Микробиология, понятия и характеристики

Краткая характеристика микроорганизмов и основные методы микробиологических исследований. Микробиологическая лаборатория и правила работы в ней. Приготовление препаратов живых клеток микроорганизмов. Дифференциальные, негативные способы окраски бактерий.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 12.02.2016
Размер файла 4,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Кафедра: «Технология хлебопекарного, кондитерского и макаронного производств»

МИКРОБИОЛОГИЯ

Учебно-методическое пособие

Дисциплина- «Микробиология»

Специальности - 270300 «Технология хлеба, кондитерских и макаронных изделий», 270800 «Технология консервов и пищеконцентратов», 271200 «Технология общественного питания».

Е.А.Кузнецова
Орел 2005
Автор: к.б.н., доцент кафедры «Технология хлебопекарного, кондитерского и макаронного производств» Е.А. Кузнецова
Рецензенты:
Д.т.н., профессор, заведующий кафедрой «Технология продуктов питания» Орловского института экономики и торговли Е.В.Литвинова
к.т.н., доцент кафедры «Технология хлебопекарного, кондитерского и макаронного производств» Орловского государственного технического университета В.В. Румянцева
Учебно-методическое пособие предназначено для самостоятельной подготовки и выполнения лабораторных работ по курсу «Микробиология» студентами специальностей 270300 «Технология хлеба, кондитерских и макаронных изделий», 270800 «Технология консервов и пищеконцентратов», 271200 «Технология общественного питания», а также может быть рекомендовано студентам специальностей 351100 «Товароведение и экспертиза продовольственных товаров» и 271100 «Технология молока и молочных продуктов» при изучении дисциплин «Основы микробиологии» и «Биология и микробиология».
Редактор С.Ч. Алиева
Технический редактор
Орловский государственный технический университет
Лицензия № 00670 от 05.01.2000 г.
Подписано к печати 25.01.2003. Формат 60х84 1/16
Печать офсетная. Уч.- изд. л. 2,7. Усл. печ. л. Тираж 150 экз.
Заказ №______
Отпечатано с готового оригинал-макета
На полиграфической базе ОрелГТУ,
302020, г.Орёл, ул. Наугорское шоссе, 29
© ОрелГТУ, 2004
© Кузнецова Е.А., 2004
СОДЕРЖАНИЕ
Введение
Часть 1. Краткая характеристика микроорганизмов и основные методы микробиологических исследований
Глава 1. Морфология микроорганизмов. Характеристика отдельных групп
Глава 2. Микробиологическая лаборатория и правила работы в ней
Глава 3. Стерилизация
Глава 4. Культивирование микроорганизмов
Глава 5. Выделение чистых культур
Часть 2. Лабораторный практикум
Лабораторная работа 1. Устройство микроскопа и правила работы с ним. Приготовление препаратов живых клеток микроорганизмов
Лабораторная работа 2. Приготовление фиксированных окрашенных препаратов
Лабораторная работа 3. Дифференциальные и негативные способы окраски бактерий
Лабораторная работа 4. Выявление некоторых структур и включений в клетках микроорганизмов
Лабораторная работа 5. Приготовление питательных сред для микроорганизмов
Лабораторная работа 6. Приготовление дифференциально-диагностических сред для культивирования микроорганизмов
Лабораторная работа 7. Получение накопительных культур микроорганизмов
Лабораторная работа 8. Физиолого-биохимические признаки микроорганизмов
Лабораторная работа 9. Выделение чистой культуры микроорганизмов
Лабораторная работа 10. Физиолого-биохимические признаки микроорганизмов
Лабораторная работа 11. Определение чистоты выделенной культуры. Изучение культуральных особенностей микроорганизмов
Лабораторная работа 12. Определение количества клеток микроорганизмов
Лабораторная работа 13. Исследование пищевых продуктов
Лабораторная работа 14. Микробиологическое исследование молока - проба на редуктазу
Лабораторная работа 15. Эпифитные микроорганизмы зерна
Лабораторная работа 16. Определение количества дрожжей и молочнокислых бактерий в полуфабрикатах
Рекомендуемая литература
Приложение
ВВЕДЕНИЕ
Слово «микробиология» происходит от трех греческих слов: micros - малый, bios - жизнь и logos - учение. Микробиология - это раздел биологии, изучающий морфологию, систематику, генетику, физиологию и распространение в природе микроорганизмов. Живые существа, составляющие мир микроорганизмов, весьма разнообразны и не объединяются в единую систематическую группу. Микробиология изучает прокариотные организмы - бактерии, а также определенные группы организмов эукариотного типа: дрожжевые и мицелиальные грибы, микроскопические водоросли, простейшие. Кроме того, микробиология изучает неклеточные формы жизни - вирусы. Все эти микроорганизмы объединены тремя общими признаками:
· Имеют чрезвычайно малые размеры, колеблющиеся от десятых долей до десятков, иногда сотен микрометров. Поэтому без увеличительных приборов микроорганизмы, за исключением отдельных, относительно крупных форм, не видны.
· Большинство микроорганизмов - одноклеточные существа. Встречаются и многоклеточные микроорганизмы, но дифференциация клеток у них отсутствует или выражена слабо. Вирусы не имеют клеточного строения.
· Мелкие размеры микробов определяют специфические, сходные для всех микроорганизмов технику культивирования и методы исследования, которые существенно отличаются от приемов, используемых при изучении растений и животных.
Человек с давних времен использует микробиологические процессы в практической деятельности. Многие микробиологические процессы применяют в пищевой промышленности. Так, в основе технологии приготовления хлеба лежат биохимические процессы спиртового и молочнокислого брожения, возбудителями которых являются дрожжи и молочнокислые бактерии. Эти микроорганизмы обусловливают необходимую степень разрыхления и кислотность полуфабрикатов, вкус и аромат хлеба, способствуют улучшению качества изделий, повышению пищевой ценности. Микробиологические процессы лежат в основе технологии кисломолочных продуктов, приготовления квашеных овощей, пива, кваса, вина.
Наряду с полезными микроорганизмами существуют вредные, вызывающие нежелательные процессы. Такие микроорганизмы вызывают порчу пищевых продуктов и могут стать причиной пищевых отравлений и пищевых инфекций.
Дальнейшее развитие микробиологии как науки привело к выделению ряда самостоятельных разделов - общей, технической, медицинской, сельскохозяйственной, водной и санитарной микробиологии.
История развития микробиологии
Начало развития науки о микроорганизмах обычно датируют с того момента, когда люди впервые увидели их. Первые научные описания микроорганизмов дал голландец А. Левенгук (1632 - 1723 гг.).
Левенгук не был профессиональным ученым. Шестнадцати лет он поступил учеником в мануфактурное торговое предприятие и впоследствии занял место кассира. Вопросы качества шерстяного волокна требовали употребления лупы. Левенгук увлекся трудной работой по отливке и шлифовке линз, изучал это ремесло в свободное от работы время и достиг большого совершенства в этом деле. Он делал лупы, дававшие увеличение до 300 раз, и вставлял их в латунную или серебряную оправу - так был создан микроскоп Левенгука. По существу - это простая лупа. Она превосходила по увеличению все лупы того времени.
