Эксплуатация автомобиля ПАЗ–672

Эксплуатационные свойства топлива, смазочных материалов и специальных жидкостей для автомобиля ПАЗ-672, расчеты потребностей АТП. Конструкция, маркировка и особенности эксплуатации автомобильных шин. Эксплуатация автомобилей при низких температурах.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 30.08.2015
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

К группе 4 относятся масла ТСп-14гип (ГОСТ 23652-79), ТС3-9гип (ОСТ 38.101158-78), ТСгип (ОСТ 38.01260-82, прежнее обозначение ГОСТ 4003-53).

ТСп-14гип (класс 18) применяется для гипоидных передач грузовых автомобилей всесезонно в умеренной и жаркой климатической зоне. Обладает высокими противозадирными, но недостаточными антиокислительными и антикоррозионными свойствами. Показатели масла резко ухудшаются при попадании в него воды. В этом случае масло необходимо немедленно заменить.

ТС3-9гип (класс 9) применяется в агрегатах трансмиссии грузовых автомобилей в районах Крайнего Севера при температуре воздуха до -55 °С. Ввиду малой вязкости и ухудшения противоизносных свойств при большой температуре это масло используется только в зимний период. ТСгип предназначено для гипоидных передач старых моделей легковых автомобилей. Ввиду недостаточных низкотемпературных, противоизносных и антиокислительных свойств для новых моделей автомобилей не рекомендуется.

В группу 5 входят масла ТАД-17и (ГОСТ 23652-79) и ТМ5-12рк (ТУ 38.101844-80). ТАД-17и (класс 18) получают смешением остаточного и дистилляторного масел с введением многофункциональной и депресорной присадок. Масло обладает высокими эксплуатационными свойствами, является универсальным и может применяться в тяжелонагруженных цилиндрических, спирально-конических и гипоидных передачах грузовых и легковых автомобилей в умеренной и жаркой климатической зонах.

ТМ5-12рк (класс 12) получают из низкозастывшего масла селективной очистки, загущенного полимерной присадкой, с введением многофункциональной присадки. Масло относится к числу универсальных для эксплуатации и консервации цилиндрических, спирально-конических и гипоидных передач грузовых автомобилей. Предназначено для применения в качестве всесезонного, в первую очередь для эксплуатации в северных районах.

Основным сортом, применяемым для автомобильных гидромеханических коробок передач, является масло марки А (ТУ 38.101179-79). Это масло имеет температуру застывания -40 °С, его применяют всесезонно в умеренной климатической зоне. Для автомобилей, эксплуатируемых в северных районах страны, разработано масло МГТ (ТУ 38.401494-84), которое по эксплуатационным свойствам соответствует маслу марки А, но имеет лучшие низкотемпературные показатели -- работоспособно до -50 °С. В гидрообъемных передачах автомобилей, в частности в гидроусилителях рулей, используют масло марки Р, выпускаемое по тем же ТУ, что и масло марки А. Применяется оно в качестве всесезонного в умеренной климатической зоне.

Эксплуатационные свойства трансмиссионных масел.

Качество трансмиссионных масел оценивают по результатам их испытаний в лабораторных, стендовых и эксплуатационных условиях. Лабораторными методами определяют физико-химические показатели масел: плотность, кинематическую и динамическую вязкость, температуру вспышки, температуру застывания, термическую стабильность, содержание воды, механических примесей, коррозионное влияние на медные и стальные пластины, кислотное число и др. Стендовые испытания масел проводят на специальном оборудовании или на агрегатах трансмиссии автомобилей. Этими испытаниями определяют влияние масел на износ и состояние деталей агрегатов при выбранных режимах, соответствующих наиболее напряженным условиям эксплуатации. Испытания на автомобилях проводят для определения влияния масел на надежность работы агрегатов трансмиссии: краткосрочные -- серия циклов на режиме «разгон -- резкое замедление» для оценки противозадирных свойств масел и длительные -- в условиях рядовой эксплуатации. В табл. 2.2.4 показаны основные показатели масел для гидросистем автомобилей. В табл. 2.2.5 представлены основные физико-химические показатели некоторых марок трансмиссионных масел.

Таблица 2.2.4 Основные показатели масел для гидросистем автомобилей

Показатели

Для гидротрансформаторов и автомеханических передач

Для гидроусилителя руля,

А

МГТ

Вязкость кинематическая (ммУс) при температуре:

50 °С

20-30

-

12-14

100 °С

-

6-7

-

-20 °С

2100

-

Вязкость динамическая при температуре -50 °С -не более, Па с

-

400

-

Температура вспышки -- выше, °С,

175

160

163

Температура застывания - ниже, "С

-40

-55

-45

Испытания на коррозию стальных пластин

Выдерживает

Увеличение массы резины после выдерживания ее в масле в течение 72 ч при температуре 130 °С -- не более, %:

марка 81-90

2

--

--

марка В-1И

-

5,0

2,5

Испытание на вспенивание при температуре 125 °С

Пена должна исчезать не более чем через 30 с

Индекс задира, Из

-

40

2

Критическая нагрузка, Н

720

900

-

Нагрузка заедания, Н

2240

2000

-

Диаметр пятна износа, мм (4 ч, 200 Н)

0,55

0,50

-

Таблица 2.2.5 Основные физико-химические показатели некоторых марок российских трансмиссионных масел

Показатели

Группа ТМ-3

Группа ТМ-4

Групп. iTM-5

Сп-10

ТАп-15В

ТСп-15

ТСп-14гип

ТС3-9гип

ТСгип

ТАД-17и

ТМ5-12рк

Вязкость кинематическая при температуре 100 °С, мм2/с

10

15

16

14

9

21-32

17

12

Вязкость динамическая (Па с) при температурах:-20 °С-30 °С

10-2040-100

3002000

25120

30-70180-550

1-32-9

7503000-10000

25-62130-480

-11

Температура застывания ниже, °С

-40

-20

-25

-25

-50

-20

-25

Температура вспышки выше, °С

128

180

180

180

160

-

200

180

Термоокислительная стабильность на приборе Д-НАМИ при температуре 140 °С:увеличение вязкости, %осадок, %

21,40,54

21,31,40

3,80,07

1,90,07

1,10,20

22,20,95

2,80,02

0,80,07

Смазывающие свойства на ЧМТ:

критическая нагрузка сваривания Р, Н

3500

2800

3150

4640

3480

7750

3750

3350

критическая нагрузка заедания, 1^, Н

825

800

1120

1235

1300

1190

1250

1190

диаметр пятна износа DH, мм

0,94

0,60

0,50

0,86

0,80

0,87

0,40

0,40

Автомобильные масла, смазки, присадки.

Вязкостно-температурные свойства трансмиссионных масел

Важным показателем, характеризующим эксплуатационные свойства масел, является вязкость. От вязкости масла зависят потери энергии на трение в агрегатах трансмиссии. Опыт эксплуатации показывает, что при температуре -10 °С вязкость масла Тап-15В достигает 30Па-с, при этом КПД заднего моста грузового автомобиля, например, ЗИЛ-130 уменьшается до 50%, а расход топлива возрастает в 2 раза по сравнению с нормой. При движении автомобиля температура масел в агрегатах трансмиссии возрастает по сравнению с температурой окружающего воздуха, но в зимний период остается низкой (рис. 2.2.1).

