Микробиология, понятия и характеристики

Краткая характеристика микроорганизмов и основные методы микробиологических исследований. Микробиологическая лаборатория и правила работы в ней. Приготовление препаратов живых клеток микроорганизмов. Дифференциальные, негативные способы окраски бактерий.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 12.02.2016
Размер файла 4,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Картофельная среда используется в основном для культивирования спорообразующих бактерий, представителей рода Caulobacter и некоторых других хемоорганотрофных бактерий. Для приготовления этой среды 200 г тщательно вымытого и очищенного от кожуры и глазков картофеля нарезают мелкими ломтиками, заливают 1 л водопроводной воды и кипятят 20 - 30 мин. Отвар фильтруют через вату, доводят объем фильтрата до 1 л и разливают в сосуды для культивирования. Среду стерилизуют 1 ч при 1 атм или 30 мин при 1,5 атм.
Почвенный экстракт используют главным образом для культивирования разнообразных представителей почвенной микрофлоры. Для его приготовления 500 г плодородной почвы заливают 1,5 л водопроводной воды и автоклавируют при 1 атм 30 мин. Полученный экстракт фильтруют через бумажный фильтр, добавляют к горячему фильтрату 0,5 г СаСО, тщательно перемешивают и через 5-7 мин фильтруют вновь. К экстракту, как правило, добавляют 0,2 г КHPO на каждые 1000 мл. Стерилизуют при 1 атм.
Синтетические среды - это среды, в которые входят лишь соединения определенного химического состава, взятые в точно указанных количествах. Синтетические среды широко используются при исследовании обмена веществ, физиологии и биохимии микроорганизмов. Для разработки состава синтетических сред, обеспечивающих рост микроорганизмов или усиленный биосинтез какого-либо продукта жизнедеятельности, необходимо знать особенности обмена веществ данного организма и потребности его в источниках питания. В настоящее время в распоряжении микробиологов имеется достаточное количество синтетических сред, не уступающих по своим качествам натуральным средам неопределенного состава. Синтетические среды могут иметь относительно большой набор компонентов, но могут быть, и довольно простыми по составу. Рецепты некоторых синтетических сред приведены в приложении.
Наряду с натуральными и синтетическими средами выделяют так называемые полусинтетические среды. Главными компонентами полусинтетических сред являются соединения известного химического состава - углеводы, соли аммония или нитраты, фосфаты и т. д. Однако в их состав всегда включаются вещества неопределенного состава, такие как дрожжевой автолизат, почвенный экстракт или гидролизат казеина. Эти среды находят широкое применение в промышленной микробиологии для получения аминокислот, витаминов, антибиотиков и других важных, продуктов жизнедеятельности микроорганизмов.
Следует иметь в виду, что среды, обеспечивающие хорошее развитие микроорганизмов вceгдa подходят для решения других исследовательских и практических задач, так как далеко не во всех случаях накопление какого либо продукта жизнедеятельности - фермента, витамина, антибиотика и т. д. идет параллельно накоплению биомассы.
Нередко при обильном росте микроорганизмов, желаемый продукт метаболизма почти не образуется или образуется в недостаточном количестве. Чтобы обеспечить необходимого соединения в максимально возможных количествах, применяются специальные среды. Подбор концентрации и соотношения компонентов среды осуществляют, используя методы математического планирования эксперимента, которые достаточно подробно изложены в книге В. Н. Максимова (1980).
Элективные среды предназначены для выделения микроорганизмов из мест их естественного обитания. Они обеспечивают преимущественно е развитие определённой группы микроорганизмов, для которой характерна общность физиологических свойств. Подробнее об этих средах см. с. 108 - 109.
Дифференциально - диагностические (индикаторные) среды дают
Возможность быстро отличить одни виды микроорганизмов от других или выявить некоторые их особенности. Примером индикаторной среды для выявления бактерий из группы кишечной палочки в естественных субстратах служит агаризованная среда Эндо следующего состава, г: пептон- 10; лактоза-10; КHPO -3,5; NaHsO-2,5; агар - 150; вода дистиллированная - 1000 мл; pH 7,4. К среде добавляется 4 мл 10%-ного спиртового раствора основного фуксина. Среду стерилизуют при 1 атм 15 мин и сохраняют в темноте. Бактерии из рода Escherichia на этой среде образуют малиновые колонии с металлическим блеском.
При определении видовой принадлежности бактерий используют pH-индикаторные среды, в состав которых входит один из индикаторов - нейтральный красный (0,0005%), феноловый красный (0,005%) или бромтимоловый синий (0,0005%). Если развитие микроорганизмов сопровождается образованием кислоты или щелочи, цвет индикатора изменяется, Дифференциально-диагностические среды особенно широко применяются в санитарной и медицинской микробиологии для быстрой идентификации определенных групп микроорганизмов.
По физическому состоянию различают жидкие, сыпучие и плотные среды.
Жидкие среды широко применяют для накопления биомассы или пpoдуктов обмена, для исследования физиологии и биохимии микроорганизмов, а также для поддержания и сохранения в коллекции культур микроорганизмов, плохо развивающихся на плотных средах.
Сыпучие среды применяют главным образом в промышленной микробиологии для культивирования некоторых продуцентов физиологически активных соединений, а также в коллекциях для сохранения культур микроорганизмов. К таким средам относятся, например, разваренное пшено, отруби, кварцевый песок, пропитанный питательным раствором.
Плотные среды используют для выделения чистых культур, в диагностических целях для описания колоний, для определения количества микроорганизмов, их антибиотической активности, для хранения культур в коллекциях и в ряде других случаев. С целью уплотнения сред применяют агар или жeлатин. Плотной основой могут служить пластинки силиката, которые пропитывают питательной средой.
Рисунок 41. Приготовление скошенной агаризованной среды в пробирках
Агар используют для уплотнения сред особенно часто. Он представляет собой сложный полисахарид, в состав которого входит сахароза и агаропектин. Кроме того. Агар включает небольшое количество легко ассимилируемых веществ и различные соли. Агар получают из некоторых морских водорослей и выпускают в виде пластин, стебельков или порошка. Агар удобен тем, что большинство микроорганизмов не используют его в качестве субстрата для роста. В воде он образует гель, который плавится примерно при 100 °C и затвердевает при температуре 40°C.
Поэтому на агаризованных средах можно культивировать значительную часть известных в настоящее время микроорганизмов.