Рассматривая при помощи лупы различные предметы: зубной налет, настой сена, Левенгук увидел живые, подвижные существа. С 1673 г. он начал публиковать свои наблюдения в форме писем в Лондонское королевское общество. В 1683 году он представил первый рисунок с изображением внешней формы увиденных им существ и назвал их инфузориями от слова infusum - настой (рис. 1). В других письмах Левенгука были описаны дрожжи и плесневые грибы.
В 1698 году Петр I при посещении Голландии беседовал с Левенгуком, заинтересовался микроскопом и привез микроскоп в Россию. В мастерских при дворе Петра I в 1716 году были изготовлены первые в России простые микроскопы.
Рисунок 1. Бактерии из полости рта. Рисунок Левенгука (1683 г.)
Английский физик и изобретатель Роберт Гук (1635-1703 гг.) сконструировал в 1660 году новый тип микроскопа, представлявший сочетание двух систем линз - окулярной и объективной. В 1665 году он выпустил труд - «Микрография», где описал строение растений. Он установил ячеистое строение пробки, бузины, моркови. Ему принадлежит термин «клетка». Так началось изучение невидимых простым глазом структур тела растений и животных. Возникла наука - микрография.
По мере накопления сведений о микроскопических существах было выяснено, что они не так просты, как казалось первоначально, и весьма разнообразны.
Таким образом, было установлено существование мира микроорганизмов.
Огромная химическая деятельность микроорганизмов по переработке и минерализации растительных и животных остатков протекает так незаметно для глаза, что люди и не подозревали о их существовании. Однако отдельные процессы, осуществляемые микроорганизмами, привлекли к себе внимание. С незапамятных времен людям были знакомы процессы гниения и брожения. Тысячелетиями человек пользовался в своем обиходе спиртовым брожением при приготовлении вина. Еще раньше было известно о молочнокислом брожении. Люди употребляли в пищу молочнокислые продукты, готовили сыр. При этом никто не подозревал, что имел дело с микроорганизмами. Не подозревали этого и алхимики, которые в средние века и позднее изучали гниение и брожение наряду с другими, чисто химическими процессами, такими, как взаимодействие металлов и кислот.
Слово «брожение» было дано голландским алхимиком Ван - Гельмонтом (1577-1641 гг.) процессам, идущим с выделением газа - fermentatio - кипение. Термин «газ» принадлежит также ему. В то время считали, что брожение - это химический процесс, идущий под влиянием частиц белка, которые легко распадаются сами и расшатывают молекулы, окружающих их веществ. Такая точка зрения была сформулирована в 1697 году Шталем (1660-1734 гг.), лейб-медиком прусского короля. Это представление господствовало 150 лет, пока не было опровергнуто Пастером во второй половине XIX века. Шталем же была сформулирована и теория флогистона. Последним приверженцем теории Шталя был Либих (1803-1873 гг.). Ему же принадлежит много работ по органической химии. В организованной им лаборатории учились и работали многие известные химики, в том числе и русские. Либих считал брожение и гниение контактными каталитическими реакциями. Дрожжи, по его мнению, и вообще все гниющие растительные и животные вещества переносят на другие тела то состояние разложения, в котором они сами находятся.
Л. Пастер (1823 - 1895)
Однако о природе брожения высказывались и другие соображения.
Французский физик Каньяр де Латур в 1836 году заметил, что осадок, образующийся при спиртовом брожении, которому приписывали роль катализатора, состоит из «способных к размножению шариков, которые, следовательно, живые существа, а не мертвое вещество, как полагали ранее». Благодаря их жизнедеятельности выделяется углекислота, а раствор сахара превращается в спиртовую жидкость.
Об этом же писал и немецкий альголог Кютцинг в 1837 году: « Весь процесс при спиртовом брожении зависит от образования дрожжей, при уксуснокислом брожении - от образования уксусной матки, слизистой массы, развивающейся в виде пленки на жидкости, содержащей спирт, из которой образуется уксус». Кютцинг полагал, что эта слизь состоит из мельчайших водорослей - Ulvina асеti.
Эта смелая мысль о связи процессов брожения с жизнедеятельностью живых существ была нова и неожиданна, но в течение многих лет не имела признания, что в значительной степени затруднялось благодаря исключительной популярности знаменитого Либиха и его химической теории брожения.
Основоположник современной микробиологии Луи Пастер (1822-1895 гг.), получивший в 32 года признание как выдающийся химик, организовал в Лилле естественно-исторический факультет и был назначен деканом. Химия входила в число наук, представленных на факультете.
Первые исследования Пастера были сделаны в области химии. Было известно, что существует винная кислота, вращающая плоскость поляризации и оптически недеятельная. Пастер обратил внимание на тот факт, что соли натрия или аммония недеятельной винной кислоты при перекристаллизации дают два типа кристаллов, которые являются зеркальным отражением друг друга. Пастер установил, что раствор одних вращает плоскость поляризации вправо, а раствор других - влево; раствор же смеси оптически недеятелен. Пастер открыл также, что выделить из рацемической смеси активный компонент может плесневый гриб, который использует один изомер и не затрагивает другой. Это наблюдение и привлекло внимание Пастера к микроорганизмам, изучению которых он посвятил в дальнейшем всю свою жизнь.
В 1856 г. Пастер обратил внимание на то, что образование молочной кислоты из сахара сопровождается накоплением размножающихся шариков. Он назвал их «молочнокислыми дрожжами». Слово «бактерии» было введено позднее Кохом.
Пастер показал, что если делать пересевы на 5%-ный раствор отвара дрожжей с 5% сахара и мела, то можно наблюдать образование молочной кислоты без участия белка. Белок лишь благоприятствует брожению, так как является подходящим веществом для питания микроорганизмов. Таким образом, Пастер точно определил, что молочнокислое брожение - это результат жизнедеятельности микроорганизмов.
В 1857 году была опубликована работа Пастера, в которой сообщалось, что спиртовое брожение может протекать только в присутствии живых дрожжей и является результатом особой формы жизнедеятельности - без доступа воздуха.
В дальнейшем Пастер натолкнулся на новые факты, имевшие громадное значение в развитии биологии.
Он заметил, что в чане, в котором закончилось молочнокислое брожение и весь сахар, превратился в лактат кальция, после некоторого периода затишья обнаруживается новый процесс. При обильном выделении газов раствор лактата изменяется: вместо молочной кислоты появляется масляная. Под микроскопом при этом Пастер обнаружил появление микроорганизмов новой формы - цилиндрические прямые палочки с закругленными концами, которые быстро движутся, и поэтому Пастер назвал их «маленькими животными». Сейчас мы называем их маслянокислыми бактериями.
Пастер обнаружил, что это были совершенно особые организмы, не способные размножаться в присутствии воздуха. Таким образом, была открыта жизнь без кислорода - анаэробиоз.