Интенсивность изменения температуры в агрегатах зависит от режима движения автомобиля и температуры окружающего воздуха. При частых остановках температура резко уменьшается, особенно в зимнее время (рис. 2.2.1). Температура масла в коробке передач гораздо выше, чем в лидирующем мосту, ввиду прогрева от двигателя, а также вследствие более интенсивного охлаждения лидирующего моста воздухом при движении автомобиля. Согласно характеристикам трансмиссионных масел, приведенным в табл. 2.2.1 и 2.2.5 наилучшие показатели имеют следующие масла: в умеренной климатической зоне -- ТСп-15К, Тап-15В и ТАД-17и; в северных районах страны -- ТМ5-12рк, ТСп-10 и ТС3-9гип. Применение в агрегатах трансмиссии маловязких масел, не рекомендованных автозаводами, недопустимо, так как может привести к утечкам масла через сальники, повышенному износу деталей и выходу агрегатов трансмиссии из строя. Минимальные значения вязкости масел в агрегатах трансмиссии должны быть в пределах 10-20 мм2/с, что определяется их противоизносными свойствами и способностью сальниковых уплотнителей предотвращать утечку масла. Максимальная вязкость определяется возможностью преодоления сопротивления вращению застывшего масла в агрегатах при трогании автомобиля с места, зависит от конструкции автомобиля и составляет 300-600 Па-с. В табл. 1.24представлена классификация трансмиссионных масел по SAE в зависимости от вязкостных свойств.

Таблица 2.2.6 Классификация трансмиссионных масел по SAE в зависимости от вязкостных свойств

Класс Вязкости

Максимальная температура, при которой вязкость масла не превышает 150 000 сП, °С

При кинематической температуре ш вязкость при 100 °С, Сет

мин.

макс.

70W

-55

--

75W

-40

--

80W

-26

7,0

--

85W

-12

11,0

--

90

--

13,5

24,0

140

--

24,0

41,0

250

--

41,0

--

Смазывающие свойства

Работа шестерен агрегатов трансмиссии происходит в основном в условиях граничного трения, при которых повышается износ зубьев шестерен. Интенсивность изнашивания во многом зависит от смазывающих свойств применяемых масел. Смазывающие свойства -- способность масла адсорбироваться на рабочей поверхности с образованием граничного слоя -- определяются совокупностью противоизносных, противозадирных и противопиттинговых показателей масла. Смазывающие свойства можно оценивать на четырехшариковой машине трения (ЧМТ) по обобщенному показателю индекса, задира И3. Чем больше И3, тем эффективнее смазывающие свойства масла. При оценке противоизносных и противозадирных свойств принимают во внимание критическую нагрузку заедания Рк и сваривания шаров Р, а также диаметр пятки износа D .

Величина Р характеризует нагрузку, при которой разрушается масляная пленка в зоне контакта, Р -- нагрузку, при которой происходит задир шаров, D -- износ шаров после одного часа испытаний.

Наиболее высокие требования по противозадирным свойствам предъявляются к маслам для гипоидных передач, в которых удельные давления в зоне контакта зубьев достигают 4000 мПа. Значение И3 для гипоидных масел составляет 60 ед. У масел для спиральноконических передач этот показатель должен быть не менее 50 ед. Для масел, применяемых в коробках передач, противозадирные свойства имеют второстепенное значение. Выбор масел для гипоидных передач осуществляется с учетом режима работы агрегатов. Так, для гипоидных передач грузовых автомобилей эксплуатационный режим характеризуется постоянными повышенными удельными нагрузками на зубья шестерен и относительно небольшими скоростями вращения. Для легковых автомобилей характерны высокие скорости вращения и переменные режимы нагрузки. Гипоидные масла ТС-14гип предназначены для грузовых автомобилей. Масла ТСгип -- применяются только для легковых автомобилей. Универсальное масло ТАД-17и может использоваться в агрегатах трансмиссии как грузовых, так и легковых автомобилей. Противоизносные свойства масел влияют на интенсивность изнашивания зубьев шестерен. Масла со значением D =0,4-0,5 мм обеспечивают в 1,5 раза меньший износ деталей, чем масла с D =0,8-0,9 мм. Наиболее эффективными маслами по этому показателю являются ТАД-17и и ТСр-15к.

Противопиттинговые свойства -- это способность масел предотвращать усталостное выкрашивание рабочих поверхностей зубьев шестерен под влиянием циклических нагрузок -- при оценке физико-химических показателей масел не нормируется. Для разнообразных масел эти свойства неодинаковы. Время наступления питтинга зубьев шестерен сокращается при повышении рабочих температур масла и снижении его вязкости. Наилучшими противопиттин-говыми свойствами в условиях повышенных температур обладают масла ТАД-17и и ТСп-15к, наихудшими -- ТСп-10.

Стабильность против окисления

В процессе работы в агрегатах трансмиссии в результате взаимодействия масла с кислородом воздуха при повышенной температуре в присутствии каталитически активных металлов происходит изменение физико-химических и эксплуатационных свойств масла. Это приводит к возрастанию вязкости и кислотного числа. В масле накапливаются продукты окисления. Повышение вязкости сопровождается ухудшением вязкостно-температурных свойств. Увеличение кислотного числа может вызвать коррозию подшипников и других деталей агрегатов трансмиссии.

Антиокислительные свойства масла оцениваются термоокислительной стабильностью на экспериментальных установках, имитирующих условия работы масел при повышенных температурах. Наилучшие показатели имеют масла на очищенной основе: ТАД-17и, ТСп-15к, ТСп-14гип, ТМ5-12рк (см. табл. 2.2.2), что позволяет использовать их для продления срока службы агрегатов.

Коррозионная агрессивность

В результате накопления органических кислот, а также попадания в масло паров воды из атмосферы может возникнуть коррозия металлических деталей агрегатов трансмиссии. Коррозионная агрессивность масла характеризуется изменением кислотного числа, содержанием водорастворимых кислот и щелочей. Наиболее наглядной проверкой масел на коррозионную агрессивность является проба на стальную и медную пластинки при температуре выше 100 °С. Наименьшую коррозионную агрессивность имеют масла ТСп-15К, ТМ5-12рк, ТАД-17и, наибольшую -- ТСгип.

Сроки смены масла

Сроки службы масел в агрегатах трансмиссии разнообразных автомобилей находятся в обширних пределах: примерно от 20 до 100 тыс. км пробега. Это обусловлено разнообразным качеством масел, конструкцией трансмиссии, условиями и режимами эксплуатации автомобилей.

Замену масла производят при значительном изменении его показателей по сравнению с исходными: вязкости, кислотности, противоизносных, антикоррозионных, антиокислительных свойств и др. На изменение показателей масла в значительной степени влияют условия эксплуатации: нагруженность трансмиссии, температурный режим, интенсивность поступления продуктов загрязнения (пыль, вода, продукты износа деталей), механическое влияние.

Одним из важных факторов, определяющих срок смены масел, являются условия эксплуатации автомобиля. Наиболее нагружены агрегаты трансмиссии при эксплуатации автомобиля на грунтовой дороге (нагруженность характеризуется передаваемой энергией на 1 км пробега), в наименьшей степени -- на скоростных магистралях. Если взять удельную энергию при движении на скоростной дороге за единицу, то по булыжной дороге она составит -- 1,66, в городских условиях -- 1,89, в горных условиях -- 1,94, на грунтовой дороге--2,21.

