Сущность процесса проектирования радиоэлектронных систем

Процесс проектирования технологических объектов управления и автоматизированных технологических комплексов. Технические средства САПР, их развитие. Периферийное оборудование, математическое, лингвистическое, информационное и программное обеспечение.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курс лекций
Язык русский
Дата добавления 10.09.2016
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В процессе синтеза топологии могут использоваться мини-ЭВМ и различные средства малой автоматизации: графические экранные пульты, координатографы и т.д. В этом случае применяются интерактивные методы. Менее практически используется, но более перспективно автоматизированное проектирование при синтезе топологии с применением больших ЭВМ и средств малой автоматизации.

Из рис. 4 следует, что формирование исходных данных для проектирования продолжается и на этапе технического задания (ТЗ), и на этапе НИР (АСНИ). На этапе НИР уточняются связи "вход-выход", осуществляется определение информативности параметров, проводится активный эксперимент, разрабатываются математические модели и алгоритмы управления технологическим процессом.

Согласно ГОСТ [83], научно-исследовательские работы проводятся на стадии технического задания; кроме того, эти работы допускается проводить даже на более ранних стадиях.

Проектирование системы (или устройства) состоит из двух основных этапов [104]:

· обоснование исходных данных (технических условий, технического задания) для проектирования;

· проектирование системы для сформулированных исходных данных.

Первый этап называют внешним проектированием, а второй этап -- внутренним проектированием.

При рассмотрении задачи проектирования системы необходимо задать класс допустимых исходных данных (класс технических условий), класс допустимых решений (класс проектов) и способ построения какого-либо проекта из класса допустимых решений по произвольному техническому условию из класса допустимых исходных данных. Автоматизированное проектирование тогда сводится к заданию конкретного технического условия из класса допустимых исходных данных и применению к нему алгоритма перехода к классу решений [46].

Исходные данные обосновываются путем всестороннего рассмотрения условий работы системы и требований, предъявляемых к системе исходя из ее назначения. Вновь создаваемая система, как правило, содержит элементы уже существующих систем, поэтому этап уяснения задачи при проектировании включает в себя обследование всего достигнутого ранее в поисках методов, аналогов и элементов для разрабатываемой системы, а также предусматривает выявление потребностей. Этот этап характеризуется тем, что превращает начальную неопределенную ситуацию в набор данных, которые позволяют сформулировать цели, определяющие весь процесс проектирования. Следовательно, уяснение задачи начинается со сбора информации, касающейся проектируемой системы. При этом необходимо проведение анализа уже существующих систем и используемых методов в них, достигнутый уровень технического и технологического развития, природное окружение, экономические условия, общественные и индивидуальные человеческие факторы -- все эти условия необходимо учитывать при проектировании системы [98].

Процесс обоснования исходных данных (внешнее проектирование) существенно зависит от того, является ли проектируемая система частью более сложной системы, т.е. подсистемой (или устройством), или она задумана автономной, т.е. может использоваться заказчиком самостоятельно. В том случае, когда разрабатываемая система будет составляющей (подсистемой) более сложной системы, перед тем как формулировать исходные данные для таких составляющих, надо систему разбить на эти части. Для сложных объектов выполнить одновременно оптимальное проектирование для всех частей не удается. Особенно это относится к тем случаям, когда требуется не только выбрать параметры системы, но и синтезировать ее структуру. Поэтому при проектировании систем средней и особенно большой сложности их обычно разбивают на подсистемы или сегменты.

Чем на большее число частей разбита система, тем труднее правильно сформулировать исходные данные для каждого сегмента, но тем легче провести оптимизацию для тех исходных данных, которые для него установлены. Поэтому в каждом конкретном случае проектирования определяют наиболее целесообразное число сегментов, на которое следует разбить систему, чтобы получить решение, наиболее близкое к оптимальному. Нередко это целесообразное число частей удается получить лишь в процессе совместного проведения ряда последовательных этапов внешнего и внутреннего проектирования [104].

При обосновании исходных данных для проектирования системы необходимо учитывать реальные ограничения. Эти ограничения сформулированы в ряде работ [83, 46 и др.].

Исходные данные (исходное описание) не должны нести избыточной информации. В то же время должны быть заданы все основные параметры и характеристики будущей системы и технические условия проектирования, ограничивающие проектные решения. Если процесс проектирования разбивается на этапы, исходные данные каждого этапа должны содержать минимально необходимую информацию для его прохождения.

Язык представления исходных данных (в том числе язык исходных данных каждой из подсистем) должен быть близок к системе понятий, употребляемой инженерами-проектировщиками.

Внешний вид записи исходных и конечных данных на каждом этапе должен быть близким к обычно применяемым проектировщиками техническим описаниям. Например, готовый проект должен представлять совокупность описаний в виде чертежей, смет, пояснительных записок, содержащих всю технико-экономическую информацию, необходимую для изготовления, отладки и сдачи системы в эксплуатацию, и делиться на отдельные специализированные части: функциональные схемы, структурные схемы, спецификации, сметы, принципиальные схемы, алгоритмы управления, программы управления.

Всю исходную информацию, подготовленную для разработки технологических процессов, подразделяют на базовую, руководящую и справочную [56]. Базовая информация состоит из конструкторской документации на изделие и программы выпуска этого изделия.

Руководящая информация включает данные, содержащиеся в следующих документах:

· отраслевых стандартах, устанавливающих требования к технологическим процессам и методам управления ими, а также стандартам на оборудование и оснастку;

· документации на действующие единичные, типовые и групповые технологические процессы;

· классификаторах технико-экономической информации;

· материалах по выбору технологических нормативов (режимов, норм расхода материалов и т.д.);

· документации по технике безопасности и промышленной санитарии.