Изучая брожение, Пастер открыл, что микроорганизмы очень специфичны. Спиртовое брожение вызывают дрожжи, молочнокислое - другой микроорганизм, маслянокислое - третий.
Пастер нанес сокрушительный удар господствовавшим в то время взглядам на брожение как на следствие гниения белковых веществ. Между Либихом и Пастером завязалась ожесточенная полемика. Эксперименты Пастера были настолько убедительны и точны, что после его работ химическая теория брожения отошла в прошлое.
В 1866 году Пастер опубликовал работу «Исследование вина», в которой доказал, что порча вин вызывается деятельностью микроорганизмов, вызывающих в них нежелательные брожения. Для борьбы с «болезнями» вин он предложил прогревать их до 55-60° С после того, как вино разлито в бутылки. Этот прием получил название «пастеризация».
От исследований «болезней брожений» Пастер перешел к исследованию болезней животных.
В 1866 году Пастер начал изучать болезни шелкопряда. Эти исследования были предприняты по просьбе шелководов, несших огромные убытки из-за гибели шелковичных червей. Страдала вся промышленность юга Франции. Тщательные наблюдения привели Пастера к мысли, что заболевание вызывается микроорганизмами. Возбудителем заболевания оказался микроб Microsporidia, который образует пятна на поверхности тела гусеницы, и у последней перестает работать шелкоотделительная железа.
Пастер предложил отделять заболевших насекомых и уничтожать их. Это мероприятие возродило шелковую промышленность Франции.
Далее Пастер открыл, что одна из очень опасных болезней
сибирская язва - является следствием развития микроорганизмов в теле животного. Он обратил внимание на любопытный факт: если привить заразу курам, то они не заболевают. Но у кур более высокая температура тела, чем у животных или человека. Тогда он привил сибирскую язву курице и поставил ее ногами в холодную воду. Температура у курицы понизилась, и она заболела. Такой опыт, остроумный и крайне простой, очень характерен для стиля работы Пастера.
Затем Пастеру удалось культивировать возбудителя специфической болезни кур- куриной холеры вне тела хозяина, в бульоне. Он мог в любой момент вызвать заболевание, заражая кур бактериями. Возбудитель этого заболевания был назван впоследствии в честь Пастера - Pasteurella.
Однажды, случайно, Пастер произвёл заражение старой, ослабленной разводкой бактерий. Курица перенесла заболевание в легкой форме. После этого она приобрела невосприимчивость к этой болезни. Пастер усмотрел в этом не единичный случай, а решил, что введение ослабленной инфекции может быть общим методом для предохранения от тяжелых заболеваний.
Этот новый метод он решил проверить на сибирской язве. Для
ослабления культуры применил нагревание.
Для популяризации нового метода предохранения от болезней
Пастер в 1881 году провел свой знаменитый публичный опыт.
Для опыта было взято 50 овец, 25 из них он ввел ослабленную культуру - вакцинировал - как он назвал этот прием, по аналогии с введением оспенной вакцины Дженнера, предложенной еще в 1796 году. Затем он ввел всем 50 овцам смертельную дозу инфекционного начала. Опыт удался блестяще: 25 вакцинированных овец выжили, 25 не вакцинированных заболели и пали. Позже то же самое он доказал и для краснухи свиней.
После этих блестящих работ Пастер проводит исследования с одной из самых страшных болезней человека - бешенством, от которого не было спасения.
Однако на первых порах Пастер потерпел неудачу: он не мог получить вне организма активное заразное начало потому, что возбудитель бешенства - вирус - не культивируется вне живого тела.
Тогда Пастер ввел в мозг кролика растертый мозг бешеной собаки, что вызвало заболевание. Если переносить таким же образом заразное начало от кролика к кролику, то вирулентность возрастает, инкубационный период делается короче, пока не достигает 6 суток и далее он уже не сокращается; при перевивках получается «фиксированный вирус» - очень вирулентный для кроликов, но менее вирулентный для людей.
Пастер нашел способ ослабить инфекцию «фиксированного вируса» путем высушивания мозга кролика. С каждым днем хранения мозга над раствором едкого кали возбудитель все более и более терял вирулентность, то есть способность вызывать заболевание, и через 13- 15 дней становился безвредным для людей.
Если делать прививки людям таким обезвреженным вирусом и постепенно прививать все более активный препарат, то возникает невосприимчивость к бешенству.
Пастеру пришла идея не вакцинировать здоровых людей заранее, а попытаться лечить уже укушенных бешеным животным, потому что инкубационный период у бешенства довольно большой - от 20-30 дней до года.
После 5 лет опытов на животных в 1885 году Пастер решился сделать такую прививку двум укушенным людям. Результат был блестящий - они выжили.
Это была вершина в научной деятельности Пастера. Такие прививки, как известно, получили всемирное распространение. Во вceх странax появились Пастеровские станции, где имеются вакцины и делаются прививки.
В России первая Пастеровская станция была открыта в 1886 году известным русским микробиологом Н. Ф. Гамалея (1859-1949 гг.).
В 1888 году для Пастера был построен исследовательский институт в Париже на средcтвa, собранные по международной подписке. Пастер был первым его директором.
Таким образом, можно сказать, что основоположником микробиологии как науки был Пастер. Своими работами он заложил фундамент для общей и для медицинской микробиологии, которые с тех пор начали быстро развиваться и в ХХ веке сформировались в две самостоятельные научные дисциплины.
Пастер совершенно уникальный ученый, сделавший так много крупных открытий, как мало кому удавалось во всей истории мировой науки. Своими работами он сформировал целую обширную науку, которой до него практически не существовало. Он был настолько наблюдателен, что предвосхитил много направлений в чрезвычайно разнообразной современной микробиологии. Его опыты отличались необычайной простотой и остроумием и были так точны, что никогда, никто не мог опровергнуть ни одного из них.
Дальнейшее развитие микробиологии после Пастера выявляло все новые и новые химические процессы, осуществляемые микроорганизмами. Теперь мы знаем, что микроорганизмы в природе ведут огромную химическую работу, превращая одни вещества в другие, обеспечивая такой круговорот веществ на Земле, который делает возможной жизнь на планете. Описание этих химических процессов и их возбудителей и составляет предмет современной микробиологии.
После работ Пастера наибольшее внимание привлекли вопросы медицинской бактериологии благодаря блестящим работам врачей Р. Коха и И. И. Мечникова.
Р. Кох (1843 - 1910)
Роберт Кох (1843-1910 п.) - немецкий врач, занимался бактериологией в условиях домашней лаборатории. Его деятельность была направлена на выявление и изучение возбудителей болезней. Он разработал метод получения чистых культур микроорганизмов, который был основан на получении колоний на твердой среде. Для получения твердых сред он впервые применил желатин. Им созданы методы окраски бактериологических препаратов, которыми пользуются до сих пор. Культивируя бактерии сибирской язвы, Кох открыл, что они образуют, споры. Он открыл и выделил возбудителей холеры и туберкулеза. Наконец, Кох сформулировал требования - триаду, из которых и в настоящее время исходят при решении вопроса о том, является ли микроб возбудителем заболевания:
1) микроб должен встречаться при данном заболевании и отсутствовать при других;
2) должна быть получена чистая культура микроорганизма;
3) при помощи выделенного организма необходимо вызвать данное заболевание у восприимчивого здорового животного
И. И. Мечников (1845 - 1916)
После выдающихся работ Коха медицинская микробиология сформировалась как самостоятельная наука.
И. И. Мечников (1845-1916 п.) - русский биолог, зоолог беспозвоночныx - был очень разносторонним ученым, работавшим также и с патогенными микроорганизмами. Центральной проблемой в его работах было изучение взаимоотношений микроба-паразита и хозяина.
Ему принадлежит идея, что воспаление - это приспособительная реакция, выработанная животным организмом для борьбы с патогенным микробом, при этом микробы поглощаются лейкоцитами и уничтожаются ими.
М. Бейеринк (1851 - 1931)
Взаимоотношения клеток тела хозяина и микроба Мечников изучал со сравнительно-эволюционной точки зрения. У низших животных функция поглощения клеток микроба связана с внутриклеточным пищеварением. Рассмотрение функций в сравнительно-эволюционном разрезе - это то новое, что внес Мечников в биологию. Он занимался также и практической бактериологией, изучал возбудителя холеры и даже прибегнул к самозаражению. После смерти Пастера был директором Пастеровского института.
С. Н. Виноградский (1856 - 1953)
Другая ветвь микробиологии - общая микробиология, которая изучает микроорганизмы почв и вод и их возможное практическое использование, развивалась в трудах ученых, так или иначе связанных с химией.
В развитии этой ветви микробиологии - общей микробиологии - огромную роль сыграл М. Бейеринк (1851-1931 гг.) основатель первой крупной лаборатории общей микробиологии в Дельфте (Голландия). Ему принадлежит огромное количество исследований различных групп почвенных и водных микроорганизмов. Им впервые получено в чистом виде и описано большое число видов. Он изучал химические превращения, которые они способны осуществлять.
Вопросы морфологии и систематики микроорганизмов впервые подверглись подробному изучению в работах Ф. Кона (1828 - 1898 гг.).
С. Н. Виноградский (1856-1953 гг.) был крупнейшим русским микробиологом, создавшим эпоху в развитии общей микробиологии.
Он руководил отделом общей микробиологии в Институте экспериментальной медицины в Петербурге с 1891 по 1912 год, а с 1922 года заведовал агробактериологическим отделом Пастеровского института под Парижем. Наиболее значительным среди его работ было открытие хемосинтеза у бактерий, т. е. способности некоторых специфических бактерий жить за счет окисления аммиака, сероводорода, закисного железа, не нуждаясь в органическом веществе и синтезируя вещества тела из углерода углекислоты.
Много лет С. Н. Виноградский изучал микробное население почвы. Его по праву считают основоположником почвенной микробиологии".
Учеником и сотрудником С. Н. Виноградского был В. Л. Омелянский (1867-1928 гг.), работавший в самых различных областях общей микробиологии. Он создал первый русский учебник «Основы микробиологии», изданный в 1909 году и выдержавший 9 изданий за последующие 30 лет. Омелянским же составлено и первое русское практическое руководство по микробиологии, не утратившее до сих пор своей ценности.
В. Л. Омелянский (1867 - 1928)
В 20-30-е гг. ХХ века из науки в значительной степени описательной общая микробиология стала превращаться в науку экспериментальную. Она стала все теснее переплетаться с химией и биохимией. От выделения из природы и описания микроорганизмов перешли к изучению их физиологии. Встали вопросы о том, откуда микробы черпают энергию для жизни. Это сложный биохимический вопрос. Еще более сложная проблема - как они строят свое тело.
Этот последний этап развития микробиологии связан с именами ряда крупных современных микробиологов.
Биохимик Клюйвер (1888-1956 п.) с 1921 г. заведовал лабораторией общей и прикладной микробиологии в Дельфте, основанной Бейеринком. В своих исследованиях он особенно большое внимание уделял химической деятельности микроорганизмов и биологическому окислению. Клюйвер впервые обратил внимание на то, что этот процесс всегда сопровождается восстановлением. Он изучал биохимию многих процессов, осуществляемых микроорганизмами, особенно бродильных. Основная идея в его работах - это утверждение единства биохимических процессов у всех живых существ.
Ван Ниль, современный американский микробиолог-физиолог,
ученик Клюйвера, изучал обмен веществ у микроорганизмов. Особенно известны его исследования бактериального фотосинтеза у пурпурных и зеленых серобактерий.
В СССР биохимическое направление в изучении микроорганизмов начало развиваться очень рано.
А. Н. Лебедев и Л. А. Иванов изучали химизм спиртового брожения, опередив аналогичные исследования в Европе. Особенно широкий круг вопросов микробиологии был затронут в работах физиолога растений С. п. Костычева (1877-1931 п.). Ему принадлежат классические исследования по химизму спиртового брожения. С. П. Костычев изучал обмен веществ у грибов и организовал первое в СССР производство лимонной кислоты при помощи плесневого гриба. Известны его исследования и в области почвенной микробиологии. Он заведовал кафедрой физиологии растений в Ленинградском университете и был директором Института сельскохозяйственной микробиологии.
В. Н. Шапошников - основоположник технической микробиологии в СССР. Изучая физиологию бродильных организмов, он смог организовать и усовершенствовать ряд бродильных производств в России: молочной, масляной, уксусной кислот, ацетона и бутанола.
Экологическое, описательное направление разрабатывалось Б. Л. Исаченко (1871-1948 п.). Он работал в разных областях микробиологии, но особенно известны его исследования микрофлоры Северного Ледовитого океана и других водоемов.
После того как Пастер заложил основы микробиологии, начались многочисленные исследования, которые можно охарактеризовать следующим образом: что делают те или другие микробы. Этот этап накопления фактов длился до начала ХХ века. Частично такие исследования ведутся и до сих пор.