При повышенной рабочей температуре масла ускоряются окислительные процессы, растет количество отложений. При этом ухудшается теплоотвод от деталей и ужесточаются условия их работы. Происходит интенсивное снижение противоизносных, противозадирных и антиокислительных свойств масла.

Необходимым условием продолжительной работы масла является надежная защита агрегатов от проникновения пыли и влаги. Наличие в масле дорожной пыли приводит к снижению противоизносных свойств масла, которое невозможно компенсировать самыми эффективными присадками. Поступление воды, влаги в масло также ухудшает его противоизносные и противозадирные свойства. Например, при попадании в масло ТСгип около 5% воды нагрузка сваривания масла Р. уменьшается не менее чем в 2 раза, а диаметр пятки износа Ьк возрастает в 2 раза. Срок службы масла в значительной степени зависит от его качества. В большинстве случаев критерием при установлении срока замены масла служит изменение его физико-химических показателей (вязкости, кислотности, содержания активных элементов присадки), изменения противоизносных свойств масла, а также состояние деталей агрегатов трансмиссии после испытаний. Важным параметром, определяющим необходимость замены масла, является повышение вязкости на 50%. Необходимым условием бессменной работы масла являются его высокие эксплуатационные свойства и надежная герметизация узлов и агрегатов.

Рекомендации по использованию трансмиссионных масел приведены в табл. 2.2.4 Наилучшими эксплуатационными свойствами обладают масла: ТАД-17и -- для использования в агрегатах трансмиссии легковых и грузовых автомобилей; Тап-15В -- в коробках передач грузовых автомобилей, а также в лидирующих мостах с негипоидными передачами легковых и грузовых автомобилей; ТМ5-12рк -- для агрегатов трансмиссии грузовых автомобилей в северных районах страны. Марки трансмиссионных масел должны применяться в соответствии с инструкцией по эксплуатации автомобилей. На практике возможна ситуация, когда возникает необходимость смешивания масел. Как вынужденная временная мера это допустимо. Смеси масел можно использовать в коробках передач и в лидирующих мостах с негипоидными передачами. В гипоидных передачах должны использоваться только гипоидные масла. В табл. 2.2.5 представлены марки трансмиссионных масел, производимые российскими предприятиями и допущенные к использованию в Российской Федерации. В табл. 2.2.6 приведены сведения о соответствии марок отечественных и зарубежных трансмиссионных масел.

Таблица 2.2.7 Рекомендации по использованию трансмиссионных масел

Масло

Тип передачи

Срок замены масла, тыс. км

Минимальная температура, °С

ТСгип

Ведущие мосты старых моделей легковых автомобилей

24-30

-20

ТАД-17и*

Коробки передач и лидирующие мосты легковых и грузовых автомобилей

60-80

-30

Тап-15В

Коробки передач грузовых автомобилей с карбюраторными двигателями; лидирующие мосты грузовых и легковых автомобилей с негипоидными передачами

24-72

-25

ТСп-15

Коробки передач, лидирующие мосты грузовых автомобилей с негипоидными передачами

36-72

-30

ТСп-14гип

Ведущие мосты грузовых автомобилей с гипоидными передачами

36

-30

ТСп-10**

Коробки передач грузовых автомобилей с карбюраторными двигателями; лидирующие мосты грузовых автомобилей с негипоидными передачами

35-50

-45

ТС3-9гип

Коробки передач и лидирующие мосты автомобилей на Севере

Зимний период эксплуатации

-50

ТМ5-12рк

Коробки передач и лидирующие мосты грузовых автомобилей

50

-50

На автомобилях ВАЗ-2108 и ВАЗ-2109 (и другие переднеприводные этого класса) в трансмиссии используется моторное масло, которое заливается в двигатель.

" При отсутствии масла ТСп-10 или ТМ5-12рк в зимний период допускается использовать смесь масла Тап-15В или ТСп-15к с 10-20% дизельного зимнего или арктического топлива, которое будет работоспособно при температуре -40...50 °С.

Таблица 2.2.8 Марки трансмиссионных масел, производимые российскими предприятиями и допущенные к использованию в РФ

Марка

Классификация

Фирма, область использования

«Омскет» (ТМ-3-18)

API GL-3

АО «Омский НПЗ». Масло для грузовых автомобилей с негипоидными передачами

«Ангрол Т» (ТМ-3-18)

API GL-3

АО «Ангарская нефтехимическая компания». Масло для грузовых автомобилей с негипоидными передачами

«

API GL-5

АО «Ангарская нефтехимическая компания». Масло выпускается двух типов: с вязкостью при 100 °С13,5-15,5мм2/с и 16,5-20 мм2/с. Для всех типов передач

«Яр-Марка Супер Т» (ТМ-5-18)

API GL-5

АО «Ярославне фтеоргсинтез». Универсальное масло для всех типов передач. Масло выпускается двух модификаций (аналогично «Ангрол Супер-Т»)

«Яр-Марка Т» (ТМ-3-18)

API GL-3

АО «Ярославнефтеоргсинтез». Масло для грузовых автомобилей с негипоидными передачами

«Волнез Супер-Т»

(ТМ-5-18)

API GL-5

АО «Лукойл-Волгограднефтепереработка». Универсальное масло для всех типов передач

«Новоойл-Т» (ТМ-5-18)

API GL-5

АО «Новоуфимский НПЗ». Универсальное масло для всех типов передач

Таблица 2.2.9 Соответствие марок отечественных и зарубежных трансмиссионных масел

Отечественное масло

Зарубежное масло

Классификация

Фирма, масло

Масло А для гидротрансформаторов и автоматических коробок передач

Shell, DonaxT6 Mobil, ATF 200 TYPE A BP, ATFTYpeASuffixA Esso, Automatic Transmission Fluid

Масло Р для систем гидроусилителя руля и гидрообъемных передач

Shell, Tellus T Mobil, Mobilfluid 93 BP, ATF Type A Suffix A Esso, Torgue Fluid 40

Тап-15В (ТМ-3-18) ГОСТ 23652-79

API GL-3

BP, Gear Oil GP 90 Caltex, Thuban 90 Shell, Spirax90 EP Mobil, Mobilube C90 Esso, Gear oil EP90

ТСп-15к (ТМ-3-18) ГОСТ 23652-79

API GL-3

Shell, SpiraxEP 90W Mobil, Mobilube GX 90 BP, Gear oil EP SAE 90 Esso, Gear oil EP 90

ТСп-10 (ТМ-3-9) ГОСТ 23652-79

API GL-3

Shell, SpiraxEP 80W BP, Gear Oil 80 EP, Multi Gear oil 90EP Mobil, Mobilube CX SAE 80 Esso, Gear oil CP 80

ТАФ-17 и (ТМ-5-18) ГОСТ 23652-79

API GL-5

Shell, SpiraxND90 Mobil, Mobilube ND90 BP, Multi Gear SAE 90 EP Esso, Gearoil 90 EP

2.3 Описание эксплуатационных свойств специальных жидкостей

Эксплуатационные свойства и ассортимент амортизаторных жидкостей. Амортизаторные жидкости должны иметь высокие смазывающие и антикоррозионные свойства, обладать низкой температурой застывания. Для обеспечения надежной работы телескопических амортизаторов необходима жидкость с высокой термоокислительной и механической стабильностью, которая может бессменно работать в амортизаторе длительное время (до 100 тыс. км пробега автомобиля), подвергаясь значительному механическому и термическому воздействию при многократном (десятки миллионов циклов) истечении под давлением через отверстия клапанов и дросселей.