Чаще всего агар добавляют к средам в количестве 1,5%. Если необходимо получить более влажную среду, вносят 1,0%, а более плотную и сухую -2-3% агара. Среду с агаром нагревают на кипящей водяной бане до полного его расплавления. Если предполагают выращивать микроорганизмы на скошенной агаризованной среде в пробирках, то каждую пробирку заполняют средой не более чем на 1/3. Чтобы среда не подсыхала, ее скашивают после стерилизации, перед посевом. Для этого пробирки с расплавленной на кипящей водяной бане средой устанавливают в наклонном положении (рис. 41) и дают среде застыть. Скошенная агаризованная среда не должна доходить до ватной пробки на 4-6 см. Среду, предназначенную для культивирования бактерий в чашках Петри, разливают по 20-25 мл в пробирки большего объема, чем для скошенной агаризованной среды, или стерилизуют в колбах. В последнем случае до стерилизации агар не расплавляют.
При остывании агаризованных сред образуется конденсационная вода. Чем меньше концентрация агара, тем больше выделяется воды. Поэтому при выращивании микроорганизмов на поверхности агаризованных сред в чашках Петри с целью получения изолированных колоний чашки помещают в термостат крышками вниз. В противном случае на внутренней стороне крышки скапливается конденсат, который, стекая на поверхность среды, мешает получению изолированных колоний.
Агар имеет слабощелочную реакцию, поэтому его добавление может привести к незначительному повышению рН среды. В слабокислых, нейтральных или слабощелочных средах агар сохраняет способность образовывать гель после нескольких циклов плавления и затвердевания и даже после повторной стерилизации. Однако необходимо помнить, что при рН среды ниже 5,5 агар при стерилизации частично гидролизуется и поэтому теряет способность образовывать гель, т. е. не застывает. В этом случае его стерилизуют отдельно от среды в определенном объеме воды, расплавляют на водяной бане и приливают при постоянном перемешивании к стерильной, предварительно подогретой среде.
Агар, как указывалось выше, содержит примеси органических и минеральных веществ, которые иногда нежелательны. Чтобы избавиться от большинства из них, поступают следующим образом. Агар заливают водопроводной водой и ставят в термостат на 30-37. Примеси вымываются в воду и разлагаются под действием развивающихся в ней микроорганизмов. Через день-два жидкость сливают, агар промывают несколько раз свежей водой, снова заливают водой и вновь ставят в термостат. Когда и эта вода помутнеет, то ее опять заменяют новой, и так делают до тех пор, пока не исчезнет запах, а вода не перестанет мутнеть. Обычно через 2-3 недели получают агар, почти лишенный растворимых органических и минеральных веществ. Воду сливают, агар помещают в двойной марлевый мешок и 2-3 суток промывают проточной водопроводной водой, затем раскладывают его тонким слоем и просушивают на воздухе или в сушильном шкафу при 40-50.
Желатин - это экстракт, получаемый' из субстратов, богатых коллагеном - белком костей, хрящей, сухожилий, чешуи. Образуемый желатином гель плавится при температуре 25°С, которая ниже обычной температуры инкубации многих микроорганизмов (30 - 37°С). Кроме того, желатин разжижается протеолитическими ферментами, которые многие микроорганизмы выделяют в среду. Эти свойства желатина ограничивают его применение в качестве уплотняющего средства. Желатин используют главным образом в диагностических целях - для выявления протеолитической активности микроорганизмов, а также для получения гигантских и глубинных колоний дрожжей. В первом случае употребляют мясо - пептонный, во втором - сусловый желатин.
К жидким средам добавляют 10 - 20% желатин, оставляют набухать 5-10 мин и нагревают на водяной бане до растворения. Доводят рН среды до 6,8-7,0.Желатин имеет кислую реакцию и обладает большой буферностью, поэтому на нейтрализацию идет больше щелочи, чем, например, на нейтрализацию МПА. Желатиновые среды стерилизуют при 0,5 атм 15 мин или дробно - 3 раза по 20 мин в кипятильнике Коха. Повторная стерилизация желатиновых сред, особенно при рН сред ниже 6,0 или выше 7,3 не рекомендуется, поскольку желатин частично гидролизуется и теряет гелеобразующие свойства.
Кремнекислый гель (силикагель) используют как твердую основу для синтетических сред строго определенного состава.
Гель готовят следующим образом. К соляной кислоте плотностью
1,1 добавляют при перемешивании равный объем раствора жидкого стекла (NаSiO или КSiO) той же плотности., Смесь разливают в чашки Петри по 20-30 мл в каждую и оставляют чашки на горизонтальной поверхности на несколько часов до образования кремнекислого геля. Когда гель станет плотным, открытые чашки помещают в стеклянный или эмалированный сосуд, промывают 2-3 суток проточной водой для удаления хлоридов, а затем несколько раз горячей дистиллированной водой. Об отсутствии хлоридов судят по качественной пробе промывных вод с 1 - 5%-ным раствором азотнокислого серебра: при наличии хлоридов образуется белый осадок. Отмытые от хлора пластинки пропитывают 2-3 мл концентрированной среды, содержание компонентов в которой в 5-10 раз выше, чем в соответствующей жидкой среде. Затем чашки с гелевыми пластинками помешают открытыми в сушильный шкаф и подсушивают при 50-60, следя за тем, чтобы гель не растрескался и его поверхность осталась влажной. Если необходимо, чашки завертывают в бумагу и, не переворачивая, стерилизуют в автоклаве при 0,5 атм 15 мин. Пластинки, предназначенные для выделения и культивирования автотрофных бактерий, можно не стерилизовать. Стерилизуют только среду, которой пропитывают гель. Чашки с силикагелевыми пластинками сохраняют до употребления под водой.
Некоторые специфические особенности агара, желатин и кремнекислого геля суммированы в таблице 3.
Таблица 3.-Основные особенности веществ, употребляемых для уплотнения питательных сред
Следует помнить, что все среды с агаром или желатином следует относить к натуральным средам неопределенного состава.
Осветление сред. Осветленные агаризованные или желатиновые среды необходимы для некоторых специальных исследований, например для получения хорошо видимых изолированных колоний анаэробных микроорганизмов.
В ряде случаев прозрачную среду можно получить, отфильтровав ее от осадка через гигроскопическую вату. Когда этого бывает недостаточно, среды осветляют с помощью белков куриного яйца. Для осветления 500 мл среды достаточно белка одного яйца. Бeлок отделяют от желтка и встряхивают с равным объемом воды до образования сплошной пены. Взбитый белок выливают в предварительно расплавленную и остуженную до 45-50 среду. Перед внесением белка проверяют рН и, если необходимо, подщелачивают среду до рН 7,0-7,3. Среду с белком тщательно перемешивают и прогревают при 100 в автоклаве или в кипятильнике Коха в течение часа. Белок свертывается и адсорбирует все взвешенные в среде частицы. Когда свернувшийся белок поднимется на поверхность или опустится вниз, среду быстро отфильтровывают в горячем виде через вату. При этом удобно пользоваться специально подогреваемыми подставками для воронок, благодаря которым предотвращается застывание среды во время фильтрования.
Синтетические агаризованные среды, в которые вносить белок нежелательно, осветляют следующим образом. Среду наливают в химический стакан, автоклавируют и оставляют после стерилизации в закрытом автоклаве на 10-12 ч, обычно на ночь. При таком медленном остывании все взвешенные частицы оседают на дно. Застывшую агаризованную среду извлекают из стакана, верхнюю, прозрачную часть срезают, помещают в колбу и вновь стерилизуют.