Когда накопилось значительное количество сведений о мире микроорганизмов, встал вопрос - как микроорганизмы осуществляют химические превращения, как протекают брожения, каков их химизм. Это уже вопросы биохимии. Начался биохимический период в развитии микробиологии. Впервые этот вопрос решался при изучении спиртового брожения, а затем и применительно к другим брожениям и превращениям веществ у микробов. Это биохимическое направление сейчас достигло своего расцвета. При этом выяснилось, что у растений, животных и микроорганизмов биохимические механизмы получения энергии и синтеза веществ тела удивительно похожи, часто даже идентичны. В то же время микроорганизмы оказались необычайно разнообразны. Но разнообразие это особого свойства. Было замечено, что какой-либо процесс, общий для микробов и животных, у отдельных микроорганизмов может протекать особенно интенсивно по сравнению с другими, одновременно протекающими процессами. Таким образом, у микроорганизмов мы находим необычайно разнообразные вариации основных процессов, в основе своей общих во всех царствах природы. Это и отличает микробный обмен от обмена высших организмов, и одновременно - сближает. Сначала особенно бросилась в глаза общность обмена веществ во всем живом, и вначале ее искали и подчеркивали. В настоящее время, когда общность принципов метаболизма не оставляет сомнения, следует искать те различия, то специфическое, что встречается только у микроорганизмов.
Общность основных процессов обмена веществ у микробов растений и животных привлекла к микробиологии внимание биохимиков растений и биохимиков животных. Микробы оказались исключительно удобными объектами для биохимических исследований. Они быстро растут, быстро образуют большие количества конечных и промежуточных продуктов обмена. Особенно ценны микроорганизмы для генетических исследований, так как у микроорганизмов необычайно быстро сменяются поколения.
За последние 2-3 десятилетия микробиология необычайно быстро продвинулась вперед. В настоящее время широко используются микроорганизмы для практических нужд человечества. Возникло множество химических производств, основанных на жизнедеятельности микроорганизмов. Биохимическое изучение микроорганизмов выясняет механизмы химических превращений веществ, приводящих к получению микробом энергии, необходимой для синтеза веществ тела, и механизмы этого биосинтеза. Но этим не исчерпывается задача исследования микроорганизмов. Встает вопрос: зачем протекает тот или иной процесс превращения одних веществ в другие, то есть каков его биологический смысл. Это уже вопрос физиологии. Физиологическое исследование микроорганизмов - это изучение взаимосвязи отдельных биохимических процессов, изучение их сочетания и саморегулирования, их реакции на изменение внешних условий. Всякое превращение веществ микроорганизмами осуществляется в каких-то определенных внешних условиях и зависит от них. Обмен веществ не только затухает при неблагоприятных внешних условиях, но изменяется, и при том таким образом, чтобы обезвредить их неблагоприятное действие. Это происходит потому, что в биохимических превращениях, в процессе эволюции развился принцип обратной связи, который приводит к известной автоматизации реакции нa внешние условия.
Физиологический этап в развитии микробиологии - это наивысший современный ее этап. Отдельные исследования в этом направлении ведутся уже давно.
Всестороннее изучение микроорганизмов - их распространения, биохимии, физиологии и тех химических изменений, которые они производят в cpедe в результате своей жизнедеятельности, приведет к тому, что человечество получит в свои руки ключ к сознательному управлению микробными процессами. Управление обменом веществ позволит (и уже теперь в известной мере позволяет) широко использовать в хозяйственной деятельности микроорганизмы как исключительно мощные и целенаправленные химические реагенты.
Если микроорганизм образует какой-нибудь ценный продукт из легкодоступного сырья, то знание биохимии и физиологии позволит заставить его образовывать этот продукт особенно быстро и особенно обильно. Реальным примером является промышленность антибиотиков.
Уже после того, как стало известно, что образуют те или другие микроорганизмы, можно было начать налаживать производство
интересующего продукта. Но только с выяснением того, как идет биосинтез (биохимия биосинтеза) и как это зависит от внешних условий (физиология продуцента), становится возможным полностью поставить на службу потенциальную химическую активность микроорганизма.
ЧАСТЬ 1. КРАТКАЯ ХАРАКТЕРИСТИКА МИКРООРГАНИЗМОВ И ОСНОВНЫЕ МЕТОДЫ МИКРОБИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
ГЛАВА 1. МОРФОЛОГИЯ МИКРООРГАНИЗМОВ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ГРУПП
Морфология микроорганизмов изучает форму и строение их клеток, способы передвижения и размножения. Микроорганизмы различаются по внешнему виду и по размерам. Строение клеток микроорганизмов также различно, в связи с чем они относятся к различным систематическим группам.
Все живые организмы на Земле , имеющие клеточное строение, делят на два надцарства: прокариоты и эукариоты. Это деление живых организмов основано главным образом на особенностях строения ядерного аппарата. В клетках прокариот ядро отсутствует. Ядерный аппарат их представлен молекулой ДНК, расположенной в ядерной зоне непосредственно в цитоплазме. Клетки эукариот имеют ядро, отделенное от цитоплазмы двойной ядерной мембраной.
БАКТЕРИИ
Известно около 4000 видов бактерий. Их разнообразие особенно выражено в отношении физиолого-биохимических свойств. В определенной степени оно проявляется и в морфологии.
Величина клеток различных бактерий сильно варьирует. Размеры многих бактериальных форм находятся в пределах 0,5-10 мкм. Однако величина ряда бактерий не укладывается в эти границы. Среди них есть немало относительно крупных форм, есть и крайне мелкие формы. Значительной длины достигают, например, нитчатые бактерии рода Beggiatoa - до 60 мкм и более и Saprospira - до 500 мкм. Это одни из наиболее крупных бактерий. Гигантские формы встречаются среди спирохет: длина некоторых достигает 500 мкм. Мельчайшие из известных организмов клеточного строения - микоплазмы. Размеры отдельных форм микоплазм не превышают 0,1-0,2 мкм, что лежит на границе или даже за пределами разрешающей способности светового микроскопа. У одного и того же вида бактерий размеры клеток могут в большей или меньшей степени варьировать в зависимости от возраста культур и (или) от условий культивирования. У многих бактерий особенно заметно меняется длина клетки. Диаметр клеток является более устойчивым признаком.
Основная масса бактерий - одноклеточные организмы. Но нередко клетки после деления не расходятся и образуют сочетания различной формы, которая определяется расположением делящей перегородки. Эти сочетания не равноценны многоклеточным организмам, так как каждая клетка в них автономна и может существовать самостоятельно после отделения от остальных клеток.
Бактерии, за исключением микоплазм, имеют определенную форму клетки. У большинства бактерий она поддерживается благодаря прочной (ригидной) клеточной стенке. Клеточная стенка спирохет эластична, и их извитая форма поддерживается с помощью аксиальных фибрилл, расположенных под клеточной стенкой. Форма клетки многих бактерий отличается постоянством и сохраняется в течение всей жизни. Но есть бактерии, у которых наблюдается более или менее выраженный плеоморфизм. Нередко он отражает стадии цикла развития микроорганизма. В этом случае обнаруживается упорядоченное, регулярное чередование определенных форм. Изменения морфологии могут происходить и под влиянием условий культивирования. Полиморфность микоплазм связана с отсутствием у них клеточной стенки.