Справочная информация включает данные, содержащиеся в следующих документах:

· технической документации опытного производства;

· описаниях прогрессивных методов изготовления и ремонта;

· каталогах, паспортах, справочниках, альбомах компоновок прогрессивных средств технологического оснащения;

· методических материалах по управлению технологическими процессами;

· планировках производственных участков.

Итак, для выполнения проектов систем автоматизированных технологических комплексов (АТК) должны быть представлены следующие исходные данные и материалы [87]:

· уточненные технологические схемы с характеристиками оборудования;

· перечни контролируемых и регулируемых параметров с необходимыми требованиями (например, нормами, контрольными границами регулирования и т.д.);

· чертежи производственных помещений с расположением технологического оборудования;

· чертежи технологического оборудования, на котором предусматривается установка приборов и средств автоматизации;

· требования к надежности систем автоматизации;

· результаты НИР и ОКР, содержащие рекомендации по проектированию систем и средств автоматизации;

· техническая документация по типовым и проектным решениям и др.

Основными рекомендациями, выдаваемыми в результате проведения НИР и ОКР, должны быть, как уже говорилось, перечень наиболее информативных (контролируемых и регулируемых) параметров, математические модели и алгоритмы управления, эскиз проектируемой системы.

Контрольные вопросы и упражнения

1. В чем сущность системного подхода к автоматизированному проектированию технологического процесса?

2. Что представляет собой АТК?

3. Что является ТОУ?

4. Как расшифровывается АСУТП?

5. Что является управляемой системой?

6. Что является управляющей системой?

7. В чем сущность блочно-иерархического подхода к проектированию?

8. Какие принципы требуется учитывать при проектировании АТК?

9. В чем заключается принцип "черного ящика"?

10. Какие пункты включает в себя задание на проектирование?

11. Опишите стадии разработки сложных технических систем.

12. Что называется внешним проектированием?

13. Что называется внутренним проектированием?

14. Что включает в себя руководящая информация?

15. Какие данные включаются в справочную информацию?

Тема 4. Системы автоматизированного проектирования (САПР) РЭС

По определению, САПР -- это организационно-техническая система, состоящая из совокупности комплекса средств автоматизации проектирования и коллектива специалистов подразделений проектной организации, выполняющая автоматизированное проектирование объекта, которое является результатом деятельности проектной организации [54, 9].

Из этого определения следует, что САПР -- это не средство автоматизации, а система деятельности людей по проектированию объектов. Поэтому автоматизация проектирования как научно-техническая дисциплина отличается от обычного использования ЭВМ в процессах проектирования тем, что в ней рассматриваются вопросы построения системы, а не совокупность отдельных задач. Эта дисциплина является методологической, поскольку она обобщает черты, являющиеся общими для разных конкретных приложений [59]. Идеальная схема функционирования САПР представлена на рис. 5.

Рис. 5. Схема функционирования САПР; КСА -- комплекс технических средств

Эта схема идеальна в смысле полного соответствия формулировке согласно существующим стандартам и несоответствия реально действующим системам, в которых далеко не все проектные работы выполняются с помощью средств автоматизации и не все проектировщики пользуются этими средствами.

Проектировщики, как следует из определения, относятся к САПР. Это утверждение вполне правомерно, т.к. САПР -- это система автоматизированного, а не автоматического проектирования. Это значит, что часть операций проектирования может и всегда будет выполняться человеком. При этом в более совершенных системах доля работ, выполняемых человеком, будет меньше, но содержание этих работ будет более творческим, а роль человека в большинстве случаев -- более ответственной.

Из определения САПР следует, что целью ее функционирования является проектирование. Как уже было сказано, проектирование -- это процесс переработки информации, приводящий в конечном счете к получению полного представления о проектируемом объекте и способах его изготовления [37].

В практике неавтоматизированного проектирования полное описание проектируемого объекта и способов его изготовления содержит проект изделия и техническую документацию. Для условия автоматизированного проектирования еще не узаконено названия конечного продукта проектирования, содержащего данные об объекте, и технологии его создания. На практике его называют по-прежнему "проектом".

Проектирование -- это один из наиболее сложных видов интеллектуальной работы, выполняемой человеком. Более того, процесс проектирования сложных объектов не под силу одному человеку и выполняется творческим коллективом. Это, в свою очередь, делает процесс проектирования еще более сложным и трудно поддающимся формализации. Для автоматизации такого процесса необходимо четко знать, что в действительности он собой представляет и как выполняется разработчиками. Опыт свидетельствует, что изучение процессов проектирования и их формализация давались специалистам с большим трудом, поэтому автоматизация проектирования всюду осуществлялась поэтапно, охватывая последовательно все новые проектные операции. Соответственно, поэтапно создавались новые и совершенствовались старые системы. Чем на большее число частей разбита система, тем труднее правильно сформулировать исходные данные для каждой части, но тем легче провести оптимизацию.

Объектом автоматизации проектирования являются работы, действия человека, которые он выполняет в процессе проектирования. А то, что проектируют, называют объектом проектирования.

Человек может проектировать дом, машину, технологический процесс, промышленное изделие. Такие же объекты призвана проектировать САПР. При этом разделяют САПР изделия (САПР И) и САПР технологических процессов (САПР ТП).

Следовательно, объекты проектирования не являются объектами автоматизации проектирования. В производственной практике объектом автоматизации проектирования является вся совокупность действий проектировщиков, разрабатывающих изделие или технологический процесс, или то и другое, и оформляющих результаты разработок в виде конструкторской, технологической и эксплуатационной документаций.

Разделив весь процесс проектирования на этапы и операции, можно описать их с помощью определенных математических методов и определить инструментальные средства для их автоматизации. Затем необходимо рассмотреть выделенные проектные операции и средства автоматизации в комплексе и найти способы сопряжения их в единую систему, отвечающую поставленным целям.