Посуда, предназначенная для приготовления сред и культивирования микроорганизмов, не должна содержать посторонних веществ. Лучше всего пользоваться стеклянной посудой. Новую стеклянную посуду моют и погружают на ночь в 1-2%-ный раствор соляной или серной кислот, затем многократно промывают водой и высушивают. Иногда для работы с микроэлементами, витаминами, синтетическими и другими средами требуется особо тщательная очистка посуды. Натуральные среды неопределённого состава можно готовить в эмалированной посуде.
Не следует готовить впрок больших запасов сред, так как они высыхают, концентрируются и становятся непригодными. Сохраняют среды в прохладном, защищенном от света и не слишком влажном помещении. В сырости ватные пробки пропитываются влагой и через них может прорасти мицелий микроскопических грибов. Каждый сосуд со средой должен иметь этикетку с обозначением состава (названия) среды и времени ее приготовления.
УСЛОВИЯ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ
Для жизнедеятельности микроорганизмов существенное значение имеют не только состав питательной среды, но и такие факторы, как кислотность среды, аэрация, температура, свет, влажность. Развитие микроорганизмов возможно лишь в определенных пределах каждого фактора, причем для различных групп микроорганизмов эти пределы часто неодинаковы.
Активная кислотность среды
Активная кислотность среды (рН) имеет решающее значение для роста многих микроорганизмов. Большинство бактерий лучше всего растет при рН, близком к 7,0, напротив, микроскопические грибы предпочитают слабокислые среды. Поэтому в приготовленных средах всегда следует определить значение рН. Измеряют рН электрометрическим методом на потенциометре. В лабораторной практике удобно использовать различные жидкие или бумажные индикаторы. Широко применяется, например, жидкий двухцветный индикатор, бромтимоловый синий (бромтимолблау). Его цвет изменяется от желтого к синему при сдвиге рН от 6,0 до 7,6. При рН 7,3 индикатор имеет сине-зеленую oкраску. Используют также универсальный индикатор, который изменяет окраску в интервале рН от 2 до 10.
В случае необходимости рН сред доводят до нужного значения растворами кислот (HCl, HSO.), щелочей (NaOH, КОН) или солей, имеющих щелочную реакцию (NаСО, NаНСО). Для корректировки рН целесообразно иметь растворы разной концентрации. рН сред может измениться в процессе стерилизации, поэтому после стерилизации его следует проверить и довести до нужного значения, если это требуется, стерильными растворами кислоты или щелочи.
Активная кислотность питательной среды, благоприятная для начального роста, достаточно часто меняется в процессе культивирования микроорганизмов. Эти изменения могут быть результатом образования продуктов метаболизма или неравномерного потребления отдельных компонентов среды. Например, при сбраживании углеводов в среде накапливаются органические кислоты, снижающие рН среды. В средах с КNО рН возрастает, как уже отмечалось, благодаря более интенсивному потреблению нитрат-иона и накоплению ионов калия.
Чтобы не допустить чрезмерного изменения рН в культурах микроорганизмов и удержать его на необходимом уровне, используют различные приемы. Иногда в среды добавляют буферные растворы (см.
Приложение). В микробиологической практике чаще других применяют фофатные буферы.Однако если рост микроорганизмов сопровождается образованием большого количества кислот, то тех количеств буферного раствора , которые можно добавлять к средам ( не более 5 г фосфатов на 1 л среды), оказывается недостаточно, так как противодействие любого буфера изменению рН не беспредельно. Поэтому для микроорганизмов, активно изменяющих кислотность среды, применение буферов неэффективно. При культивировании таких микроорганизмов в среды вводят избыточное количество мела, который нейтрализует образующиеся кислоты. Можно нейтрализовать образующиеся кислоты по ходу развития культуры 10%-ным стерильным раствором NаНСО.
Поддержание определенного значения рН во время роста особенно важно для тех микроорганизмов, которые образуют в процессе жизнедеятельности кислоты, но не обладают устойчивостью к ним. К их числу относятся молочнокислые бактерии, а также многие псевдомонады. Большие затруднения встречаются, когда нужно поддерживать рН в слабощелочных средах, так как для диапазона рН от 7,2 до 8,5 подходящих буферов не существует. Поэтому иногда приходится периодически или непрерывно доводить рН до нужной величины, добавляя стерильно в среду растворы кислоты или щелочи при постоянном контроле значения рН. В современных ферментерах это достигается с помощью специальных автоматических устройств.
Аэрация
Кислород входит в состав воды и органических соединений, поэтому поступает в клетки всегда в больших количествах. Однако многие микроорганизмы нуждаются в постоянном притоке молекулярного кислорода. Такие микроорганизмы принято объединять в группу облигатных аэробов. Энергетическим процессом у них является аэробное дыхание, а молекулярный кислород играет роль терминального окислителя. Среди облигатных аэробов выделяют группу микроаэрофильных микроорганизмов, которые нуждаются в кислороде, но лучше растут при парциальном давлении меньшем, чем в воздухе. Развитие других микроорганизмов, напротив, возможно только, в отсутствие кислорода. Получение энергии у этих микроорганизмов не связано с использованием молекулярного кислорода. Для многих из них кислород токсичен - он угнетает рост или вызывает гибель клеток. Такие микроорганизмы называют облигатными анаэробами. Среди микроорганизмов выделяют также группу факультативных анаэробов, представители которой способны расти как в присутствии, так и в отсутствие молекулярного кислорода. Например, некоторые дрожжи или энтеробактерии в зависимости от наличия кислорода осуществляют аэробное дыхание или брожение.
Неодинаковые потребности микроорганизмов в свободном кислороде определяют различия и в способах их культивирования.
Способы культивирования аэробных микроорганизмов
Культивирование на поверхности плотных и жидких сред. В этом
случае микроорганизмы выращиваются на поверхности плотной среды
или в тонком слое жидкой среды и получают кислород непосредственно из воздуха. При поверхностном культивировании важно увеличить площадь соприкосновения среды с воздухом. Для этого среды наливают тонким слоем в посуду с широким дном - чашки Петри, колбы Виноградского, матрацы. В жидких средах аэробные микроорганизмы часто растут, образуя на поверхности пленку. Факультативные анаэробы развиваются не только на поверхности, но и в толще жидкой среды, вызывая более или менее равномерное ее помутнение. Поверхностное культивирование микроорганизмов применяется как в лабораторных условиях, так и в промышленности.
Глубинное культивирование в жидких средах. Все способы глубинного культивирования аэробных микроорганизмов сводятся к увеличению поверхности соприкосновения питательной среды с кислородом воздуха. Следует иметь в виду, что при глубинном культивировании в жидких средах микроорганизмы используют pacтворённый кислород. Вместе с тем растворимость кислорода в воде невелика. Поэтому, чтобы обеспечить рост аэробных микроорганизмов в толще среды, её необходимо постоянно аэрировать.