Требования к амортизаторным жидкостям многообразны. Основным из них является должная вязкость. Высокие требования предъявляются к вязкости амортизаторных жидкостей при отрицательных температурах. Так, при -200 С вязкость не должна превышать 800 сСт. Желательно, чтобы при интервале возможных на практике отрицательных температур вязкость амортизаторной жидкости не превышала 2000 сСт. При более высокой вязкости работа амортизаторов резко ухудшается и происходит блокировка подвески. Это случается довольно часто, так как уже при -300 С вязкость товарных амортизаторных жидкостей превышает 2000 сСт, а при -400 С достигает 5000..10000 сСт. Обеспечить требуемую вязкость (при температурах ниже -300 С) могут лишь амортизаторные жидкости на синтетической основе.

Таблица 2.3.1 Вязкостно-температурные показатели основных марок амортизаторных жидкостей

Показатель

МГП-10

МГП-12

АЖ-12Т

АЖ-170

Вязкость, сСт при температуре

-400 С, не более

-200 С, не более

500 С, не менее

1000 С, не менее

-

1000

10

3,6

-

800

12

3,9

6500

-

12

3,6

-

-

170…190

-

Температура застывания, 0С, не выше

-40

-43

-52

-60

Температура вспышки, 0С, не ниже

145

140

165

245

Широкое распространение в амортизаторах автомобилей имеет жидкость АЖ-12Т, которая представляет собой смесь маловязкого минерального масла и полиэтилсилоксановой жидкости с добавлением противоизносной и антиокислительной присадок. Она устойчиво работает при повышенных температурах и давлениях, обладает хорошей термической и механической стабильностью. Используют жидкость АЖ-12Т в тех системах, где детали выполнены из маслостойкой резины (работа в диапазоне температур от -50 до +600 С.

Для всесезонной работы гидравлических амортизаторов автомобилей предназначено масло МГП-10, являющееся смесью трансформаторного масла, полиэтилсилоксановой жидкости, животного жира, антиокислительной и противопенной присадок. Однако применение жидкости МГП-10 на автомобилях семейства ВАЗ-2108,09 вызвало повышенный износ телескопических стоек. Для этих автомобилей и семейства ВАЗ-2110 была разработана амортизаторная жидкость МГП-12 с улучшенными противоизносными свойствами.

Амортизаторной жидкостью очень высокого качества является жидкость АЖ-170, представляющая собой композицию полиэтилсилоксанов с хорошо очищенным маловязким маслом. Высокие эксплуатационные свойства позволяют использовать её в амортизаторах, работающих при температурах от -60 до +1300 С.

При отсутствии специальных жидкостей амортизаторные наполнители можно приготовить смешением примерно равного количества трансформаторного и легкого индустриального масла. Такая смесь будет обладать удовлетворительными эксплуатационными свойствами, хотя и уступает специальной жидкости. Использовать одно трансформаторное масло не рекомендуется, так как оно не обладает необходимыми противоизносными свойствами.

Эксплуатационные свойства и ассортимент охлаждающих жидкостей

Жидкость для системы охлаждения двигателя не должна замерзать и кипеть во всем рабочем диапазоне температур двигателя, легко прокачиваться, не воспламеняться, не вспениваться, не воздействовать на материалы системы охлаждения, иметь высокую теплопроводность и теплоемкость.

В некоторой степени этим требованиям отвечает вода. Она имеет целый ряд положительных качеств: доступность, высокую теплоемкость, пожаробезопасность, нетоксичность. К недостаткам воды следует отнести: высокую температуру замерзания и увеличение объема при этом, недостаточно высокую температуру кипения и склонность к образованию накипи. Отложение накипи в рубашках охлаждения двигателей ухудшает теплоотвод и может приводить к появлению трещин, так как из-за ухудшения охлаждения стенки неравномерно расширяются, в металле возникают значительные внутренние напряжения.

Воду, вызывающую образование накипи, называют жесткой. Общая жесткость - это суммарное содержание в воде ионов кальция и магния. Она измеряется миллиграмм-эквивалентами на 1 литр воды (мг.экв/л). Один мг.экв/л соответствует содержанию в 1 литре воды 20,04 мг кальция или 12,16 мг магния.

Воду считают мягкой, если в ней общее содержание солей не превышает 3 мг.экв/л, в двигателях ее можно использовать без умягчения. При содержании солей от 3 до 6 мг.экв/л - относят к средней жесткости, перед использованием в двигателе ее желательно умягчать. Воду, содержащую более 6 мг.экв/л солей, считают жесткой, она подлежит обязательному умягчению.

По степени пригодности в качестве охлаждающей жидкости для двигателей природные воды распределяются в следующем порядке: атмосферная (дождевая, снеговая) - самая мягкая (до 1,5 мг.экв/л); речная или озерная - достаточно мягкая (1,5...4,0 мг.экв/л); грунтовая (колодезная, ключевая), наиболее жёсткая - морская.

Самым простым способом умягчения является кипячение воды в течение 15...20 мин. При этом большая часть солей выпадает в осадок, который отфильтровывают. Остаточная жесткость в таком случае не превышает 1...2 мг.экв/л. Более сложный, но кардинальный способ очистки воды от солей - перегонка. В результате получается дистиллированная вода.

Существуют химические способы умягчения воды: добавление к ней веществ, образующих с солями кальция и магния нерастворимые соединения, выпадающие в осадок. К таким способам относится известково-содовое умягчение: к воде добавляют соду Na2CO3 в количестве 53 мг/л на одну единицу жесткости или раствор извести - гидроксид кальция Ca(OH)2. Теплую воду перемешивают с реактивом, 20...30 мин отстаивают и фильтруют от осадка. Все накипеобразующие соединения выпадают в виде нерастворимых соединений CaCO3, MgCO3, Mg(OH)2. Этот способ более эффективен, чем кипячение - остаточная жесткость не превышает 0,5...1,0 мг.экв/л.

Образование накипи можно предотвратить обработкой воды непосредственно в системе охлаждения добавкой так называемых антинакипинов. Они особенно удобны, когда систему требуется заправить водой из естественных источников при отсутствии умягченной воды. Наиболее часто в качестве антинакипина используют хромпик K2Cr2O7. Хромпик переводит соли накипи в растворенное состояние. Используют его следующим образом: готовят концентрат - 100 г реактива на 1 л воды. На 1 л среднежесткой воды берут 30...50 мл концентрата, для жесткой воды - 100...130 мл. Кроме того, являясь сильным окислителем, хромпик на поверхности металла создает защитную оксидную пленку, предохраняющую от коррозии.