При проектировании сложного объекта различные проектные операции многократно повторяются. Это связано с тем, что проектирование представляет собой закономерно развивающийся процесс. Начинается он с выработки общей концепции проектируемого объекта, на ее основе - эскизного проекта. Далее приближенные решения (прикидки) эскизного проекта уточняются на всех последующих стадиях проектирования. В целом такой процесс можно представить в виде спирали. На нижнем витке спирали находится концепция проектируемого объекта, на верхнем -- окончательные данные о спроектированном объекте. На каждом витке спирали выполняют, с точки зрения технологии обработки информации, идентичные операции, но в увеличивающемся объеме. Следовательно, инструментальные средства автоматизации повторяющихся операций могут быть одни и те же.

Практически решить в полном объеме задачу формализации всего процесса проектирования очень сложно, однако если будет автоматизирована хотя бы часть проектных операций, это себя все равно оправдает, т.к. позволит в дальнейшем развивать созданную САПР на основе более совершенных технических решений и с меньшими затратами ресурсов.

В целом для всех этапов проектирования изделий и технологии их изготовления можно выделить следующие основные виды типовых операций обработки информации:

· поиск и выбор из всевозможных источников нужной информации;

· анализ выбранной информации;

· выполнение расчетов;

· принятие проектных решений;

· оформление проектных решений в виде, удобном для дальнейшего использования (на последующих стадиях проектирования, при изготовлении или эксплуатации изделия).

Автоматизация перечисленных операций обработки информации и процессов управления использованием информации на всех стадиях проектирования составляет сущность функционирования современных САПР.

Каковы основные черты систем автоматизированного проектирования и их принципиальные отличия от "позадачных" методов автоматизации?

Первой характерной особенностью является возможность комплексного решения общей задачи проектирования, установления тесной связи между частными задачами, т.е. возможность интенсивного обмена информацией и взаимодействие не только отдельных процедур, но и этапов проектирования. Например, применительно к техническому (конструкторскому) этапу проектирования САПР РЭС позволяет решать задачи компоновки, размещения и трассировки в тесной взаимосвязи, которая должна быть заложена в технических и программных средствах системы.

Применительно к системам более высокого уровня можно говорить об установлении тесной информационной связи между схемотехническим и техническим этапами проектирования. Такие системы позволяют создавать радиоэлектронные средства, более эффективные с точки зрения комплекса функциональных и конструкторско-технологических требований.

Вторым отличием САПР РЭС является интерактивный режим проектирования, при котором осуществляется непрерывный процессдиалога "человек-машина". Сколь ни сложны и изощренны формальные методы проектирования, сколь ни велика мощность вычислительных средств, невозможно создать сложную аппаратуру без творческого участия человека. Системы автоматизации проектирования по своему замыслу должны не заменять конструктора, а выступать мощным инструментом его творческой деятельности.

Третья особенность САПР РЭС заключается в возможности имитационного моделирования радиоэлектронных систем в условиях работы, близких к реальным. Имитационное моделирование дает возможность предвидеть реакцию проектируемого объекта на самые различные возмущения, позволяет конструктору "видеть" плоды своего труда в действии без макетирования. Ценность этой особенности САПР заключается в том, что в большинстве случаев крайне трудно сформулировать системный критерий эффективности РЭС. Эффективность связана с большим числом требований различного характера и зависит от большого числа параметров РЭС и внешних факторов. Поэтому в сложных задачах проектирования практически невозможно формализовать процедуру поиска оптимального по критерию комплексной эффективности решения. Имитационное моделирование позволяет провести испытания различных вариантов решения и выбрать лучший, причем сделать это быстро и учесть всевозможные факторы и возмущения.

Четвертая особенность заключается в значительном усложнении программного и информационного обеспечения проектирования. Речь идет не только о количественном, объемном увеличении, но и об идеологическом усложнении, которое связано с необходимостью создания языков общения проектировщика и ЭВМ, развитых банков данных, программ информационного обмена между составными частями системы, программ проектирования. В результате проектирования создаются новые, более совершенные РЭС, отличающиеся от своих аналогов и прототипов более высокой эффективностью за счет использования новых физических явлений и принципов функционирования, более совершенной элементной базы и структуры, улучшенных конструкций и прогрессивных технологических процессов.

3.1 Принципы создания систем автоматизированного проектирования конструкции и технологии

При создании САПР руководствуются следующими общесистемными принципами:

· Принцип включения состоит в том, что требования к созданию, функционированию и развитию САПР определяются со стороны более сложной системы, включающей в себя САПР в качестве подсистемы. Такой сложной системой может быть, например, комплексная система АСНИ -- САПР -- АСУТП предприятия, САПР отрасли и т.п.

· Принцип системного единства предусматривает обеспечение целостности САПР за счет связи между ее подсистемами и функционирования подсистемы управления САПР.

· Принцип комплексности требует связности проектирования отдельных элементов и всего объекта в целом на всех стадиях проектирования.

· Принцип информационного единства предопределяет информационную согласованность отдельных подсистем и компонентов САПР. Это означает, что в средствах обеспечения компонентов САПР должны использоваться единые термины, символы, условные обозначения, проблемно-ориентированные языки программирования и способы представления информации, которые обычно устанавливаются соответствующими нормативными документами. Принцип информационного единства предусматривает, в частности, размещение всех файлов, используемых многократно при проектировании различных объектов, в банках данных. За счет информационного единства результаты решения одной задачи в САПР без какой-либо перекомпоновки или переработки полученных массивов данных могут быть использованы в качестве исходной информации для других задач проектирования.

· Принцип совместимости состоит в том, что языки, коды, информационные и технические характеристики структурных связей между подсистемами и компонентами САПР должны быть согласованы так, чтобы обеспечить совместное функционирование всех подсистем и сохранить открытую структуру САПР в целом. Так, введение каких-либо новых технических или программных средств в САПР не должно приводить к каким-либо изменениям уже эксплуатируемых средств.