Наиболее простой и широко распространенный в лабораторной практике способ глубинного культивирования - выращивание на качалках, обеспечивающих встряхивание или вращение колб или пробирок со скоростью 100-200 и более оборотов в минуту. Чем больше скорость вращения, тем больше соприкосновение среды с воздухом и выше насыщение ее кислородом. Увеличить аэрацию среды при работе на одной и той же качалке можно уменьшением объема среды или применением колб с отбойниками - вдавлениями внутрь в виде 4-8 отростков 2-3 см длиной. При вращении колб с отбойниками поверхность соприкосновения среды с воздухом заметно увеличивается благодаря разбрызгиванию жидкости, тем выше аэрация.
Интенсивность аэрации при выращивании микроорганизмов на качалках характеризуют, как правило, скоростью поглощения кислорода водным раствором сульфита. Раствор сульфита наливают в сосуды для культивирования вместо питательной среды и через определенные промежутки времени измеряют количество окисленного сульфита в тех же условиях аэрации, при которых выращиваются исследуемые микроорганизмы. Метод подробно описан в «Практикуме по микробиологии» (1976). Сульфитный метод не дает возможности определить концентрацию кислорода в культуре. Концентрацию кислорода, растворенного в культуральной жидкости, определяют полярографически.
Помимо перемешивания, аэрировать культуру микроорганизмов можно продуванием через толщу среды стерильного воздуха. Этот способ часто используется в лабораторных исследованиях, но особенно широкое применение он нашел в промышленной микробиологии при получении биомассы и различных продуктов жизнедеятельности микроорганизмов - антибиотиков, ферментов, кислот. Скорость протекания воздуха через среду необходимо контролировать. Для этого используют различные приборы: газовые часы, реометры и другие. В ферментерах количество пропускаемого воздуха поддерживается на заданном уровне автоматически. Воздух стерилизуется путем прохождения через активированный древесный уголь, стеклянную вату, пропитанную антисептиком, или специальные ткани из полимеров. В лабораторных опытах, когда объем и скорость поступления воздуха невелики, используют заранее простерилизованные ватные фильтры. Для возможно более сильного распыления воздух пропускают через мелкопористые пластинки - барбатеры; в лабораторных опытах с этой целью применяют стеклянные фильтры.
Рисунок 42. Схема ферментера для глубинного культивирования аэробных микроорганизмов: 1 - вход для воздуха, 2 - выход воздуха, 3 - барбатер, 4 -отбойники, 5 - мешалка
Для аэрации культур микроорганизмов, как правило, используют обычный воздух. Продувание сред Кислородом не рекомендуется, так как чрезмерное насыщение среды кислородом (до 40 мг/л) может привести к угнетению роста микроорганизмов. В ферментерах принудительную аэрацию обычно совмещают с механическим перемешиванием среды мешалками, скорость вращения которых может достигать сотен и даже тысяч оборотов в минуту. Схема ферментера для глубинного культивирования аэробных микроорганизмов приведена на рис. 42.
Необходимо помнить, что потребности в свободном кислороде у различных аэробных микроорганизмов неодинаковы, поэтому степень аэрации следует подбирать экспериментально для каждой культуры.
Способы культивирования анаэробных микроорганизмов
Выращивание анаэробных микроорганизмов более сложно, чем культивирование аэробов, так как соприкосновение культур анаэробов с кислородом воздуха должно быть сведено к минимуму или даже полностью исключено. Для этого используют различные приемы, нередко комбинируя их друг с другом.
Выращивание в высоком слое среды. Это наиболее простой способ ограничения доступа воздуха к культуре. Жидкую среду наливают в сосуды для культивирования высшим слоем. Так как нельзя стерилизовать среды, если они занимают более половины высоты сосуда, часть среды стерилизуют отдельно и стерильно доливают ею сосуд для культивирования сразу же после посева. Непосредственно перед посевом среду кипятят или прогревают на кипящей водяной бане 30-40 мин, затем быстро охлаждают, чтобы в ней не успел раствориться кислород воздуха, и вносят на дно посевной материал.
Если развитие микроорганизмов не сопровождается газообразованием, поверхность среды можно залить слоем стерильного вазелинового масла, парафина или их смесью (соотношение 1 : 3), слоем стерильного водного агара либо закрыть сосуды для культивирования стерильными пробками: стеклянной притертой или резиновой.
Культивирование в вязких средах. Диффузия кислорода в жидкость уменьшается с увеличением ее вязкости. Поэтому в вязких средах, таких как картофельная или среды с кукурузной либо другой мукой, хорошо развиваются некоторые облигатные анаэробы, например, возбудители маслянокислого или ацетонобутилового брожения. Вязкость жидких сред легко увеличить, если добавить к ним 0,2-0,3 % агара.
Выращивание в толще плотной среды. Этим приемом пользуются для получения изолированных колоний при выделении чистых культур или определении численности анаэробных микроорганизмов. Посевной материал вносят в расплавленную и остуженную до 48-50 агаризованную, желательно осветленную среду, тщательно перемешивают и оставляют в пробирках или переливают стерильной пипеткой в заранее простерилизованные трубки Бурри или чашки Петри. Поверхность среды в пробирках заливают парафином. Трубки Бурри - это стеклянные трубки, длиной 20-25 см, диаметром 1,0- 1,5 см. Трубки стерилизуют, закрыв oба конца ватными пробками. Перед посевом ватную пробку у одного конца заменяют стерильной резиновой, через другой конец трубки вносят среду с посевным материалом и закрывают этот конец также резиновой пробкой (рис. 43).
Рисунок 43. Трубка Бури: 1 - трубка. Подготовленная к стерилизации; 2 - колонии анаэробных микроорганизмов в толще агаризованной среды
При использовании чашек Петри для выращивания анаэробов засеянную агаризованную среду наливают в крышку чашки и, после того как среда застынет, плотно прижимают к ее поверхности дно чашки. Зазор между стенками дна и крышки, где среда соприкасается с воздухом, заливают стерильным парафином (рис. 44).
Рисунок 44. Культивирование анаэробов в чашке Петри: 1- агаризованная среда, 2 - парафин
Рисунок 45. Микроанаэростат
Рисунок 46. Стеклянный вакуумный эксикатор
Выращивание в анаэростатах. Анаэробные микроорганизмы можно выращивать в анаэростатах - вакуумных металлических камерах, снабженных манометром (рис. 45). Анаэростатом может служить обычный вакуумный стеклянный эксикатор (рис. 46). Из анаэростата откачивают воздух, а затем, как правило, заполняют его газовой смесью, состоящей из азота (90-80%) и углекислоты (10-20%) до давления порядка 67*10 Па (500 мм рт. ст.). Избыточное давление исключает возможность диффузии кислорода воздуха. Для заполнения анаэростатов газовой смесью используют газометры (рис. 47). Газометр (А) заполняется отдельным газом или газовой смесью через кран 1. Жидкость, первоначально заполняющая газометр, через кран 2 (кран 3 при этом закрыт) вытесняется в сосуд Б. Затем кран 1 закрывают, осторожно открывают кран 3, и жидкость из сосуда Б поступает в газометр и вытесняет газ в анаэростат (В). Объем газа, заполняющего анаэростат, измеряют по объему жидкости, поступившей из сосуда Б в газометр. Необходимо помнить, что выпускаемые промышленностью газы даже высокой чистоты содержат, как правило, небольшие количества кислорода. Поэтому, чтобы очистить газы от остатков кислорода, их пропускают через химические поглотители, например, через колонки с раскаленной восстановленной металлической медью.