Недостатком воды как охлаждающей жидкости является не только склонность к накипеобразованию. Температура её кипения составляет 1000С, что не всегда обеспечивает охлаждение современных форсированных двигателей. Замерзает вода при 00С, при этом примерно на 10 % увеличиваясь в объеме. Образующийся лед давит на стенки системы охлаждения с усилием свыше 200 МПа, что может привести к разрушению головки блока цилиндров и радиатора. По этой причине в зимнее время года целесообразнее использовать низкозамерзающие охлаждающие жидкости (НОЖ). Лучшие из них - этиленгликолевые смеси. Эти жидкости, обеспечивая надежное охлаждение двигателя, полностью исключают возможность размораживания системы охлаждения при длительной стоянке в условиях низких температур.

Этиленгликоль - прозрачная бесцветная или слегка желтоватая жидкость без запаха, хорошо смешивается с водой, ацетоном, спиртами, нерастворим в нефтепродуктах. Несмотря на то, что в случае применения этиленгликоля рабочая температура жидкости может быть повышена до 120...130°С, в чистом виде его практически не используют. Причиной этого является относительно высокая температура застывания (» -10° С) и низкая температура вспышки 122° С (пожароопасность) этиленгликоля. Для охлаждения используют водные растворы этиленгликоля. Смешивая этиленгликоль с водой в разных соотношениях, можно получить жидкости с температурой замерзания от 0 до -75° С. Зависимость температуры замерзания водоэтиленгликолевых растворов от их состава приведена на рис. 2.3.1.

Кривая кристаллизации имеет перелом в точке В, соответствующей 33,3% вoды и 66,7 % этиленгликоля, температура замерзания - 75 °С. В водных растворах этиленгликоля с содержанием воды от 0 до 33,3 % (кривая ВС) при замерзании образуются кристаллы этиленгликоля, а вода остается в жидком состоянии. Если концентрация воды более 33,3 % (кривая АВ), при замерзании кристаллизуется вода, а этиленгликоль остается в жидком состоянии. В точке В одновременно кристаллизуются и этиленгликоль, и вода.

Пользуясь кривой кристаллизации, можно, зная необходимую температуру застывания, найти состав смеси, и наоборот.

Использование НОЖ с этиленгликолем в системе охлаждения имеет много преимуществ: низкая температура застывания, высокая температура кипения, хорошие вязкостные свойства, жидкость негорюча, достаточно высока теплоемкость и теплопроводность. При их замерзании образуется рыхлая масса, объем которой увеличивается лишь на 0,2...0,3 % от первоначального, поэтому система не разрушается

Основные марки НОЖ представлены в табл. 2.3.2.

Таблица 2.3.2 Марки низкозамерзающих охлаждающих жидкостей

ПОКАЗАТЕЛЬ

Антифризы

Тосолы

40

65

А - 40

А - 65

Внешний вид

Светло-желтая, слегка мутная жидкость

Сине-зеленая жидкость

Температура кристаллизации,° С,

не выше

-40

-65

-40

-65

Температура кипения, ° С, не ниже

100

100

105

105

Состав, массовый %:

этиленгликоль

вода

присадки (сверх 100%)

52

48

» 4

64

36

» 4,5

53

47

» 4

63

37

» 4,5

Антифриз марки 40 представляет собой смесь 52 % этиленгликоля и 48% воды, марки 65 - соответственно 64 и 36 %. Поскольку этиленгликоль корродирует металл, к антифризам добавляют антикоррозионную присадку. Антифризы практически не действуют на резиновые шланги. Они обладают повышенной текучестью, поэтому нужно особенно тщательно следить за уплотнением соединений между деталями.

Для всесезонной эксплуатации легковых и ряда грузовых автомобилей (КамАЗ), тракторов К-701 предназначены тосолы А-40 и А-65, окрашенные в зелено-голубой цвет. Тосолы готовят на основе этиленгликоля с добавкой 2,5...3,0% сложной композиции противокоррозионных и антипенных присадок. Цифры в марках характеризуют температуру застывания.

Заменять тосолы в системе охлаждения следует через два года (или 60 тыс. км пробега), так как присадки в процессе эксплуатации разрушаются, ухудшая качество жидкостей.

Использовать НОЖ можно только после удаления из системы охлаждения накипи, которая разрушает антикоррозионные присадки.

При нагревании этиленгликолевые жидкости значительно увеличиваются в объеме. В связи с этим систему охлаждения заполняют на 92...94 %. В автомобилях для учёта этого явления предусматриваются расширительные бачки.

При обнаружении подтекания НОЖ из системы добавляют до нужного объема только НОЖ. Если система исправна, а уровень жидкости уменьшился, то доливать можно дистиллированную воду, так как температура кипения воды значительно ниже, чем у этиленгликоля, и вода быстрее испаряется.

Существенный недостаток этиленгликолевых жидкостей - их токсичность. При попадании НОЖ в организм человека наблюдаются тяжелые отравления. Основные меры предосторожности: НОЖ нельзя засасывать ртом, необходимо осторожно заполнять систему охлаждения, не допуская разливов и перелива жидкости, работать следует в резиновых перчатках, лучше в специальной одежде.

Эксплуатационные свойства и ассортимент тормозных жидкостей и сцепления. Тормозные жидкости служат для передачи энергии к исполнительным механизмам в гидроприводе тормозной системы автомобиля.

При торможении кинетическая энергия при трении превращается в тепловую. Освобождается большое количество теплоты, которое зависит от массы и скорости автомобиля. В случае экстренного торможения автомобиля температура тормозных колодок может достигать 600° С, а тормозная жидкость - нагреваться до 150° С и выше. Высокие температуры в тормозах и гигроскопичность жидкости приводят к ее обводнению и преждевременному старению. В этих условиях жидкость может отрицательно влиять на резиновые манжетные уплотнения тормозных цилиндров, вызывать коррозию металлических деталей. Однако наибольшую опасность для работы тормозов представляет возможность образования в жидкости пузырьков газа и пара, образующихся при высокой температуре из-за низкой температуры кипения самой жидкости, а также при наличии в ней воды. При нажатии на педаль тормоза пузырьки газа сжимаются, и так как объем главного тормозного цилиндра невелик (5…15 мл), даже сильное нажатие на педаль может не привести к росту необходимого тормозного давления, т.е. тормоз не работает из-за наличия в системе паровых пробок.

К тормозным жидкостям предъявляются следующие основные требования.

Температура кипения - это важнейший показатель, определяющий предельно допустимую рабочую температуру гидропривода тормозов. Для большей части современных тормозных жидкостей температура кипения в процессе эксплуатации снижается из-за их высокой гигроскопичности. К этому приводит попадание воды, главным образом за счет конденсации из воздуха. Поэтому наряду с температурой кипения «сухой» тормозной жидкости определяют температуру кипения «увлажненной» жидкости, содержащей 3,5% воды. (Температура кипения «увлажненной» жидкости косвенно характеризует температуру, при которой жидкость будет закипать через 1,5…2 года ее работы в гидроприводе тормозов автомобиля).

Из опыта эксплуатации известно, что температура жидкости в гидроприводе тормозов грузового автомобиля обычно не превышает 100° С. В условиях интенсивного торможения, например на горных дорогах, температура может подняться до 120° С и выше. В легковых автомобилях с дисковыми тормозами температура жидкости при движении по магистральным дорогам составляет 60…70° С, а в городских условиях достигает 80…100° с, на горных дорогах - 100…120° С, а при высоких скоростях движения, температурах воздуха и интенсивных торможениях - до 150°С. Кроме того, начало образования паровой фазы тормозных жидкостей реально происходит ниже температуры кипения (на 20…25° С).