· Принцип инвариантности предусматривает, что подсистемы и компоненты САПР должны быть по возможности универсальными или типовыми, т.е. инвариантными к проектируемым объектам и отраслевой специфике. Применительно ко всем компонентам САПР это, конечно, невозможно. Однако многие компоненты, например программы оптимизации, обработки массивов данных и другие, могут быть сделаны одинаковыми для разных технических объектов.

· Принцип развития требует, чтобы в САПР предусматривалось наращивание и совершенствование компонентов и связей между ними. При модернизации подсистемы САПР допускается частичная замена компонентов, входящих в подсистему, с изданием соответствующей документации.

Приведенные общесистемные принципы являются чрезвычайно важными на этапе разработки САПР. Контроль над их соблюдением обычно осуществляет специальная служба САПР предприятия.

Сущность процесса проектирования РЭС заключается в разработке конструкций и технологических процессов производства новых радиоэлектронных средств, которые должны с минимальными затратами и максимальной эффективностью выполнять предписанные им функции в требуемых условиях.

В результате проектирования создаются новые, более совершенные РЭС, отличающиеся от своих аналогов и прототипов более высокой эффективностью за счет использования новых физических явлений и принципов.

3.2 Системы автоматизированного проектирования РЭС и их место среди других автоматизированных систем

Этапы жизненного цикла промышленных изделий

Жизненный цикл промышленных изделий включает ряд этапов, начиная от зарождения идеи нового продукта до утилизации по окончании срока его использования. Основные этапы жизненного цикла промышленной продукции представлены на рис. 6. К ним относятся этапы проектирования, технологической подготовки производства (ТПП), собственно производства, реализации продукции, эксплуатации и, наконец, утилизации.

На всех этапах жизненного цикла изделий имеются свои целевые установки. При этом участники жизненного цикла стремятся достичь поставленных целей с максимальной эффективностью. На этапах проектирования, ТПП и производства нужно обеспечить выполнение ТЗ при заданной степени надежности изделия и минимизации материальных и временных затрат, что необходимо для достижения успеха в конкурентной борьбе в условиях рыночной экономики. Понятие эффективности включает в себя не только снижение себестоимости продукции и сокращение сроков проектирования и производства, но и обеспечение удобства освоения и снижения затрат на будущую эксплуатацию изделий. Особую важность требования удобства эксплуатации имеют для сложной техники, например в таких отраслях, как авиа- или автомобилестроение.

Достижение поставленных целей на современных предприятиях, выпускающих сложные промышленные изделия, оказывается невозможным без широкого использования автоматизированных систем (АС), основанных на применении компьютеров и предназначенных для создания, переработки и использования всей необходимой информации о свойствах изделий и сопровождающих процессов. Специфика задач, решаемых на различных этапах жизненного цикла изделий, обусловливает разнообразие применяемых АС.

Основные типы АС с их привязкой к тем или иным этапам жизненного цикла изделий указаны на рис. 6 [55].

Рис. 6. Этапы жизненного цикла промышленных изделий и используемые АС

Автоматизация проектирования осуществляется САПР [70, 71]. Принято выделять в САПР радиоэлектронной отрасли промышленности системы функционального, конструкторского и технологического проектирования. Первые из них называют системами расчетов и инженерного анализа, или системами САЕ (Computer Aided Engineering). Системы конструкторского проектирования называют системами CAD (Computer Aided Design). Проектирование технологических процессов составляет часть технологической подготовки производства и выполняется в системах САМ (Computer Aided Manufacturing). Функции координации работы систем CAE/CAD/CAM, управления проектными данными и проектированием возложены на систему управления проектными данными PDM (Product Data Management).

Уже на стадии проектирования требуются услуги системы управления цепочками поставок (SCM -- Supply Chain Management), иногда называемой системой Component Supplier Management (CSM). На этапе производства эта система управляет поставками необходимых материалов и комплектующих.

Информационная поддержка этапа производства продукции осуществляется автоматизированными системами управления предприятием (АСУП) и автоматизированными системами управления технологическими процессами (АСУТП). К АСУП относятся системы планирования и управления предприятием ERP (Enterprise Resource Planning), планирования производства и требований к материалам MRP-2 (Manufacturing Requirement Planning), производственная исполнительная система MES (Manufacturing Execution Systems), а также SCM и система управления взаимоотношениями с заказчиками CRM (Customer Requirement Management).

Наиболее развитые системы ERP выполняют различные бизнес-функции. Они связаны с планированием производства, закупками, сбытом продукции, анализом перспектив маркетинга, управлением финансами, персоналом, складским хозяйством, учетом основных фондов и т. п. Системы MRP-2 ориентированы главным образом на бизнес-функции, непосредственно связанные с производством, а системы MES -- на решение оперативных задач управления проектированием, производством и маркетингом.

На этапе реализации продукции выполняются функции управления отношениями с заказчиками и покупателями, проводится анализ рыночной ситуации, определяются перспективы спроса на планируемые изделия. Эти функции осуществляет система CRM. Маркетинговые задачи иногда возлагаются на систему S&SM (Sales and Service Management), которая, кроме того, используется для решения проблем обслуживания изделий. На этапе эксплуатации применяют также специализированные компьютерные системы, занятые вопросами ремонта, контроля, диагностики эксплуатируемых систем.

Автоматизированные системы управления технологическими процессами контролируют и используют данные, характеризующие состояние технологического оборудования и протекание технологических процессов. Именно их чаще всего называют системами промышленной автоматизации.

Для выполнения диспетчерских функций (сбор и обработка данных о состоянии оборудования и технологических процессов) и разработки ПО для встроенного оборудования в состав АСУТП вводят систему SCADA (Supervisory Control and Data Acquisition). Непосредственное программное управление технологическим оборудованием осуществляют с помощью системы CNC (Computer Numerical Control) на базе контроллеров (специализированных компьютеров, называемых промышленными), которые встроены в технологическое оборудование.