Для удаления кислорода из окружающей среды при культивировании анаэробов иногда используют вещества, поглощающие кислород. Эти вещества можно поместить на дно большой пробирки, имеющей специальную подставку, на которую ставят пробирку с бактериальной культурой . Удобно использовать специальные сосуды, во внешнюю расширенную часть которых вносят поглощающую смесь, а во внутреннюю - питательную среду с микроорганизмами. Культуральный сосуд закрывают ватной пробкой, а сосуд с поглотителем - резиновой, что обеспечивает герметичность системы (рис. 48). Применяют также вакуумные или обычные эксикаторы, в которые на дно или в специальные сосуды помещают поглощающие кислород вещества.
Рисунок 47. Газометр (А) и анаэростат (В)
В качестве поглотителя в лабораторной практике используют щелочной раствор пирогаллола, дитионита натрия (NaSO), металлическое железо и некоторые другие реактивы. При этом необходимо учитывать поглощающую способность реактивов и объем замкнутого пространства, в котором выращиваетсякультура. Например, на каждые 100 мл емкости используют 1 г пирогаллола и 10 мл 2,5 н. растворагидроксиданатрия.Поскольку
многие анаэробы нуждаются в углекислоте для биосинтеза веществ клетки, пирогаллол растворяют не в щелочи, а в насыщенном растворе бикарбоната натрия. Полноту поглощения кислорода химическими веществами контролируют, используя раствор, содержащий окислительно-восстановительный индикатор. Для приготовления раствора смешивают равные объемы 0,024%-ного раствора NaOH, 0,015%-ного водного раствора метиленового синего и 6%-ного раствора глюкозы;
в качестве антисептика к раствору добавляют тимол. Перед употреблением в пробирку наливают 5 мл смеси и нагревают в кипящей водяной бане до обесцвечивания, быстро охлаждают и помещают в анаэростат. В анаэробных условиях раствор остается бесцветным.
Удобен в обращении анаэростат системы Газ Пак (Gas Pak), кoторый снабжен палладиевым катализатором, поглощающим кислород, и химическими генераторами водорода (таблетка борогидрида натрия - NaHB) и углекислоты (таблетка бикарбоната натрия и лимонной кислоты). После загрузки анаэростата таблетки смачивают водой и тотчас герметически закрывают его крышкой. В таком анаэростате анаэробные условия создаются через 16-20 мин.
Культивирование в средах с восстановителями. Рост многих облигатных анаэробов возможен только в средах с низким окислительно- восстановительным потенциалом (Eh). Поэтому в среды для культивирования анаэробов рекомендуется добавлять восстановители, например, цистеин, тиогликолевую кислоту или ее натриевую соль, сульфид натрия (NaS), аскорбиновую кислоту или дитиотреитол. Чаще других используют сульфид и тиогликолат натрия. Обычно готовят 1 % -ные растворы этих восстановителей в 5% -ном растворе бикарбоната натрия, стерилизуют автоклавированием и добавляют к средам сульфид Na из расчета 250-500 мг, а тиогликолат натрия от 250 мг до 1 г на 1 л среды. Восстановители следует использовать в концентрациях, не влияющих на рост микроорганизмов.
Рисунок 48. Сосуды для выращивания анаэробов: 1 - бактериальная культура, 2 - химический поглотитель молекулярного кислорода
Функции восстановителей выполняют и такие компоненты среды, как глюкоза и другие восстанавливающие сахара, а также пептон. С целью снижения окислительно-восстановительного потенциала к средам для культивирования анаэробов можно добавлять убитые клетки дрожжей, кусочки свежевырезанных тканей паренхиматозных органов животных (почки, печень, сердце) или растительных тканей (клубни картофеля, корнеплоды).
Степень поглощения кислорода и соответственно степень восстановленности среды определяется окислительно-восстановительным потенциалом - Eh, который измеряют электрометрически на потенциометре или с помощью индикаторов таких, как резазурин, феносафранин и нейтральный красный, изменяющих окраску при изменении Eh. Особенно удобен резазурин, который добавляют к средам в концентрации 0,0001 % и стерилизуют вместе с минеральными компонентами среды. В окисленной форме он окрашен в слабо-розовый цвет, восстановленная форма его бесцветна. Резазурин регистрирует окислительно-восстановительный потенциал выше - 420 В. Феносафранин регистрирует более низкие значения потенциала - 252 В.
Успешному выращиванию облигатных анаэробов способствует внесение в среду большого количества посевного материала. Это объясняется тем, что при развитии анаэробов в культуральной жидкости накапливаются восстановители, которые связывают часть растворенного кислорода новой среды.
Некоторые экстремальные анаэробы, к которым относятся, например, метанобразующие бактерии и микроорганизмы рубца, погибают даже при кратковременном соприкосновении с кислородом воздуха. Работа с такими микроорганизмами представляет большие трудности и требует специального оборудования. Техника работы с экстремальными анаэробами была разработана Хангейтом. Она включает совокупность нескольких приемов, главными из которых являются следующие:
- среды перед употреблением кипятят для освобождения от растворенного кислорода;
- к средам обязательно добавляют восстановители - цистеин,
сульфид Na, тиогликолат Na;
- пересевы, посевы, разлив сред в сосуды для культивирования
осуществляют в токе углекислоты или водородуглекислотной
смеси;
- культуры выращивают в герметически закрытых сосудах в атмосфере газовой смеси, часто с избыточным давлением;
- газы Н, СО или их смеси используют только после очистки от следов кислорода.
В последнее время для культивирования экстремальных анаэробов предложены специальные камеры, которые содержат внутри все необходимое для выполнения бактериологических работ, включая термостат. Камера заполняется газовой смесью, состоящей из 10% Н, 10% СО и 80% N, освобожденной от примеси кислорода. Работу в камере исследователь проводит, надевая перчатки, вмонтированные в камеру. Это оборудование достаточно сложно и дорого, но оно имеет одно неоспоримое преимущество- контакт клеток микроорганизмов с воздухом исключается на всех этапах работы.
Температура
Интервалы температур, в которых возможен рост различных микроорганизмов, заметно варьируют. У мезофилов, к которым относится большинство известных нам форм, температурный оптимум лежит в интервале от 25 до 37°С. У термофилов он значительно выше - от 45 до 60-70°С. Психрофилы хорошо развиваются в интервале температур 5-10°С. Отклонения температуры от оптимальной неблагоприятно влияют на развитие микроорганизмов. Поэтому микроорганизмы выращиваются в термостатах (рис. 49) или специальных термостатированных комнатах, где с помощью терморегуляторов поддерживается соответствующая оптимальная температура. Мезофильные бактерии, естественным местом обитания которых является вода и почва, выращивают в интервале от 20 до 30°С, тогда как бактерии кожных покровов, слизистой или кишечника человека и животных культивируют при более высокой температуре - 35 - 37°С.