Согласно требованиям международных стандартов температура кипения «сухой» и «увлажненной» тормозных жидкостей должна иметь значения соответственно не менее 205 и 140° С - для автомобилей при обычных условиях эксплуатации и не менее 230 и 155° С - для автомобилей, эксплуатирующихся на режимах с повышенными скоростями или с частыми и интенсивными торможениями, например на горных дорогах.

Вязкостно-температурные свойства. Процесс торможения обычно длится несколько секунд, а в экстренных условиях - доли секунды. Поэтому необходимо, чтобы сила, прилагаемая водителем к педали тормоза, с помощью рабочей жидкости быстро передавалась на колесные тормоза. Это условие обеспечивается необходимой текучестью жидкости и определяется максимально допустимой вязкостью при температуре -40° С: не более 1500 сСт для жидкостей общего назначения и не более 1800 сСт - для высокотемпературных жидкостей. Жидкости для севера должны иметь вязкость не более 1500 сСт при -55° С.

Антикоррозионные свойства. Для предотвращения коррозии жидкости должны содержать ингибиторы, защищающие сталь, чугун, белую жесть, алюминий, латунь, медь от коррозии. Эффективность ингибиторов оценивается по изменению массы и состоянию поверхности пластин из указанных металлов после их выдерживания в тормозной жидкости, содержащей 3,5% воды, в течение 120 ч при 100° С.

Совместимость с резиновыми уплотнениями. Для обеспечения герметичности гидросистемы на поршни и цилиндры ставят резиновые уплотнительные манжеты. Необходимое уплотнение обеспечивается, когда под воздействием тормозной жидкости манжеты несколько набухают и их уплотнительные кромки плотно прилегают к стенкам цилиндра. При этом недопустимо как слишком сильное набухание манжет, так как может произойти их разрушение при перемещении поршней, так и усадка манжет, чтобы не допустить утечки жидкости из системы. Испытание на набухание резины осуществляется при выдерживании манжет или образцов резины в жидкости при 70 и 120° С. Затем определяется изменение объема, твердости и диаметра манжет.

Смазывающие свойства. Влияние жидкости на износ рабочих поверхностей тормозных поршней, цилиндров, манжетных уплотнений определяется ее смазывающими свойствами, которые проверяются при стендовых испытаниях, имитирующих работу гидропривода тормозов в тяжелых условиях эксплуатации.

Стабильность при высоких температурах. Тормозные жидкости в интервале рабочих температур от -50 до 150° С должны сохранять исходные показатели, т.е. противостоять окислению и расслаиванию при хранении и применении, образованию осадков и отложений на деталях гидропривода тормозов.

Тормозные жидкости готовят с применением растительных масел (чаще касторового) или двухатомных спиртов - гликолей. При использовании растительных масел вторым компонентом обычно является спирт, например бутиловый.

До недавнего времени широкое распространение имела тормозная жидкость БСК. Она представляет собой смесь равного количества бутилового спирта и касторового масла с добавлением органического красителя (цвет жидкости оранжево-красный). Жидкость имела хорошие смазывающие свойства, но невысокие вязкостно-температурные показатели. Ее можно использовать в гидроприводах тормозов и сцепления грузовых и легковых (кроме ВАЗ) автомобилей в зонах умеренного климата. При температуре ниже -17° С жидкость БСК из-за интенсивной кристаллизации начинает переходить в твердую фазу. Верхний температурный предел работоспособности также невелик - жидкость закипает при 115° С. При попадании в систему воды однородность жидкости нарушается, и она становится непригодной к использованию. Жидкость БСК не гигроскопична - это ее достоинство, со временем ее температура кипения снижается не так ощутимо, как у тормозных жидкостей на гликолевой основе, но абсолютные значения температуры кипения в 115…110° С не в состоянии обеспечить надежную работу тормозов современных автомобилей на режимах с интенсивным торможением. Кроме того, к недостаткам касторовых тормозных жидкостей можно отнести выпаривание спирта при работе с высокими температурами.

Улучшенные эксплуатационные свойства (надежная работа тормозных систем в интервале температуры от -50 до 150° С, противоизносные, защитные характеристики) у жидкостей ГТЖ-22М и «Нева» на основе гликолей с комплексом присадок (вязкостные, противоизносные, ингибитры коррозии) и красителями. Это прозрачные жидкости желтого цвета. Они имеют хорошие вязкостно-температурные свойства (прокачиваемость), низкую испаряемость. Жидкость «Нева» рекомендована для применения в приводах тормозов современных легковых автомобилей (за исключением ГАЗ-24 выпуска до 1985 г., из-за несовместимости с резиновыми манжетными уплотнениями гидропривода). При поглощении воды расслаивания жидкости в системе не происходит, так как вода хорошо растворима в гликолях. Основной недостаток жидкостей - высокая гигроскопичность. В результате накопления влаги в жидкости резко (со 180…200° С до 120…140° С) уменьшается температура ее кипения. Жидкость ГТЖ-22М по показателям близка к «Неве», но обладает худшими антикоррозионными и вязкостно-температурными свойствами.

Более высокое качество имеет всесезонная тормозная жидкость «Томь», представляющяя собой смесь гликолей (этилкарбитола) и эфиров борной кислоты с добавлением вязкостной и антикоррозионный присадки. По внешнему виду очень похожа на жидкости «Нева» и ГТЖ-22М. Основные ее преимущества: меньшая гигроскопичность, незначительное снижение температуры кипения при обводнении (с 205…220° С до 140…160° С), улучшенные противоизносные и антикоррозионные свойства. Эксплуатационные свойства жидкости обеспечивают надежную работу приводов тормозов всех отечественных грузовых и легковых автомобилей.

Жидкость «Роса» представляет собой композицию на основе боросодержащих соединений, антиокислительных и антикоррозионных присадок. По внешнему виду - прозрачная бесцветная однородная жидкость. Имеет исключительно хорошие эксплуатационные свойства (особенно высокотемпературные - температура кипения «сухой» и «увлажненной» жидкости 260° С и 165° С соответственно), ее можно использовать в тормозных системах всех типов автомобилей при температуре окружающей среды от -50 до +50° С.

Следует отметить, что жидкости «Нева», «Роса», «Томь» полностью совместимы, их смешивание между собой возможно в любых соотношениях. Смешивание указанных жидкостей с БСК недопустимо, так как это приведет к расслоению смеси и потере необходимых эксплуатационных свойств.

Зарубежными аналогами жидкостей «Нева» и «Томь» являются жидкости, соответствующие международной классификации ДОТ-3, которые имеют температуру кипения более 205° С, а для жидкости «Роса» - жидкости ДОТ-4 с температурой кипения более 230° С.

2.4 Описание эксплуатационных свойств пластичных смазок

Основные функции и свойства пластичных смазок

Основной особенностью пластичных смазок является то, что они совмещают в себе механические свойства твердых и жидких тел. Основные функции, выполняемые пластичными смазками, те же, что и для жидких масел - уменьшение износа деталей, снижение коэффициента трения и защита металлов от коррозии. Если преобладающее значение имеют две первые функции или даже какая-нибудь из них, то смазку принято называть антифрикционной. Смазки, назначение которых преимущественно предохранять металлические изделия от коррозии, называются защитными.