В последнее время усилия многих компаний, производящих программно-аппаратные средства АС, направлены на создание систем электронного бизнеса (Е-Соттеrсе). Задачи, решаемые системами E-Commerce, сводятся не только к организации на сайтах Internet витрин товаров и услуг. Они объединяют в едином информационном пространстве запросы заказчиков и данные о возможностях множества организаций, специализирующихся на предоставлении различных услуг и выполнении тех или иных процедур и операций по проектированию, изготовлению, поставкам заказанных изделий. Такие системы E-Commerce называют системами управления данными в интегрированном информационном пространстве СРС (Collaborative Product Commerce) или PLM (Product Lifecycle Management). Проектирование непосредственно под заказ позволяет добиться наилучших параметров создаваемой продукции, а оптимальный выбор исполнителей и цепочек поставок ведет к минимизации времени и стоимости выполнения заказа. Характерная особенность СРС -- обеспечение взаимодействия многих предприятий, т. е. технология СРС является основой, интегрирующей информационное пространство, в котором функционируют САПР, ERP, PDM, SCM, CRM и другие АС разных предприятий.

4.3 Структура САПР

Как и любая сложная система, САПР состоит из подсистем. Различают подсистемы проектирующие и обслуживающие.

Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.

Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными, подсистемы разработки и сопровождения программного обеспечения CASE (Computer Aided Software Engineering), обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.

Виды обеспечения САПР

Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения САПР:

· техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

· математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

· программное, представляемое компьютерными программами САПР;

· информационное, состоящее из базы данных, СУБД, а также включающее другие данные, которые используются при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, база данных вместе с СУБД носит название банка данных;

· лингвистическое, выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;

· методическое, включающее различные методики проектирования; иногда к нему относят также математическое обеспечение;

· организационное, представляемое штатными расписаниями, должностными инструкциями и другими документами, которые регламентируют работу проектного предприятия.

Разновидности САПР

Классификацию САПР осуществляют по ряду признаков, например по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы -- ядра САПР.

По приложениям наиболее представительными и широко используемыми являются следующие группы САПР:

· САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или системами MCAD (Mechanical CAD) ;

· САПР для радиоэлектроники: системы ECAD (Electronic CAD) или EDA (Electronic Design Automation);

· САПР в области архитектуры и строительства.

Кроме того, известно большое число специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т.п.

По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты (страты) проектирования. Так, в составе MCAD появляются рассмотренные выше CAE/CAD/CAM-системы.

По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например: комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.

По характеру базовой подсистемы различают следующие разновидности САПР:

1. САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т. е. определение пространственных форм и взаимного расположения объектов. К этой группе систем относится большинство САПР в области машиностроения, построенных на базе графических ядер.

В настоящее время широко используют унифицированные графические ядра, применяемые более чем в одной САПР (ядра Parasolid фирмы EDS Urographies и ACIS фирмы Intergraph).

САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например при проектировании бизнес-планов, но они имеются также при проектировании объектов, подобных щитам управления в системах автоматики.

САПР на базе конкретного прикладного пакета. Фактически это автономно используемые ПМК, например имитационного моделирования производственных процессов, расчета прочности по МКЭ, синтеза и анализа систем автоматического управления и т.п. Часто такие САПР относятся к системам САЕ. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.

Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.

Контрольные вопросы и упражнения

1. Дайте определение САПР.

2. Что является целью функционирования САПР?

3. Что включает полный комплект документации при неавтоматизированном проектировании?

4. Что включает полный комплект документации при автоматизированном проектировании?

5. Что является объектом проектирования?

6. Что является объектом автоматизации проектирования?

7. В чем заключается сущность функционирования САПР?

8. Каковы основные черты современных САПР?

9. Какие преимущества дает имитационное моделирование?

10. Перечислите принципы создания САПР.

11. В чем заключается принцип информационного единства САПР?

12. В чем заключается принцип совместимости САПР?

13. Что значит "открытая структура САПР"?

14. Что означает "принцип инвариантности САПР"?

15. Что включает в себя понятие "Жизненный цикл промышленных изделий"?

16. Перечислите разновидности САПР.

Тема 5. Технические средства САПР и их развитие

5.1 Требования, предъявляемые к техническому обеспечению

Используемые в САПР технические средства должны обеспечивать:

· выполнение всех необходимых проектных процедур, для которых имеется соответствующее программное обеспечение;

· взаимодействие между проектировщиками и ЭВМ, поддержку интерактивного режима работы;

· взаимодействие между членами коллектива, работающими над общим проектом.

Первое из этих требований выполняется при наличии в САПР вычислительных машин и систем с достаточными производительностью и емкостью памяти.

Второе требование относится к пользовательскому интерфейсу и выполняется за счет включения в САПР удобных средств ввода/вывода данных и, прежде всего, устройств обмена графической информацией.

Третье требование обусловливает объединение аппаратных средств САПР в вычислительную сеть.

В результате общая структура ТО САПР представляет собой сеть узлов, связанных между собой средой передачи данных [71] (рис. 7). Узлами (станциями данных) являются рабочие места проектировщиков, часто называемые автоматизированными рабочими местами (АРМ), или рабочими станциями (WS -- Workstation); ими могут быть также большие ЭВМ (мейнфреймы), отдельные периферийные и измерительные устройства.

Именно в АРМ должны существовать средства для интерфейса проектировщика с ЭВМ. Что касается вычислительной мощности, то она может быть распределена между различными узлами вычислительной сети.

Среда передачи данных представлена каналами передачи данных, состоящими из линий связи и коммутационного оборудования.

В каждом узле можно выделить оконечное оборудование данных (ООД), выполняющее определенную работу по проектированию, иаппаратуру окончания канала данных (АКД), предназначенную для связи ООД со средой передачи данных. Например, в качестве ООДможно рассматривать персональный компьютер, а в качестве АКД -- вставляемую в компьютер сетевую плату.