Для выращивания психрофилов используют холодильные камеры.
Свет
Для роста подавляющего большинства микроорганизмов освещение не требуется. Напротив, прямые солнечные лучи отрицательно влияют на их развитие. Поэтому такие микроорганизмы выращивают в темноте. Свет необходим для роста фототрофных микроорганизмов. Однако естественное освещение используют редко, так как оно непостоянно и плохо контролируемо. Как правило, фототрофы выращивают в люминостатах, то есть в камерах, освещенных лампами накаливания или флуоресцентными лампами дневного света. Необходимая температура в люминостатах создается благодаря вентиляции или холодильному устройству.
Выбор источника освещения определяется спектром его излучения и длинами волн, при которых осуществляют фотосинтез культивируемыe микроорганизмы. Для выращивания пурпурных и зелёных бактерий лучше использовать лампы накаливания; для культивирования микроводорослей и цианобактерий можно применять флуоресцентные лампы дневного света. Помимо спектрального состава света обращают внимание на интенсивность освещения, которую измеряют с помощью люксметра Ю-16.
Рисунок 49. Термостат для культивирования микроорганизмов
Вода
Рост и размножение микроорганизмов невозможны без присутствия в окружающей среде воды, причем вода должна находиться в доступной для клетки форме, т. е. в жидкой фазе. Однако в природных субстратах и питательных средах часть воды ассоциирована с молекулами растворенных веществ и не может быть использована микроорганизмами. Доступность воды в субстрате для развития микроорганизмов выражают величиной активности воды (а). а= Р/Р, где Р - давление пара раствора (мм рт. ст.), Р - давление пара чистой воды (мм рт. ст.) при данной температуре. Значение а для дистиллированной воды равно 1,00. При растворении различных веществ в воде эта величина уменьшается и соответственно падает доступность для клетки воды.
Микроорганизмы могут расти на средах со значеннем а от 0,99 до 0,63. Потребности в доступной воде у бактерий, как правило, выше, чем у дрожжей и микроскопических грибов. Так, большинство бактерий, за исключением галофилов, хорошо растет на средах с вeличиной а от 0,99 до 0,95, минимальная величина а, обеспечивающая рост дрожжей, лежит в пределах от 0,91 до 0,88.
Активность воды в среде можно определить по формуле а=А/100, где А - относительная влажность (%) атмосферы, которую измеряют при равновесии в закрытом сосуде, содержащем среду. Paзличную активность воды в питательной среде или субстрате создают добавлением к ним таких соединений, как NaCl, глюкоза, глицерин, полиэтиленгликоль, или уравновешиванием небольшого объема среды с большим объемом раствора HSO или солей NaCl, KCl, КNО), имеющих определенную активность воды.
ГЛАВА 5. ВЫДЕЛЕНИЕ ЧИСТЫХ КУЛЬТУР МИКРООРГАНИЗМОВ
Физиологию, биохимические свойства, циклы развития микроорганизмов исследуют, как правило, при работе с чистыми культурами. Чистой, или аксенической, культурой называют такую культуру, которая содержит микроорганизмы одного вида. Умение выделить микроорганизмы одного вида из смешанной популяции, существующей в природе, и поддерживать чистоту культуры - необходимое условие работы с микроорганизмами. Выделение чистой культуры обычно включает три этапа: получение накопительной культуры; выделение чистой культуры; определение чистоты выделенной культуры.
ПОЛУЧЕНИЕ НАКОПИТЕЛЬНОЙ КУЛЬТУРЫ
Накопительной называют такую культуру, в которой преобладают представители одной физиологической группы или даже одного вида микроорганизмов. Метод накопительных культур был введен в практику микробиологических исследований С. Н. Виноградским и М. Бейеринком. Сущность его заключается в создании элективных, т. е. избирательных условий, которые обеспечивают преимущественное развитие желаемых микроорганизмов или группы микроорганизмов из смешанной популяции.
При создании элективных условий необходимо знать физиологию или четко представлять те особенности, которыми должны обладать выделяемые микроорганизмы. Элективные условия создают чаще всего, подбирая соответствующие среды, поскольку различные микроорганизмы для своего развития предъявляют неодинаковые требования к источникам питания. Например, микроорганизмы, способные фиксировать молекулярный азот, могут расти в среде, из состава которой исключены связанные формы азота. Если внести в такую среду почву, то из громадного разнообразия имеющихся в ней микроорганизмов в первую очередь будут развиваться азотфиксаторы. Накопительные культуры автотрофных микроорганизмов получают на средах, где единственным источником углерода служит углекислота. Отсутствие в среде других соединений углерода задерживает развитие гетеротрофов. Такие специфические питательные среды, удовлетворяющие потребности преимущественно одной группы микроорганизмов, носят название элективных. В зарубежной литературе большее распространение получили термины
«накопительные» или «селективные» среды.
Накопительные культуры микроорганизмов, обладающих высокой требовательностью к составу питательных сред, получают иначе. При их выделении используется неодинаковая чувствительность клеток смешанной популяции к продуктам обмена веществ, накапливающимся в среде. Примером могут служить молочнокислые бактерии, для накопления которых используют солодовое сусло без мела, то есть среду, первоначальнo не обладающую элективностью. После внесения природного материала, содержащего молочнокислые бактерии, в среде вначале наряду с молочнокислыми бактериями хорошо развиваются представители родов Enterobacter и Escherichia. Однако по мере накопления в среде молочной кислоты и этилового спирта, образуемого гетероферментативными видами, условия для развития энтеробактерий и эшерихий постепенно ухудшаются, тогда как молочнокислые бактерии, которым свойственна высокая кислото- и спиртоустойчивость, продолжают расти. Таким образом, в результате развития молочнокислых бактерий среда приобретает необходимую степень элективности, что и обеспечивает получение накопительной культуры этих бактерий. Другим примером могут служить уксуснокислые бактерии, которые характеризуются высокой устойчивостью к этиловому спирту. Накопление этих бактерий осуществляют на сусле, к которому добавляют 4-5% этанола.
Иногда при выделении микроорганизмов из природных популяций в среду включают антибиотики, которые отличаются специфичностью действия и позволяют избирательно подавить рост определенной группы микроорганизмов. Так, элективные условия для развития грамотрицательных бактерий можно создавать внесением в среду пенициллина в концентрации от 0,2 до 100 мг/л, поскольку многие виды грамположительных бактерий при этом или совсем не развиваются, или развиваются медленно. Чтобы создать благоприятные условия для развития бактерий и, напротив, подавить рост мицелиальных грибов, к средам рекомендуют добавлять нистатин в концентрации от 0,1 до 20 мг/л или гризеофульвин в концентрации от 1 до 20 мг/л.