Значительная группа трущихся деталей автомобилей и гусеничных машин (шарниры рулевого управления, рессоры, подшипники ступиц колес, водяного насоса) работают в таких условиях, при которых к ним может проникать влага и пыль.

Для смазки таких сопряжений жидкие масла не пригодны, т.к. они плохо удерживаются на поверхности деталей, заметно ухудшают смазочные свойства при попадании влаги, плохо герметизируют сборочную единицу от проникновения пыли. Поэтому возникает необходимость применять для смазки этих деталей пластичные смазки. Они предназначены для смазки, герметизации и защиты деталей и узлов от воздействия внешней среды.

Основные свойства пластичных смазок:

- температурные свойства;

- механические свойства;

- защитные свойства.

- Температурные свойства. Показателем, условно отражающим среднюю температуру плавления смазки, является температура капле падения.

Температура капле падения - температура, при которой из небольшого количества нагреваемой смазки отделяется и падает первая капля. Для определения температуры капле падения используется специальный прибор (Рис. 2.4.1.).

Для предупреждения вытекания смазки ее температура капле падения должна превышать температуру трущихся деталей не менее, чем на 100С для низкоплавких и на 150С для средне- и тугоплавких смазок.

- Механические свойства.

Механические свойства пластичных смазок характеризуются, в основном, тремя показателями:

- пенетрацией;

- пределом прочности;

- вязкостью.

Рис. 2.4.1 Прибор для определения каплепадения пластичной смазки

Пенетрацией называется условный показатель, численно равный выраженной в десятых долях миллиметра глубине погружения конуса стандартного прибора за 5 секунд при температуре плюс 250С. Пенетрация условно характеризует способность смазки сопротивляться выдавливанию из узла трения, а также определяет легкость подачи смазки в узел трения. Поэтому для зимнего периода эксплуатация берут смазки с большим значение пенетрации (250-350 единиц), чем для лета (150-250 единиц).

Пределом прочности называется минимальное напряжение сдвига, при котором происходит разрушение ее структурного каркаса, образованного загустителем, в результате перемещения одного слоя смазки относительно другого. Предел прочности характеризует способность смазок удерживаться на вертикальных и наклонных поверхностях, а также в узлах трения и не сбрасываться с вращающихся деталей под действием центробежных сил. Наиболее высокий предел прочности имеют литиевые смазки.

Вязкостью называется оценка текучести смазки. Вязкость пластичных смазок изменяется не только в зависимости от температуры, но также и от скорости деформации слоев. Поэтому для смазок введено понятие «эффективная вязкость», т.е. вязкость, связанная с воздействием на них нагрузки. Т.о. по величине эффективной вязкости можно судить о затратах энергии на относительное перемещение смазываемых деталей, на прокачивание смазок по трубам и смазочным каналам.

- Защитные свойства. Защитные свойства смазок характеризуют их способность предохранять от коррозии поверхности металлов и проверяются с помощью металлических пластинок. После 5 часового погружения при +1000С поверхности пластинок должны быть чистыми, без следов коррозии.

Эксплуатационные свойства и ассортимент пластичных смазок

Пластичные (консистентные) смазки - это густые мазеобразные продукты, в их состав входят: масло - основа, загуститель - мыла, твердые углероды (парафин), часто стабилизатор для сохранения однородности смазки, иногда наполнитель (например графит).

Отличительная особенность пластичных смазок заключается в том, что они способны в зависимости от условий работы обладать свойствами как твердых, так и жидких веществ. Под действием небольших усилий смазки ведут себя как твердое тело - могут удерживаться на вертикальных и наклонных поверхностях. При воздействии больших нагрузок смазки работают как жидкость - обладают текучестью. Такое сочетание свойств твердого тела и жидкости обусловлено строением пластичных смазок.

В качестве масляной основы смазок используют различные смазочные масла и жидкости. Большинство смазок отечественного производства готовят на нефтяных маслах. Для получения смазок, работающих в специфических и экстремальных условиях, применяют синтетические масла - кремнийорганические жидкости, фтор- и фторхлоруглероды. В отдельных случаях в качестве масляной основы смазок применяют растительные масла, например касторовое масло. От масляной основы зависят работоспособность смазок в определенном интервале температур, силовых и скоростных нагрузок, их окисляемость, защитные свойства, устойчивость к агрессивным средам, а также набухаемость контактирующих изделий из резины и полимеров. Нефтяные масла используют для производства смазок общего назначения, работоспособных в интервале температур от -60 до 1500 С. Для узлов трения, работающих при температурах ниже -600 С и длительное время при температурах выше 1500 С, применяют смазки, приготовленные на синтетических маслах (температурный диапазон таких смазок от -100 до 3500 С и выше).

Для улучшения свойств смазок применяют в основном те же присадки, что и для моторных, и трансмиссионных масел: противоизносные, противозадирные, антифрикционные, защитные, вязкостные, противоокислительные. Многие присадки являются полифункциональными. Кроме присадок, в смазки добавляют наполнители - высокодисперсные нерастворимые в маслах материалы, улучшающие их эксплуатационные свойства. Наиболее распространены наполнители, характеризующиеся низкими коэффициентами трения: графит, дисульфид молибдена, тальк, асбест. Достаточно широко используют в качестве наполнителей оксиды цинка, титана и меди, порошки меди, свинца, алюминия, олова, бронзы и латуни, которые обычно замешивают в готовую смазку в количествах от 1 до 30%. Такие наполнители применяют преимущественно для производства резьбовых и уплотнительных смазок, а также антифрикционных смазок, используемых в тяжелонагруженных узлах трения скольжения.

Смазки в первую очередь характеризуются консистенцией. Консистенцию смазок определяют показателем пенетрации при 250 С. В сосуд со смазкой погружается металлический конус под действием собственного веса (1Н). Показатель пенетрации - это его глубина погружения, выраженная в десятых долях миллиметра. Чем больше глубина погружения, тем "мягче" смазка и больше показатель (число) пенетрации.

О верхнем температурном пределе работоспособности смазок можно приближенно судить по температуре каплепадения - это температура падения первой капли нагреваемой смазки, помещенной в чашечку специального прибора.Кроме того, специфическими показателями, определяемыми для смазок, являются:

- коллоидная стабильность - характеризует (в %) отделение масла от смазки при воздействии на нее небольшой нагрузки (чем меньше этот показатель, тем лучше - выше условный балл оценки);

- испаряемость - смазка нагревается в тонком слое, при определенной температуре; взвешиванием определяется испаряемость масла (в %) - чем она меньше, тем выше балл;

- водостойкость - способность противостоять размыву водой - чем меньше размыв, тем выше балл;

В нашей стране производят большое количество пластичных смазок:

- Солидол С (близок по свойствам пресс-солидолу) представляет собой мягкую маслянистую мазь от светло- до темно-коричневого цвета. В состав смазки входят: индустриальное масло, кальциевые мыла синтетических жирных кислот. Предназначена для применения в узлах трения автомобилей, тракторов, сельскохозяйственных машин, станочного оборудования, открытых зубчатых и цепных передач. Температурный диапазон их применения очень небольшой - от -20 до +650С. При более высоких температурах солидолы необратимо распадаются. Нельзя наносить солидолы на трущиеся или защищаемые от коррозии поверхности в расплавленном виде. В качестве заменителя может использоваться смазка Литол-24.