Канал передачи данных -- средство двустороннего обмена данными, включающее в себя АКД и линию связи. Линией связиназывают часть физической среды, используемую для распространения сигналов в определенном направлении; примерами линий связи могут служить коаксиальный кабель, витая пара проводов, волоконно-оптическая линия связи (ВОЛС).

Близким является понятие канала (канала связи), под которым понимают средство односторонней передачи данных. Примеромканала связи может быть полоса частот, выделенная одному передатчику при радиосвязи.

Рис. 7. Структура технического обеспечения САПР

В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация. При этом говорят, что линия разделяется между несколькими каналами.

5.2 Типы сетей

Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе -- разделение по времени, илиTDM -- Time Division Method), при котором каждому каналу выделяется некоторый квант времени, и частотное разделение (FDM -- Frequency Division Method), при котором каналу выделяется некоторая полоса частот.

В САПР небольших проектных организаций, насчитывающих не более единиц-десятков компьютеров, которые размещены на малых расстояниях один от другого (например, в одной или нескольких соседних комнатах), объединяющая компьютеры сеть является локальной. Локальная вычислительная сеть (ЛВС), или LAN (Local Area Network), имеет линию связи, к которой подключаются все узлы сети. При этом топология соединений узлов (рис. 8) может быть шинная (bus), кольцевая (ring), звездная (star). Протяженность линии и число подключаемых узлов в ЛВС ограничены.

Рис. 8. Варианты топологии локальных вычислительных сетей: а -- шинная; б -- кольцевая; в -- звездная

В более крупных по масштабам проектных организациях в сеть включены десятки-сотни и более компьютеров, относящихся к разным проектным и управленческим подразделениям и размещенных в помещениях одного или нескольких зданий. Такую сеть называют корпоративной. В ее структуре можно выделить ряд ЛВС, называемых подсетями, и средства связи ЛВС между собой. В эти средства входят коммутационные серверы (блоки взаимодействия подсетей). Если коммутационные серверы объединены отделенными от ЛВС подразделений каналами передачи данных, то они образуют новую подсеть, называемую опорной (или транспортной), а вся сеть оказывается частью иерархической структуры.

Если здания проектной организации удалены друг от друга на значительные расстояния (вплоть до их расположения в разных городах), то корпоративная сеть по своим масштабам становится территориальной сетью (WAN -- Wide Area Network). В территориальной сети различают магистральные каналы передачи данных (магистральную сеть), имеющие значительную протяженность, и каналы передачи данных, связывающие ЛВС (или совокупность ЛВС отдельного здания или кампуса) с магистральной сетью и называемые абонентской линией или соединением "последней мили".

Обычно создание выделенной магистральной сети, т.е. сети, обслуживающей единственную организацию, обходится для этой организации слишком дорого. Поэтому чаще прибегают к услугам провайдера, т.е. фирмы, предоставляющей телекоммуникационные услуги многим пользователям. В этом случае внутри корпоративной сети связь на значительных расстояниях осуществляется через магистральную сеть общего пользования. В качестве такой сети можно использовать, например, городскую или междугородную телефонную сеть или территориальные сети передачи данных. Наиболее распространенной формой доступа к этим сетям в настоящее время является обращение к глобальной вычислительной сети Internet.

Для многих корпоративных сетей возможность выхода в Internet является желательной не только для обеспечения взаимосвязи удаленных сотрудников собственной организации, но и для получения других информационных услуг. Развитие виртуальных предприятий, работающих на основе CALS-технологий, с необходимостью подразумевает информационные обмены через территориальные сети, как правило, через Internet. Нужно, однако, отметить, что использование сетей общего пользования существенно усложняет задачу обеспечения информационной безопасности.

Структура ТО САПР для крупной организации представлена на рис. 9. Здесь показана типичная структура крупных корпоративных сетей САПР, называемая архитектурой клиент-сервер. В сетях "клиент-сервер" выделяется один или несколько узлов, называемыхсерверами, которые выполняют в сети управляющие или общие для многих пользователей проектные функции, а остальные узлы (рабочие места) являются терминальными -- их называют клиентами, в них работают пользователи. В общем случае сервером называют совокупность программных средств, ориентированных на выполнение определенных функций. Но если эти средства сосредоточены на конкретном узле вычислительной сети, то тогда понятие "сервер" относится именно к узлу сети.

Сети "клиент-сервер" различают по характеру распределения функций между серверами, -- другими словами, их классифицируют по типам серверов. Различают файл-серверы для хранения файлов, разделяемых многими пользователями, серверы баз данных АС, серверы приложений для решения конкретных прикладных задач, коммутационные серверы (называемые также блоками взаимодействия сетей или серверами доступа) для взаимосвязи сетей и подсетей, специализированные серверы для выполнения определенных телекоммуникационных услуг, например серверы электронной почты.

В случае специализации серверов по определенным приложениям сеть называют сетью распределенных вычислений. Если серверприложений обслуживает пользователей одной ЛВС, то такой сервер называют локальным. Но поскольку в САПР имеются приложения и базы данных, разделяемые пользователями разных подразделений и, следовательно, клиентами разных ЛВС, то соответствующие серверы относят к группе корпоративных, подключаемых обычно к опорной сети (см. рис. 9).

Рис. 9. Структура корпоративной сети САПР

Наряду с архитектурой "клиент-сервер" применяют одноранговые сети, в которых любой узел в зависимости от решаемой задачи может выполнять функции как сервера, так и клиента. Организация взаимодействия в таких сетях при числе узлов более нескольких десятков становится довольно сложной, поэтому одноранговые сети нашли преимущественное распространение в небольших по масштабам САПР.

