающего напряжения максимальная температурная стабильность исходной рабочей точки достигается при нулевой величине сопротивления в цепи коллектора. Итак, мы приходим к выводу, что в схеме на рис. 5.32 мы можем спокойно принимать ) = 0, и это будет самое оптимальное решение.
Усилительный каскад на биполярном транзисторе во включении с ОК, в котором реализована 100%-ная последовательная ООС по току (т.е. ) = 0), принято называть эмиттерным повторителем. Оказывается, что подавляющее большинство усилителей с ОК, используемых в реальной схемотехнике, -- это и есть эмиттерные повторители (данный факт продиктован оптимальностью их характеристик по сравнению с другими видами каскадов с ОК, как было показано выше). В связи с этим в литературе довольно часто вообще не различают "эмиттерный повторитель" и, строго говоря, более общий термин "усилительный каскад с ОК". Однако мы копнем несколько глубже и покажем пару случаев, когда усилитель все-таки может строиться по более общей схеме с ОК и не подпадать под данное нами определение эмиттерного повторителя.
Самое первое, что приходит в голову, это вопрос: а может ли нам понадобиться снимать какой-либо вспомогательный сигнал с коллектора транзистора (так же, как мы это делаем в схемах с ОЭ)? Ответ очевиден -- конечно, да. Это могут быть как сигналы, передаваемые в последующие каскады схемы, так и используемые цепями обратной связи (внутри- или междукаскадными). Снимая сигнал с коллектора, мы уже не можем устанавливать нулевое значение сопротивления в цепи коллектора (иначе никакого полезного сигнала на коллекторе не будет), т.е. усилитель неизбежно перестает быть эмиттерным повторителем. Строго говоря, усилительный каскад, в котором в качестве выходных выступают сигналы, снимаемые и с коллектора, и с эмиттера транзистора, вообще нельзя однозначно идентифицировать как каскад с ОК или с ОЭ -- для его анализа потребуются соотношения, выведенные нами для обоих видов усилительных каскадов. На самом деле на практике такие "двойственные" схемы встречаются довольно часто. Это обусловлено тем, что очень удобно иметь в своем распоряжении два противофазных источника сигнала (с эмиттера и коллектора транзистора), выбирая и комбинируя их для оптимального построения последующих схем усиления, коррекции или любой другой обработки.
Обратимся теперь к главе 3, в которой мы описывали возможные схемы задания исходной рабочей точки по постоянному току. В схеме на рис. 5.32 мы представили случай; эмиттерно-базовой стабилизации с ООС по току. Однако на практике возможны и другие решения. Например, схема эмиттерно-базовой стабилизации с ООС по току и ООС по напряжению, в которой резистор подключается к выводу коллектора транзистора, а величина резистора оказывает непосредственное влияние на глубину ООС по напряжению и должна выбираться по крайней мере сравнимой с величиной Впрочем, такие схемы встречаются достаточно редко, и подробный анализ мы здесь проводить не будем. Отметим лишь еще раз, что все многообразие усилительных каскадов с ОК не ограничивается только эмиттерным повторителем, как это можно понять из некоторых книг.
Подведя итог, представим краткое изложение основный! свойств каскада с ОК.
Не обладая усилением по напряжению, каскад с ОК обеспечивает значительное усиление по току, следствием этого является значительное усиление по мощности.
Каскад с ОК имеет достаточно высокое входное сопротивление, аналогичное входному сопротивлению каскада о ОЭ. При этом его выходное сопротивление очень мало, т.е», он особенно удобен для согласования высокоомных источников сигнала с низкоомной нагрузкой. На практике мы можем значительно повысить входное сопротивление (обычно гораздо больше, чем в каскаде с ОЭ), используя принцип следящей связи, описанный при рассмотрении усилителей с ОЭ. Малое выходное сопротивление делает каскад с ОК идеальным при согласовании с емкостной нагрузкой.
Частотные свойства каскада с ОК (как и каскадов с ОЭ и ОБ) полностью определяются частотными свойствами применяемого транзистора, однако на практике из-за обычно имеющей место глубокой ООС каскад с ОК является более высокочастотным, чем каскад с ОЭ.
Размещено на Allbest.ru
...Подобные документы
Расчет некорректированного каскада с общим эмиттером. Расчет каскада с высокочастотной индуктивной коррекцией. Расчет каскада с эмиттерной коррекцией. Коррекция искажений вносимых входной цепью. Согласованные каскады с обратными связями.
сочинение [428,6 K], добавлен 02.03.2002Расчет некорректированного каскада с общим эмиттером. Расчет каскада с высокочастотной индуктивной коррекцией. Расчет каскада с эмиттерной коррекцией. Коррекция искажений вносимых входной цепью. Согласованные каскады с обратными связями.
учебное пособие [773,6 K], добавлен 19.11.2003Биполярные и полевые транзисторы в дискретном или интегральном исполнении как основа современных усилителей. Классы усиления усилительных каскадов. Метод расчета схем с нелинейным элементом. Схема с фиксированным напряжением базы. Методы стабилизации.