Морфологические типы бактерий по сравнению с высшими организмами немногочисленны. Клетки значительной части бактерий имеют сферическую, цилиндрическую или спиралевидную форму. Существует обширная группа ветвящихея бактерий, сравнительно небольшое количество нитчатых форм и бактерий, образующих выросты (простеки).
Сферические бактерии - кокки. Под микроскопом они имеют форму шара. Многим коккам свойственно образование различных сочетаний (рис. 2). Кокки, делящиеся в одной плоскости и одном направлении, могут образовывать пары (диплококки) или цепочки (стрептококки) клеток. Когда деление происходит равномерно в двух взаимно перпендикулярных плоскостях, возникают группы
Рисунок 2. Сочетания кокков: 1 - диплококки; 2 - стрептококки; 3 - тетракокки и сарцины; 4 - стафилококки и микрококки
из четырех клеток - тетракокки, а если в трёх, то образуют пакеты правильной формы - сарцины. При неравномерном делении в нескольких плоскостях наблюдаются скопления неправильной формы, напоминающие гроздь винограда. Они свойственны представителям стафилококков и микрококков. Микрококками часто называют и одиночные шаровидные клетки.
Под влиянием различных факторов среды некоторые кокки могут превращаться в овальные, конические и эллипсоидные клетки.
Цилиндрические (палочковидные) бактерии под микроскопом имеют вид палочек. Это одна из наиболее многочисленных групп бактерий. Разные виды могут заметно отличаться друг от друга размерами клеток. Одной из самых крупных палочковидных бактерий является Васilllus megaterium. Ее длина 5-10 мкм, поперечник около 1 мкм. К наиболее коротким относятся риккетсии, размеры которых могут быть всего 0,3 Х 1,0 мкм. В тех случаях, когда длина лишь ненамного превышает диаметр клетки, палочки трудно отличить от кокков. Концы палочек бывают прямыми, округлыми или заострёнными (рис. 3).
Рисунок 3. Палочковидные бактерии: 1 - Pseudomonas aeruginosa; 2 - Bacillus mycoides; 3 - Васillus megaterium; 4 - Cytophaga
Палочковидные бактерии нередко образуют пары или цепочки клеток. Парные сочетания клеток наблюдаются, например, у определенных видов рода Pseudomonas, длинные цепочки можно увидеть в культуре Bacillus mucoides. Для ряда палочковидных бактерий характерен выраженный плеоморфизм.
Изменение формы, связанное с развитием бактерий, наблюдается у видов Azotobacter и Rhizobium; у миксобактерий и риккетсий. Так уже в молодой культуре азотобактера можно видеть клетки не только палочковидной, но и овальной или кокковидной формы. Они часто соединяются попарно или образуют скопления, а иногда цепочки из 4 и более клеток. В старых культурах преобладают крупные округлые, неправильной формы покоящиеся клетки-цисты .Риккетсии, помимо коротких палочек длиной 1-1,5 мкм могут быть представлены кокками диаметром менее 0,5 мкм, длинными палочками - 3-4 мкм, или причудливо изогнутыми нитями, длина которых достигает 40 и более микрометров. Есть бактерии, у которых изменение формы клетки связано со спорообразованием.
В неблагоприятных условиях в культурах многих палочковидных бактерий возникают различные дегенеративные формы с признаками лизиса, гранулированием содержимого, большими вакуолями и др. Это можно наблюдать, например, в культуре Bacillus megaterium (рис. 3).
Извитые одноклеточные бактерии бывают трех типов: вибрионы, спириллы и спирохеты. Вибрионы выглядят как слегка изогнутые палочки, похожие на запятую (рис. 4). В пpoцecce развития некоторые из них могут менять форму клеток. Так, паразиты бактерий Bdellovibrio при развитии в периплазматическом пространстве клетки хозяина становятся спиралевидными. Впоследствии спиралевидные клетки распадаются на вибрионы. Спириллы похожи либо на латинскую букву S, либо на штопор, т. е. имеют несколько правильных завитков. Спирохеты имеют вид тонких спиралевидных клеток с многочисленными завитками и петлями. Длина клеток спирохет превышает толщину в 5 - 200 раз. Спирохеты нередко образуют аномальные формы - гранулы, сфероиды и др.
Рисунок 4 Извитые формы: 1 - вибрионы; 2 - спириллы; 3 - спирохеты
Бактерии, образующие выросты (простеки). Основную часть этой группы составляют бактерии, у которых простеки - это выпячивания клеточного содержимого, окруженного клеточной стенкой цитоплазматической мембраной и не отделенного от клетки перегородкой. У одних бактерий, например у видов рода Hyphomicrobium, образование выростов связано с размножением. Клетки представителей этого рода чаще имеют вид палочек с заостренными концами, но бывают также овальной, яйцеобразной или бобовидной формы. Нитевидные выросты образуются на одном или обоих полюсах клетки. Bыросты могут ветвиться, давая гифоподобные структуры. На конце каждой ветви формируется почка, являющаяся дочернеи клеткой. Иногда созревшие почки не отделяются от материнской клетки и тоже образуют выросты и почки. Тогда возникает скопление гиф и клеток (рис. 5).
Рисунок 5 Бактерии, образующие выросты: 1 - Caulobacter; 2 - Hyphomicrobium; 3 - Ancalomicrobium; 4 - Gallionella
У других бактерий простеки не имеют отношения к размножению. К таким бактериям принадлежат, например, виды рода Caulobacter и Ancalomicrobium. Клетки Caulobacter - это слегка изогнутые палочки с одним полярным жгутиком. Сравнительно короткий вырост - стебелек возникает на одном полюсе клетки. На конце стебелька имеется небольшое утолщение из липкого материала - фиксатор. С его помощью клетки прикрепляются к какому-либо субстрату, а иногда друг к другу. В последнем случае образуются характерные скопления. У видов Аnсаlomicrobium на клетке неправильной формы возникает несколько простеков - от 2 до 8. Клетка приобретает причудливый звездообразный вид.
Иногда к стебельковым относят бактерии, образующие слизистые придатки, не связанные с цитоплазмой клетки. Это, например, виды Gallionella, бобовидные клетки которой выделяют с вогнутой стороны слизь в виде тонкой нити. Под микроскопом такая нить выглядит как спирально изогнутая лента.
Рисунок 6. Нитчатые бактерии: 1 - Beggiatoa; 2 - Thiothrix; 3 - Saprospira; 4 - Simonsiella; 5 - Caryophanon; 6 - цианобактерии класса Hormogoneae; 7 - Leptothrix; 8 - Sphaerotilus; 9 - Crenothrix
Нитчатые бактерии. Это сравнительно небольшая группа многоклеточных организмов. Они представляют собой цепочки (трихомы) из цилиндрических, овальных или дисковидных клеток. Типичными представителями нитчатых форм являются бактерии родов Beggiatoa и Thiothrix (рис.6). Их нити имеют равную толщину на всем протяжении. Трихомы видов Thiothrix собраны в пучки и прикрепляются основанием к субстрату. Нити Leucothrix, подобно Thiothrix, большей частью также растут пучком, прикрепляясь к твердой поверхности, но, в отличие от Thiothrix, они сужаются к концу.
Трихомы видов Saprospira скручены в виде спирали, а у видов Simоnsiella они уплощены и похожи на ленты. У видов Caryophanoп поперечные клеточные стенки большинства составляющих нити клеток не сплошные, так как их формирование отстает от роста трихома. Нитчатые бактерии относятся к крупным микроорганизмам. Так, длина нитей некоторых представителей рода Caryophanon достигает 40 мкм, а толщина 4 мкм. Нити зеленых бактерий группы Chloroflexus могут иметь длину 300 мкм. Особенно длинные трихомы образуют, как уже отмечалось, виды Beggiatoa и Saprospira (до 500 мкм).