При создании элективных условий следует учитывать неодинаковое отношение различных микроорганизмов к аэрации, температуре, кислотности среды и так далее. Поэтому при получении накопительной культуры аэробных микроорганизмов обеспечивают большую поверхность контакта среды с воздухом, напротив для обогащения среды анаэробными микроорганизмами тем или иным способом создают анаэробные условия. Культивирование при высокой температуре (50°С и выше) исключает развитие мезофильных микроорганизмов и обеспечивает рост термофилов. Селективным фактором может служить также неодинаковая скорость роста различных микроорганизмов при данной температуре. Например, на минеральной среде при освещении и температуре 35°С удается почти полностью подавить рост зеленых водорослей и получить культуру, обогащенную цианобактериями.
При получении накопительных культур следует учитывать и такие особенности микроорганизмов, как способность к образованию эндоспор. Для накопления спорообразующих бактерий, среды инокулируют, как правило, субстратом, который предварительно пастеризуют, т. е. кратковременно прогревают при высокой температуре (10 мин при 75°С или 2-5 мин при 80С). Таким образом, можно полностью или почти полностью исключить развитие бактерий, не образующих споры.
Следует иметь в виду, что элективные условия далеко не всегда оптимальны для роста выделяемых микроорганизмов, однако они лучше переносятся ими, чем сопутствующими формами.
О получении накопительной культуры судят по появлению xapaктерных признаков развития выделяемых микроорганизмов - помутнение среды, иногда сопровождаемое пигментацией, появление пленки, осадка, выделение газов. Помимо визуального наблюдения накопительную культуру микроскопируют и выявляют присутствие желаемых форм. Иногда необходимо определить продукты метаболизма, образование которых свойственно выделяемым микроорганизмам. Например, о развитии нитрифицирующих бактерий свидетельствует появление в среде нитрит- и нитрат-ионов и, напротив, уменьшение или даже полное исчезновение иона аммония.
ВЫДЕЛЕНИЕ ЧИСТОЙ КУЛЬТУРЫ
После того, как получена накопительная, приступают к выделению чистой культуры. Чистая культура может быть получена из отдельной колонии или из одной клетки.
Выделение чистой культуры из отдельной колонии
Основным методом выделения чистых культур микроорганизмов до настоящего времени является метод, предложенный Р. Кохом. Принцип его заключается в получении чистой культуры из отдельной колонии. Однако этот метод неприменим для выделения микроорганизмов, которые не растут или плохо растут на плотных средах. К числу таких микроорганизмов относятся некоторые бактерии, многие водоросли и простейшие.
При выделении чистой культуры аэробных микроорганизмов накопительную культуру высевают на поверхность плотной среды. Порядок работы следующий. Расплавленную на кипящей водяной бане стерильную питательную среду, содержащую агар или желатину, разливают в стерильные чашки Петри. После того, как среда застынет, на ее поверхность из пипетки наносят каплю накопительной культуры или ее разведения в стерильной воде и стерильным стеклянным шпателем Дригальского распределяют каплю сначала по одной половине поверхности среды в чашке Петри, затем по второй половине, после чего этим же шпателем протирают поверхность плотной среды последовательно во 2-й, 3-й и 4-й чашках. Обычно в первых двух чашках после инкубации наблюдают сплошной рост микроорганизмов, тогда как в последующих - изолированные колонии (рис. 91). Рассевать накопительную культуру можно петлей методом истощающего штриха. В этом случае накопительную культуру или ее разведение отбирают петлей и на поверхности плотной среды проводят штрихи в таком порядке, как указано на рис. 50. Перед каждым новым штрихом петлю стерилизуют в пламени горелки.
Рисунок 50. Рассев культуры микроорганизмов на поверхность плотной среды шпателем: 1 - шпатель Дригальского; 2 - рассев; 3 - рост микроорганизмов после рассева
После посева чашки помещают в термостат крышками вниз, чтобы
конденсационная вода, образовавшаяся на крышке чашки Петри при
застывании агара, не помешала получить изолированные колонии. Чашки выдерживают в термостате в течение 1-7 суток в зависимости от скорости роста микроорганизмов. Выросшие изолированные колонии отсевают петлей на поверхность скошенной плотной среды в пробирки или в жидкую среду.
Рисунок 51. Схема рассева культуры микроорганизмов на поверхность плотной среды петлёй
Изолированные колонии аэротолерантных микроорганизмов и факультативных анаэробов чаще получают методом глубинного посева. Для этого плотную питатетельную среду предварительно разливают в пробирки по 15-20 мл и стерилизуют. Непосредственно перед посевом пробирки помещают в кипящую водяную баню, чтобы среда расплавилась. Высев проводят из разведений накопительной культуры в стерильной водопроводной воде. Разведения готовят с таким расчетом, чтобы при высеве 0,5-1,0 мл разведения получить изолированные колонии. Степень разведения определяется плотностью накопительной культуры. Высевы делают, как правило, из трех-четырех последних разведений. Для этого в пробирку с расплавленной и остуженной до 48-50°С агаризованной средой вносят 0,5-1,0 мл одного из разведений накопительной культуры. Посевной материал тщательно перемешивают, вращая пробирку между ладонями. Затем около пламени горелки вынимают из пробирки пробку, обжигая края пробирки в пламени горелки, и быстро выливают содержимое пробирки в чашку Петри. После того как агаризованная среда застынет, чашки Петри помещают в термостат. Колонии, выросшие в толще среды, вырезают стерильным скальпелем или извлекают стерильными капиллярными трубками или просто петлей и переносят в жидкую среду, благоприятную для развития выделяемых микроорганизмов. микроорганизм лаборатория живой окраска
Особые трудности возникают при выделении чистых культур облигатных анаэробов. Если контакт с молекулярным кислородом не вызывает сразу же гибели клеток, то посев проводят на поверхность среды в чашки Петри, но после посева чашки тотчас помещают в анаэростат. Однако чаще пользуются методом разведения. Сущность его заключается в том, что разведения накопительной культуры проводят в расплавленной и охлажденной до 45-50°С агаризованной питательной среде. Делают 6-10 последовательных разведений. Затем среду в пробирках быстро охлаждают и заливают поверхность слоем стерильной смеси парафина и вазелинового масла (соотношение 3: 1), что препятствует проникновению воздуха в толщу агаризованной среды (рис. 52).
Рисунок 52. Изолированные колонии анаэробных бактерий, полученные методом разведения
Иногда агаризованную питательную среду после посева и тщательного перемешивания переносят в стерильные трубки Бурри . Можно использовать капиллярные пипетки Пастера, в которые набирают соответствующее разведение накопительной культуры в расплавленной агаризованной питательной среде. Конец капилляра запаивают. При удачно выбранном разведении накопительной культуры в одной из пробирок (пипеток Пастера, трубок Бурри) вырастают изолированные колонии. Чтобы извлечь образовавшиеся колонии, поступают следующим образом. Удаляют стерильной иглой слой парафина и вазелинового масла, а столбик агаризованной среды осторожно выдувают из пробирки в стерильную чашку Петри, пропуская газ, не содержащий кислорода, через капилляр, который помещают между стенкой пробирки и агаризованной средой. Агаризованную среду из трубки Бурри выдувают, пропуская газ через ватную пробку.
...