лекция [605,0 K], добавлен 15.03.2009Расчёт выходного каскада радиопередатчика на биполярных транзисторах на заданную мощность; выбор схем, транзисторов, элементов колебательных систем, способа модуляции. Расчёт автогенератора, элементов эмиттерной коррекции; выбор варикапа и его режима.
курсовая работа [206,4 K], добавлен 11.06.2012Классификация и параметры усилителей, влияние обратной связи на их характеристики. Усилительные каскады на биполярных транзисторах. Проектирование сумматора на основе операционного усилителя. Моделирование схем с помощью программы Electronics Workbench.
курсовая работа [692,4 K], добавлен 24.01.2018Классификация ЛЭ двухступенчатой логики на биполярных транзисторах. Транзисторно-транзисторные ИМС (TTL). Базовая схема элемента T-TTL, его модификации. Характеристика ЛЭ на полевых МДП-транзисторах. Сравнение ЛЭ на биполярных и МДП-транзисторах.
реферат [1,8 M], добавлен 12.06.2009Что такое электронный усилитель. Резистивный каскад на биполярном транзисторе, его простейшая схема. Графическое пояснение процесса усиления сигнала схемой с общим эмиттером. Схема, проектирование резистивного каскада с фиксированным напряжением смещения.
курсовая работа [337,9 K], добавлен 22.12.2009Принцип действия, назначение и режимы работы биполярных транзисторов. Режим покоя в каскаде с общим эмиттером. Выбор типа усилительного каскада по показателям мощности, рассеиваемой на коллекторе. Расчет сопротивления резистора базового делителя.
курсовая работа [918,0 K], добавлен 02.07.2014Расчет элементов схемы несимметричного мультивибратора на полевых транзисторах с управляющим p-n переходом и каналом p-типа. Исследование типичных форм прямоугольных колебаний. Построение временных диаграмм мультивибратора на биполярных транзисторах.
контрольная работа [1,0 M], добавлен 21.09.2016Основные свойства биполярного транзистора и особенности использования его в усилителях. Оценка малосигнальных параметров. Коэффициент усиления напряжения. Зависимости коэффициентов усиления напряжения, тока и входного сопротивления от рабочей точки.
лабораторная работа [362,0 K], добавлен 13.12.2015Проектирование усилительных устройств на транзисторах. Расчет коэффициента усиления, амплитудных, фазочастотных и переходных характеристик, коэффициента нелинейных искажений уровня помех чувствительности и устойчивости, входного и выходного сопротивления.
курсовая работа [4,0 M], добавлен 07.01.2015Частотные и временные характеристики усилителей непрерывных и импульсных сигналов. Линейные и нелинейные искажения в усилителях. Исследование основных параметров избирательных и многокаскадных усилителей. Усилительные каскады на биполярных транзисторах.
контрольная работа [492,6 K], добавлен 13.02.2015Характеристики используемого транзистора. Схема цепи питания, стабилизации режима работы, нагрузочной прямой. Определение величин эквивалентной схемы, граничной и предельных частот, сопротивления нагрузки , динамических параметров усилительного каскада.
курсовая работа [3,2 M], добавлен 09.06.2010Измерение напряжения на базе, коллекторе и эмиттере транзистора относительно общего провода. Построение нагрузочных прямых по постоянному и переменному токам. Определение линейных искажений, вносимых порознь разделительными и блокировочной емкостями.
лабораторная работа [0 b], добавлен 22.11.2012Рассмотрение правил включения транзистора по разным вариантам схем - с общим эмиттером, общей базой, общим коллектором. Описание особенностей работы усилительных каскадов в области высоких и низких частот. Представление схемы дифференциального каскада.
реферат [138,3 K], добавлен 17.03.2011Характеристика свойств и принципов действия усилителей низкой частоты на биполярных транзисторах. Основные методики проектирования и расчета генераторов колебаний прямоугольной формы с управляемой частотой следования импульсов. Эскиз источника питания.
курсовая работа [56,0 K], добавлен 20.12.2008Разработка структурной схемы усилителя низкой частоты. Расчет структурной схемы прибора для усиления электрических колебаний. Исследование входного и выходного каскада. Определение коэффициентов усиления по напряжению оконечного каскада на транзисторах.
курсовая работа [1,1 M], добавлен 01.07.2021Разработка и обоснование функциональной схемы устройства. Определение предварительного усилителя, цепи смещения и термостабильности. Исследование стабильности выходного каскада и самовозбуждения транзисторов. Расчет оконечного и предварительного каскада.
курсовая работа [2,1 M], добавлен 13.10.2021МП 40 - транзисторы германиевые сплавные, усилительные низкочастотные с ненормированным коэффициентом шума на частоте 1кГц. Паспортные данные транзистора. Структурная схема каскада с общим эмиттером. Динамические характеристики усилительного каскада.
курсовая работа [120,0 K], добавлен 19.10.2014Разработка формирователя импульсов трапецеидальной формы - мультивибратора на биполярных транзисторах, триггера на биполярных транзисторах, RC-фильтра, одновибратора в интегральном исполнении. Исследование компаратора на основе операционного усилителя.
курсовая работа [735,3 K], добавлен 23.06.2012