Ветвящиеся бактерии. К этой многочисленной группе относятся истинные актиномицеты, нокардии, микобактерии, коринеподобные бактерии и ряд других организмов. Истинные актиномицеты имеют сильноразветвленный мицелий, сохраняющийся в течение всей жизни, что делает их внешне сходными с мицелиальными грибами (рис. 7). Однако общая длина нитей актиномицетов обычно не превышает нескольких миллиметров, а толщина составляет всего 0,5-1,5 мкм, тогда как длина грибного мицелия достигает нескольких сантиметров, а диаметр может быть около 50 мкм. У представителей рода Streptomyces в мицелии образуются перегородки, но их мало, поэтому составляющие его клетки в основном многоядерные. Мицелий большинства актиномицетов лишен перегородок, и этим он напоминает многоядерный несептированный мицелий фикомицетов.
Рисунок 7. Мицелий актиномицета (1) и гриба (2) при одинаковом увеличении
У нокардий и микобактерий мицелиальный тип развития имеет временный и часто ограниченный характер. Виды рода Nocardia образуют обильный, недифференцированный мицелий на начальных стадиях развития. В дальнейшем он распадается на палочковидные или сферические фрагменты.
Микоплазмы. Это довольно большая группа бактерий, у которых нет клеточной стенки. Поэтому они очень полиморфны. В культуре одного вида можно одновременно обнаружить мелкие зерновидные образования, кокковидные, эллипсовидные, грушеобразные, дисковидные, палочковидные и даже разветвленные и неразветвленные нитевидные формы (рис. 8).Размеры крупныхклеток микоплазмдостигают 10 мкм, а величина мелких структур не превышает 0,1 мкм.
Рисунок 8. Микоплазмы. Схема электронной микрофотографии
Большинство бактерий размножаются путем бинарного поперечного изоморфного деления. Такой способ размножения свойствен коккам, многим палочковидным формам и вибрионам, спириллам, спирохетам, некоторым нитчатым бактериям. Клетки основной массы бактерий делятся в одной плоскости. У многих кокков деление происходит в нескольких плоскостях. Расходящиеся после деления клетки большинства бактерий располагаются одна за другой или беспорядочно, а у видов Arthrobacter и Corynebacteriuт под углом друг к другу. Если после деления клетки не расходятся, то наблюдается образование различных скоплений клеток - пар, цепочек, пакетов и другие. В ряде случаев имеет место неравномерное деление. Фрагментацией мицелия или его рудиментов на палочки и кокки размножаются, например, виды Nocardia и Mycobacteriuт. Размножение распадом нитей на участки наблюдается у Beggiatoa и Saprospira. Две неодинаковые клетки - одна подвижная со жгутом, но без простеки, а другая неподвижная без жгутика, но со стебельком - образуются при делении клеток Caulobacter (рис. 9). К делению способны только неподвижные клетки с простекой.
Некоторые бактерии (виды Hyphoтicrobiuт и Rhodopseudoтonas, Ancaloтicrobiuт и др.) размножаются почкованием. У Rhodopseudoтoпas и Aпcaloтicгobiuт почки формируются прямо на поверхности клеток, а у Hyphoтicrobiuт - на концах гиф .
Рисунок 9. Схема роста и деления клеток Caulobacter
Рисунок 10. Гонидии (1) и гормогонии (2) нитчатых бактерий
У бактерий известны и более сложные способы размножения. Нитчатые цианобактерии класса Chaтaesiphoneae и бактерии родов Thiothrix, Caryophanon, Sphaerotilus, Leptothrix, Leucothrix размножаются с помощью специальных репродуктивных одиночных подвижных клеток - гонидий (рис. 10), которые образуются в результате многократного деления концевых клеток нити. Подвижность гонидий связана с наличием у них жгутиков. Для нитчатых цианобактерий класса Horтogoпeae характерно размножение гормогониями. Это короткие цепочки, возникающие, как и гонидии, при делении клеток нити. Они не имеют жгутиков и перемещаются скольжением благодаря выделению слизи. Размножение гормогониями наблюдается также у видов Leucothrix.
Актиномицеты размножаются главным образом подвижными или неподвижными спорами (конидиями). Конидии располагаются поодиночке или цепочками, непосредственно на мицелии, на концах спороносящих гиф - спорангиеносцах (спорангиофорах) или в специальных органах спороношения - спорангиях. Спорангиеносцы (и соответственно цепочки спор) разных видов различаются между собой. Они могут быть длинными или короткими, прямыми, волнистыми или спиралевидными; иметь последовательное, супротивное или мутовчатое расположение (рис. 11). Спорангии бывают сферической или неправильной формы (рис. 12), в них формируются эндогенные споры.
Существует немало бактерий, которые могут размножаться несколькими способами. Например, представители рода Rhizobiuт размножаются делением и почкованием, актиномицеты - спорами и кусочками вегетативного мицелия. Нитчатые цианобактерии размножаются гонидиями или гормогониями, а также путем распада трихома на отдельные участки, бактерии рода Chloroflexus - бинарным делением и участками нити. Caryophanon и Sphaerotilus - с помощью гонидий и поперечным изоморфным делением трихома, Leucothrix гонидиями и гормогониями. У микоплазм можно наблюдать бинарное деление, фрагментацию нитей и крупных клеток до кокков, а также процесс, напоминающий почкование.
Рисунок 11 Форма воздушных спороносцев у актиномицетов
Рисунок 12. Спорангии актиномицетов: 1 - Actinoplanes; 2 - Amorphosporangium; 3 - Spirillospora
Многие бактерии неподвижны. Неподвижными являются почти все кокки, более 50% палочковидных бактерий, почкующиеся и ветвящиеся бактерии, значительная часть нитчатых форм, риккетсии, микоплазмы. Способностью к движению обладает примерно 1/5 часть бактерий. Подвижность большинства из них обусловлена наличием специальных локомоторных структур - жгутиков. Жгутики обнаруживаютсяу некоторых кокков (отдельные представители рода Methylococcus), ряда палочковидных бактерий (виды Bacillus, Clostridiuт, Pseudoтoпas, Rhizobium, Azotobacter, Escherichia и др.), у вибрионов и спирилл, у нитчатых бактерий рода Caryophanon. У бактерий некоторых групп специальные репродуктивные клетки со жгутиками появляются только в определенной стадии развития. Это подвижные клетки каулобактерий, гонидии большинства нитчатых организмов, споры (конидии) некоторых актиномицетов (виды Actinoplaпes и Geoderтatopftilus).
Рисунок 13. Типы жгутикования у бактерий: 1 - монотрихиальное; 2 - лофотрихиальное; 3 - латеральное; 4 - амфитрихиальное; 5 - перитрихиальное; 6 - «смешанное» полярно - перитрихиальное
Жгутики берут начало под цитоплазматической мембраной и через поры мембраны и клеточной стенки выходят наружу. У разных бактерий длина жгутиков колеблется от 3 до 20 мкм, толщина - от 10 до 20 им, а их число - от 1 до 100. Жгутики могут быть расположены монополярно, биполярно, вдоль боковой или по всей поверхности клетки (рис. 13). Клетки некоторых бактерий имеют одновременно два разных набора жгутиков: полярные и перитрихиальные, различающиеся по длине и толщине.
...