- Смазка жировая 1:13 по внешнему виду представляет однородную слабозернистую мазь от светло- до темно-желтого цвета. В состав входят: минеральные масла, натриево-кальциевые мыла жирных кислот, входящих в состав касторового масла. Смазку применяют для ступиц колес автомобилей и других аналогичных узлов трения, где температуры не превышают 1000 С. Температурный диапазон применения от -20 до 1000С.

К недостаткам смазки следует отнести низкую влагостойкость: при контакте с водой она растворяется в ней. В качестве заменителя может использоваться смазка Литол-24.

- Графитная смазка УссА близка по составу к синтетическим солидолам. Эту смазку готовят на более вязком базовом масле, загущают кальциевыми мылами синтетических жирных кислот и добавляют графит (до 10%). Цвет смазки - черный с сереб...


Подобные документы

  • Основы обеспечения качества и надежности автомобилей в процессе их эксплуатации. Процессы, приводящие к неисправностям и отказам автомобилей. Качество и надежность автомобильных шин. Роль сферы сервиса в поддержании работоспособности автомобиля.

    учебное пособие [2,1 M], добавлен 29.01.2010

  • Анализ проблем эксплуатации автотракторного дизеля при низких температурах. Основные параметры топлива, влияющие на их эксплуатационные качества, способы обеспечения работы топливной системы. Эксплуатационные испытания электронагревательного устройства.

    дипломная работа [4,3 M], добавлен 12.06.2012

  • Устройство и маркировка автомобильных шин. Конструкция колес легковых автомобилей. Взаимодействие шин с дорогой. Долговечность, износостойкость и дисбаланс шин. Ремонт покрышек в условиях автопредприятия. Эксплуатация зимних шин на грузовых автомобилях.

    курсовая работа [2,4 M], добавлен 13.05.2011

  • Планово-предупредительная система технического обслуживания. Особенности конструкции автомобиля. Работы техобслуживания, технологические карты выполнения работ. Эксплуатационные материалы, применяемые при эксплуатации, техобслуживании, ремонте автомобиля.

    курсовая работа [31,6 K], добавлен 16.08.2011

  • Производственные технологии получения бензина. Стабильность дизельного топлива и показатели его раскрывающие. Система классификации, маркировки тормозных жидкостей. Характеристика эксплуатационных материалов. Проблема экономии горюче-смазочных материалов.

    реферат [26,5 K], добавлен 20.11.2012

  • Длительная бесперебойная и экономичная работа автомобиля, его агрегатов. Эксплуатационные свойства и показатели их оценивающие. Чистота дизельного топлива. Система классификации и маркировки тормозных жидкостей. Характеристика эксплуатационных материалов.

    контрольная работа [284,1 K], добавлен 25.07.2012

  • Изучение состава и классификации автомобильных эксплуатационных материалов. Характеристика эксплуатационных требований к автомобильным бензинам и дизельному топливу. Назначение и характеристика смазочных масел. Назначение и виды технических жидкостей.

    учебное пособие [407,0 K], добавлен 20.10.2011

  • Изменение технического состояния транспорта в процессе эксплуатации. Рассмотрение мероприятий, уменьшающих темпы износа деталей при использовании автомобиля. Разновидности состояния транспортных средств. Комплексные показатели надежности автомобилей.

    курсовая работа [22,3 K], добавлен 21.04.2012

  • Процессы обслуживания автомобиля. Технические особенности автомобиля Nissan Primerа. Ежедневное обслуживание автомобиля. Перечень неисправностей и условий, при которых запрещается эксплуатация транспортных средств. Составление технологической карты.

    курсовая работа [838,0 K], добавлен 18.05.2011

  • Контактно-транзисторная система зажигания. Маркировка отечественных автомобилей и прицепного состава. Техническая характеристика и эксплуатационные свойства автомобиля. Схема устройства питания дизельного двигателя. Прерыватель-распределитель типа Р4-Д.

    контрольная работа [3,0 M], добавлен 22.03.2012

  • Эксплуатация и техническое обслуживание автомобиля УАЗ 3160, его технические данные и характеристики. Требования безопасности и предупреждения. Маркировка автомобиля, органы управления и панель приборов, технология проведения техосмотров и ремонта узлов.

    дипломная работа [10,5 M], добавлен 20.04.2010

  • Основные технические характеристики автомобиля КАМАЗ-5320. Органы управления, оборудование кабины, контрольно-измерительные приборы. Меры безопасности и особенности эксплуатации автомобиля в холодный промежуток времени. Принципы технического обслуживания.

    курсовая работа [607,0 K], добавлен 14.02.2013

  • Неполадки элементов подвески, которые влияют на плавность хода, устойчивость автомобиля в период его движения. Причины, признаки и обнаружение, устранение неисправностей ходовой части автомобиля, операции по регулировкам и техническому обслуживанию.

    курсовая работа [4,4 M], добавлен 14.10.2009

  • Резина, область её применения, состав и основные свойства. Основные элементы конструкции и маркировка шин. Эксплуатационные характеристики шины дл летней и зимней эксплуатации. Нормативы ресурса автомобильных шин. Основные составляющие колес, их виды.

    реферат [650,2 K], добавлен 26.01.2011

  • Физико-химические и эксплуатационные свойства автомобильных смазок на примере ЛИТОЛ 24. Классификация пластичных смазок по NLGI, DIN 51 502, ISO 6743/9. Группы и подгруппы смазочных материалов в соответствии с ГОСТом 23258-78, анализ их совместимости.

    реферат [520,9 K], добавлен 16.11.2012

  • Корректирование периодичности технического обслуживания автомобилей и нормативов трудоемкости. Определение коэффициента использования автомобилей и годового пробега автомобилей по парку. Организация участков текущего ремонта грузовых автомобилей.

    курсовая работа [500,4 K], добавлен 07.06.2013

  • Установка сорта и марки масел, низкозамерзающих и охлаждающих жидкостей для применения на автомобиле Москвич 214122. Оценка эксплуатационных свойств трансмиссионных масел и тормозной жидкости. Выбор сорта и марки смазочных материалов для автомобиля.

    курсовая работа [39,8 K], добавлен 07.08.2013

  • Расчет расхода топлива для автомобиля ЛАЗ-А141. Определение объемов выброса отработавших газов в атмосферу и токсичности по методике профессора Говорущенко Н.Я. Методы определения стоимости горюче-смазочных материалов, затрат на ремонт и обслуживание.

    курсовая работа [2,5 M], добавлен 03.11.2010

  • Процесс производства и технология получения пластичных смазок. Эксплуатационные свойства бензина и показатели их оценивающие. Система классификации и маркировка тормозных жидкостей. Характеристика эксплуатационных материалов, их классификация по SAE.

    контрольная работа [30,6 K], добавлен 13.08.2012

  • Устройство тормозной системы с гидравлическим приводом автомобиля ГАЗ-3307. Неисправности, их главные причины и способы устранения. Операции технического обслуживания. Требования к оборудованию автомобиля для перевозки топливно-смазочных материалов.

    контрольная работа [26,3 K], добавлен 28.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.