Подобные документы

  • Методы изучения морфологии микроорганизмов при микроскопии препаратов, приготовленных из чистых культур путем окрашивания. Способы витальной окраски микроорганизмов для избежания артефактов, появляющихся в результате токсического действия красителя.

    презентация [3,4 M], добавлен 23.02.2016

  • Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция [1,3 M], добавлен 12.10.2013

  • Питательные среды в микробиологии, их классификация и разновидности, сферы и особенности использования. Культивирование аэробных и анаэробных микроорганизмов. Методы количественного учета микроорганизмов, основные правила и условия хранения их культур.

    реферат [24,6 K], добавлен 25.03.2013

  • Методы изучения морфологии микроорганизмов. Правила работы в микробиологической лаборатории. Микроскопия в светлом поле. Установка света по Келеру. Изображения фиксированных препаратов, полученные в результате исследования метода изучения морфологии.

    лабораторная работа [925,0 K], добавлен 14.05.2009

  • Исследование основных типов микроорганизмов: бактерий, грибов и водорослей. Анализ условий, необходимых для роста микроорганизмов. Механизм образования микробиологических отложений. Изучение методов микробиологического тестирования и приборов мониторинга.

    презентация [707,5 K], добавлен 23.10.2013

  • Изучение особенностей микроорганизмов. Микроэкологический риск при использовании высоких технологий. Характеристика технологии приготовления препаратов и опытов. Правила микроскопирования. Влияние гигиенических навыков на распространение микроорганизмов.

    научная работа [23,6 K], добавлен 06.09.2010

  • Свойства прокариотных микроорганизмов. Методы определения подвижности у бактерий. Участие микроорганизмов в круговороте азота в природе. Нормальная и анормальная микрофлора молока. Культивирование анаэробных микроорганизмов в условиях лаборатории.

    шпаргалка [50,2 K], добавлен 04.05.2009

  • Виды микроорганизмов: микробы, спирохеты, риккетсии, вирусы, грибки. Рецепторы клеток: нативные, индуцированные, приобретенные. Характеристика групп микроорганизмов согласно Всемирной организации здравоохранения. Особенности патогенных микроорганизмов.

    презентация [999,4 K], добавлен 14.04.2012

  • Схожесть и отличия прокариотических и эукариотических клеток. Строение муреина у бактерий. Характеристика микроорганизмов по способам питания. Химическое строение, структурная организация вирусов, морфология, особенности взаимодействия с клеткой-хозяином.

    шпаргалка [3,2 M], добавлен 23.05.2009

  • Особенности строения клеток бактерий, постоянные и непостоянные компоненты бактериальной клетки и принципы их окраски по Граму. Пропионово-кислое брожение и способы питания микроорганизмов. Санитарная оценка масла по микробиологическим показателям.

    контрольная работа [26,8 K], добавлен 21.10.2010

  • Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.

    презентация [35,1 M], добавлен 11.11.2013

  • Понятие и значение селекции как науки о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. Оценка роли и значения микроорганизмов в биосфере, и особенности их использования. Формы молочнокислых бактерий.

    презентация [1,1 M], добавлен 17.03.2015

  • Исторические сведения об открытии микроорганизмов. Микроорганизмы: особенности строения и форма, движение, жизнедеятельность. Строение клетки, доклеточные формы жизни – вирусы. Экология бактерий, селекция микроорганизмов, их распространение в природе.

    реферат [37,3 K], добавлен 26.04.2010

  • Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.

    презентация [6,4 M], добавлен 13.09.2015

  • Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.

    реферат [21,1 K], добавлен 29.09.2009

  • Обобщение факторов, от которых зависит рост и размножение микроорганизмов, то есть увеличение количества химических компонентов микробной клетки. Изучение понятия бактериальной массы, которая выражается плотностью бактерий. Завершенное деление клетки.

    реферат [19,9 K], добавлен 10.05.2012

  • Микроорганизмы как мельчайшие организмы, различаемые только под микроскопом. Способы рекомбинирования генов. Механизм селекции микроорганизмов. Технология синтеза гена искусственным путем и введения в геном бактерий. Отрасли применения биотехнологии.

    презентация [4,1 M], добавлен 22.01.2012

  • Определение понятия селекции и генетически модифицированного организма. Особенности работы селекционера с генетическим материалом исходных микроорганизмов. Основные способы рекомбинирования генов: конъюгация, трансдукция, амплификация и трансформация.

    презентация [6,0 M], добавлен 07.03.2013

  • История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.

    реферат [130,0 K], добавлен 05.12.2010

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.