Подобные документы

  • Методы изучения морфологии микроорганизмов при микроскопии препаратов, приготовленных из чистых культур путем окрашивания. Способы витальной окраски микроорганизмов для избежания артефактов, появляющихся в результате токсического действия красителя.

    презентация [3,4 M], добавлен 23.02.2016

  • Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция [1,3 M], добавлен 12.10.2013

  • Питательные среды в микробиологии, их классификация и разновидности, сферы и особенности использования. Культивирование аэробных и анаэробных микроорганизмов. Методы количественного учета микроорганизмов, основные правила и условия хранения их культур.

    реферат [24,6 K], добавлен 25.03.2013

  • Методы изучения морфологии микроорганизмов. Правила работы в микробиологической лаборатории. Микроскопия в светлом поле. Установка света по Келеру. Изображения фиксированных препаратов, полученные в результате исследования метода изучения морфологии.

    лабораторная работа [925,0 K], добавлен 14.05.2009

  • Исследование основных типов микроорганизмов: бактерий, грибов и водорослей. Анализ условий, необходимых для роста микроорганизмов. Механизм образования микробиологических отложений. Изучение методов микробиологического тестирования и приборов мониторинга.

    презентация [707,5 K], добавлен 23.10.2013

  • Изучение особенностей микроорганизмов. Микроэкологический риск при использовании высоких технологий. Характеристика технологии приготовления препаратов и опытов. Правила микроскопирования. Влияние гигиенических навыков на распространение микроорганизмов.

    научная работа [23,6 K], добавлен 06.09.2010

  • Свойства прокариотных микроорганизмов. Методы определения подвижности у бактерий. Участие микроорганизмов в круговороте азота в природе. Нормальная и анормальная микрофлора молока. Культивирование анаэробных микроорганизмов в условиях лаборатории.

    шпаргалка [50,2 K], добавлен 04.05.2009

  • Виды микроорганизмов: микробы, спирохеты, риккетсии, вирусы, грибки. Рецепторы клеток: нативные, индуцированные, приобретенные. Характеристика групп микроорганизмов согласно Всемирной организации здравоохранения. Особенности патогенных микроорганизмов.

    презентация [999,4 K], добавлен 14.04.2012

  • Схожесть и отличия прокариотических и эукариотических клеток. Строение муреина у бактерий. Характеристика микроорганизмов по способам питания. Химическое строение, структурная организация вирусов, морфология, особенности взаимодействия с клеткой-хозяином.

    шпаргалка [3,2 M], добавлен 23.05.2009

  • Особенности строения клеток бактерий, постоянные и непостоянные компоненты бактериальной клетки и принципы их окраски по Граму. Пропионово-кислое брожение и способы питания микроорганизмов. Санитарная оценка масла по микробиологическим показателям.

    контрольная работа [26,8 K], добавлен 21.10.2010

  • Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.

    презентация [35,1 M], добавлен 11.11.2013

  • Понятие и значение селекции как науки о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. Оценка роли и значения микроорганизмов в биосфере, и особенности их использования. Формы молочнокислых бактерий.

    презентация [1,1 M], добавлен 17.03.2015

  • Исторические сведения об открытии микроорганизмов. Микроорганизмы: особенности строения и форма, движение, жизнедеятельность. Строение клетки, доклеточные формы жизни – вирусы. Экология бактерий, селекция микроорганизмов, их распространение в природе.

    реферат [37,3 K], добавлен 26.04.2010

  • Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.

    презентация [6,4 M], добавлен 13.09.2015

  • Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.

    реферат [21,1 K], добавлен 29.09.2009

  • Обобщение факторов, от которых зависит рост и размножение микроорганизмов, то есть увеличение количества химических компонентов микробной клетки. Изучение понятия бактериальной массы, которая выражается плотностью бактерий. Завершенное деление клетки.

    реферат [19,9 K], добавлен 10.05.2012

  • Микроорганизмы как мельчайшие организмы, различаемые только под микроскопом. Способы рекомбинирования генов. Механизм селекции микроорганизмов. Технология синтеза гена искусственным путем и введения в геном бактерий. Отрасли применения биотехнологии.

    презентация [4,1 M], добавлен 22.01.2012

  • Определение понятия селекции и генетически модифицированного организма. Особенности работы селекционера с генетическим материалом исходных микроорганизмов. Основные способы рекомбинирования генов: конъюгация, трансдукция, амплификация и трансформация.

    презентация [6,0 M], добавлен 07.03.2013

  • История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.

    реферат [130,0 K], добавлен 05.12.2010

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.