В соответствии со способами коммутации различают сети с коммутацией каналов и коммутацией пакетов. В первом случае при обмене данными между узлами А и В сети создается физическое соединение между А и В, которое во время сеанса связи используется только этими абонентами. Примером сети с коммутацией каналов может служить телефонная сеть. Здесь передача информации происходит быстро, но каналы связи используются неэффективно, так как при обмене данными возможны длительные паузы и канал "простаивает". При коммутации пакетов физического соединения, которое в каждый момент сеанса связи соединяло бы абонентов А и В, не создается. Сообщения разделяются на порции, называемые пакетами, которые передаются в разветвленной сети от А к В или обратно через промежуточные узлы с возможной буферизацией (временным запоминанием) в них. Таким образом, любая линия может разделяться многими сообщениями, попеременно пропуская при этом пакеты разных сообщений с максимальным заполнением упомянутых пауз.

5.3 Эталонная модель взаимосвязи открытых систем

Для удобства модернизации сложные информационные системы делают максимально открытыми, т. е. приспособленными для внесения изменений в некоторую часть системы при сохранении неизменными остальных частей. В отношении вычислительных сетей реализация концепции открытости привела к появлению эталонной модели взаимосвязи открытых систем (ЭМВОС), предложенной Международной организацией стандартизации (ISO -- International Standard Organization). В этой модели дано описание общих принципов, правил, соглашений, обеспечивающих взаимодействие информационных систем и называемыхпротоколами.

Информационную сеть в ЭМВОС рассматривают как совокупность функций (протоколов), которые подразделяют на группы, называемые уровнями. Именно разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

Различают семь уровней ЭМВОС

На физическом (physical) уровне осуществляется представление информации в виде электрических или оптических сигналов, преобразование формы сигналов, выбор параметров физических сред передачи данных, организуется передача информации через физические среды.

На канальном (link) уровне выполняется обмен данными между соседними узлами сети, т.е. узлами, непосредственно связанными физическими соединениями без других промежуточных узлов. Отметим, что пакеты канального уровня обычно называют кадрами.

На сетевом (network) уровне происходит формирование пакетов по правилам тех промежуточных сетей, через которые проходитисходный пакет, и маршрутизация пакетов, т.е. определение и реализация маршрутов, по которым передаются пакеты. Другими словами, маршрутизация сводится к образованию логических каналов. Логическим каналом называют виртуальное соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала не обязательно соответствует физическое соединение линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения. Еще одной важной функцией сетевого уровня после маршрутизации является контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети.

На транспортном (transport) уровне обеспечивается связь между оконечными пунктами (в отличие от предыдущего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятсямультиплексирование и демультиплексирование (сборка/разборка сообщений на пакеты в конечных пунктах), обнаружение и устранение ошибок в переданных данных, задание требуемого уровня услуг (например, заказанных скорости и надежности передачи).

На сеансовом (session) уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответами взаимодействующих партнеров.

На представительном (presentation) уровне реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из одного кода в другой, в частности, с целью шифрования.

На прикладном (application) уровне определяются и оформляются в сообщения те данные, которые подлежат передаче по сети.

В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда, соответственно, сеть будет содержать лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней. Одновременно сложность функций канального уровня делает целесообразным его разделение в ЛВС на два подуровня:

· управление доступом к каналу (MAC -- Medium Access Control );

· управление логическим каналом (LLC -- Logical Link Control). К подуровню LJLC, в отличие от подуровня MAC, относится часть функций канального уровня, независящих от особенностей передающей среды.

Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень.

Сегментом обычно называют пакет транспортного уровня. Сетевой уровень организует передачу данных через промежуточные сети. Для этого сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т.е. происходит инкапсуляция сегмента в пакет сетевого уровня). При передаче между узлами промежуточной ЛВС требуется инкапсуляция пакетов в кадры с возможной разбивкой пакета. Приемник декапсулирует сегменты и восстанавливает исходное сообщение.

5.4 Состав технического обеспечения САПР

Техническом обеспечении (ТО) САПР включает в себя вычислительный комплекс (ВК) на базе высокопроизводительной вычислительной техники с большим объемом оперативной и внешней памяти, широким набором периферийных устройств для обеспечения диалогового режима работы, выпуска текстовой и чертежной документации и создания полноценных баз данных [27, 20, 17, 30].

Целесообразно создавать комплексные САПР на основе двухуровневой иерархической структуры с ЭВМ средней и большой производительности на верхнем уровне и сетью терминальных станций на нижнем уровне.

Выбор типового ВК для верхнего уровня производится в зависимости от сложности объекта проектирования, который определяют согласно государственным стандартам по числу составных частей.

Для верхнего уровня САПР предусмотрен выпуск различных модификаций ВК с едиными версиями операционных систем (ОС). В состав типовых ВК должны входить ОС для обработки графической информации, специальные графические процессоры, графические периферийные устройства.

За десятилетия своего развития технические средства САПР прошли несколько этапов, в значительной степени связанных со сменой поколений ЭВМ и совершенствованием периферийных устройств. Базовые ЭВМ первых поколений САПР РЭС -- автоматизированное рабочее место (АРМ) -- на основе универсальных ЭВМ среднего класса и мини-ЭВМ с расширенным набором периферийных устройств ввода/вывода графической информации (АРМ на базе ЭВМ IBM-360 и PDP-11 за рубежом, АРМ на базе БЭСМ-6, МИР, ЕС ЭВМ, СМ ЭВМ, "Электроника" у нас в стране).

Характерной чертой развития технических средств этих поколений было стремление максимально приблизить АРМ к проектировщику РЭС с помощью САПР. Возникшее при этом противоречие между требованием относительно низкой стоимости, габаритов и потребностью сохранения высоких технических параметров базовых ЭВМ из-за сложности решаемых задач САПР привело к созданию мощных децентрализованных систем ЭВМ, объединенных локальными вычислительными сетями (ЛВС).

...

Подобные документы

  • Типовая схема процесса автоматизированного проектирования РЭС. Классификация проектных задач решаемых в процессе проектирования РЭС. Структура САПР, математическое обеспечение, лингвистическое обеспечение. Языки диалогов их разновидности и типы.

    реферат [108,1 K], добавлен 10.12.2008

  • Система схемотехнического моделирования электронных устройств. Математическое описание объектов управления; определение параметров технологических объектов. Оценка показателей качества САУ. Расчет линейных непрерывных систем, их структурная оптимизация.

    курс лекций [18,4 M], добавлен 06.05.2013

  • Оснащение роботизированных технологических комплексов (РТК): обеспечение станков деталями. Накопительные, питательные и транспортные устройства. Стационарные и подвижные транспортные средства. Мероприятия по подготовке производства к применению роботов.

    контрольная работа [877,3 K], добавлен 04.06.2010

  • Понятие и задачи идентификации. Анализ аналитических и экспериментальных методов получения математических моделей технологических объектов управления. Формализация дискретных последовательностей операций (технологических циклов изготовления продукции).

    курсовая работа [1,5 M], добавлен 06.12.2010

  • Многовариантный анализ в системе автоматизированного проектирования (САПР). Методы анализа чувствительности системы управления (СУ) при их использовании в САПР. Статистический анализ СУ в САПР с целью получения информации о рассеянии выходных параметров.

    контрольная работа [5,7 M], добавлен 27.09.2014

  • Характеристика пакетов прикладных программ САПР. Изучение особенностей работы SCADA-систем, которые позволяют значительно ускорить процесс создания ПО верхнего уровня. Анализ инструментальной среды разработки приложений сбора данных и управления Genie.

    реферат [1,3 M], добавлен 11.06.2010

  • Автоматизация технологических процессов посредством автоматизированных роботизированных технологических комплексов (РТК). Алгоритм функционирования РТК. Промышленный робот типа "Универсал-5". Построение релейно-контактной и бесконтактной видов схем.

    курсовая работа [234,7 K], добавлен 13.10.2015

  • Маршрутизаторы. Топологии сети. Коммутатор. Концентратор. Вычислительные средства отдельных проектных подразделений. Объединение технических средств автоматизированных систем проектирования в единую систему комплексной автоматизации.

    реферат [91,3 K], добавлен 05.09.2007

  • Принципы проектирования комплекса технических средств автоматизированных систем управления. Требования, предъявляемые к специализированным устройствам, и затраты на их реализацию. Устройства кодирования графической информации. Графопостроители и табло.

    реферат [616,3 K], добавлен 20.02.2011

  • Программные средств для проектирования радиотехнических устройств. Основные технические возможности программы Microsoft Word. Сравнительные характеристики программ для математических расчётов. Программы моделирования процессов в радиоэлектронных схемах.

    контрольная работа [1,0 M], добавлен 27.01.2010

  • Основы автоматизированного моделирования и оптимизации строительных процессов. Комплекс технических средств автоматизированных систем управления строительством: устройства преобразования сигналов, аппаратура сбора и регистрации данных, средства связи.

    контрольная работа [451,2 K], добавлен 02.07.2010

  • Принципы построения системы автоматизированного проектирования. Процесс подготовки радиоэлектронного средства к моделированию. Возможности пакетов прикладных программ САПР. Моделирование статических, динамических и частотных характеристик узлов РЭС.

    контрольная работа [498,7 K], добавлен 13.11.2016

  • Методы и этапы конструирования радиоэлектронной аппаратуры. Роль языка программирования в автоматизированных системах машинного проектирования. Краткая характеристика вычислительных машин, используемых при решении задач автоматизации проектирования РЭА.

    реферат [27,0 K], добавлен 25.09.2010

  • Процессу внедрения промышленных роботов (ПР) в производство. Типовые варианты компоновки сборочных роботизированных технологических комплексов (РТК). Сборочные промышленные роботы, взаимодействующие с упорядоченной средой. Определение кинематики робота.

    контрольная работа [614,0 K], добавлен 19.05.2010

  • Характеристика этапов проектирования электронных систем. Применение высокоуровневых графических и текстовых редакторов в процессе проектирования. Параметры конфигурации для аппаратных средств. Последовательность проектных процедур архитектурного этапа.

    контрольная работа [17,6 K], добавлен 11.11.2010

  • Автоматизация глюкозно-паточного технологического процесса; технические средства: аппаратные платформы, инженерное программное обеспечение Siemens SCOUT. Интегрированная система управления комбинатом, выбор критериев качества; промышленная экология.

    дипломная работа [795,5 K], добавлен 22.06.2012

  • Функции и типы автоматизированных складских систем (АСС). Состав оборудования АСС: складская тара (поддоны, кассеты), стеллажи, краны-штабелеры, транспортирующие и перегрузочные устройства. Классификация и организационно-технологические структуры.

    контрольная работа [37,6 K], добавлен 22.05.2010

  • Оптимизация управления в различных сферах человеческой деятельности. Классификация автоматизированных информационных систем управления. Методы проектирования и этапы разработки. Структурная схема, объем памяти, аппаратура вывода и отображения информации.

    контрольная работа [111,4 K], добавлен 25.02.2010

  • Классификация систем управления (СУ) машиностроительным оборудованием. Архитектура СУ на базе микропроцессорных комплектов фирм DEC и Motorola. Программное обеспечение СУ и программируемых контроллеров. Графический язык программирования Ladder Diagram.

    курс лекций [374,5 K], добавлен 22.11.2013

  • Проектирование систем автоматического управления программно-технического комплекса. Разработка системы управления двумя насосами 11кВт: силовая цепь и цепь включения питания, инженерно-технические решения и программное обеспечение работы терминала.

    отчет по практике [1,5 M], добавлен 22.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.