Биофизика мембран и системы кровообращения

Основные функции биологических мембран, их структура и особенности. Транспорт веществ через биологические мембраны. Механизмы генерации потенциала действия. Характеристика, специфика автоволновых процессов в активных средах биофизика мышечного сокращения.

Рубрика Биология и естествознание
Вид книга
Язык русский
Дата добавления 24.04.2016
Размер файла 3,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Источником акустического изучения мегагерцевого диапазона является тепловое акустическое излучение - полный аналог соответствующего электромагнитного излучения. Оно возникает вследствие хаотического теплового движения атомов и молекул человеческого тела. Интенсивность этих акустических волн, как и электромагнитных, определяется абсолютной температурой тела. Рассмотрим каждый вид физических полей, создаваемых телом человека, по отдельности.

Низкочастотные электрические и магнитные поля

Электрическое поле человека существует на поверхности тела и снаружи, вне его.

Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени; во-первых, происходит нейтрализация трибозарядов - они стекают с высокоомной поверхности кожи с характерными временами ~ 100 - 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно фегистрировать такую же кардиограмму, что и традиционным контактным методом. Отметим, что этот сигнал во много раз меньше, чем поле трибозарядов.

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое напряжение частотой - 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла, В норме она должна быть симметрична относительно грудины. Если симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. Основной прогресс в этих исследованиях обусловлен применением вычислительной техники, в том числе персональных компьютеров. Эта техника позволяет, например, получать так называемые электрокардиограммы высокого разрешения (ЭКГ ВР).

Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше, причем сигнал маскируется электрическим шумом, связанным с нерегулярной мышечной активностью. Поэтому применяют метод накопления - то есть суммирование многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и так для многих сигналов в течение нескольких минут. При этой процедуре полезный повторяющийся сигнал увеличивается, а нерегулярные помехи гасят друг друга. За счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза риска мгновенной смерти.

В электроэнцефалографии, используемой для целей нейрохирургии, персональные компьютеры позволяют строить в реальном времени мгновенные карты распределения электрического поля мозга с использованием потенциалов от 16 до 32 электродов, размещенных на обоих полушариях, через временные интервалы порядка нескольких мс.

Построение каждой карты включает в себя четыре процедуры:

1) измерение электрического потенциала во всех точках, где стоят электроды; 2) интерполяцию (продолжения) измеренных значений наточки, лежащие между электродами; 3) сглаживание получившейся карты; 4) раскрашивание карты в цвета, соответствующие определенным значениям потенциала. Получаются эффектные цветные изображения. Такое представление в квазицвете, когда всему диапазону значений поля от минимального до максимального ставят в соответствие набор цветов, например от фиолетового до красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ сложных пространственных распределений. В результате получается последовательность карт, из которой видно, как по поверхности коры перемещаются источники электрического потенциала.

Персональный компьютер позволяет строить карты не только мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые давно апробированы в клинической практике. К ним в первую очередь относится пространственное распределение электрической мощности тех или иных спектральных составляющих ЭЭГ (б, в, г, д, и-ритмы).

Карты б, в, г, д, и- ритмов сильно отличаются. Нарушения симметрии таких карт между правым и левым полушарием может быть диагностическим критерием в случае опухолей мозга и при некоторых других заболеваниях.

Таким образом, в настоящее время разработаны бесконтактные методы регистрации электрического поля, которое создает тело человека в окружающем пространстве, и найдены некоторые приложения этих методов в медицине. Контакные измерения электрического поля получили новый импульс в связи с развитием персональных ЭВМ -- их высокое быстродействие позволило получать карты электрических полей мозга.

Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало -10 млн. - 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемные катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо охладить до температуры, при которой появляется сверхпроводимость, т. е. до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия - криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека.

В последние годы после открытия «высокотемпературной сверхпроводимости появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К). Их чувствительность достаточна для измерения магнитных полей сердца.

Магнитокардиограмма и динамическая магнитная карта человека. Источник магнитного поля сердца человека тот же, что и электрического, - перемещающаяся граница области возбуждения миокарда. Различают два способа исследования этого поля: (1) измерение магнитокардиограмм (МКГ) и (2) построение динамической магнитной карты (ДМК). В первом случае измерение проводят в какой-то одной точке над сердцем, в результате получают зависимости величины магнитного поля от времени, зачастую совпадающие по форме с традиционными электрокардиограммами. Чтобы построить динамическую магнитную карту, необходимо измерить набор МКГ в разных точках над сердцем. Для этого пациента на специальной немагнитной кровати перемещают вблизи неподвижного датчика. Поле измеряется в области 20 х 20 см2 по сетке из 6 х 6 элементов, т.е. всего в 36 точках. В каждой точке записывают несколько периодов сердечного цикла, чтобы усреднить записи, затем перемещают пациента так, чтобы измерить следующую точку. Затем в определенные моменты времени, отсчитываемые от R-пика, строят мгновенные динамические магнитные карты. Каждая ДМК соответствует определенной фазе сердечного цикла.

В магнитокардиографии (МКГ) и магнитоэнцефалографии (МЭГ) используют две основные формы представления полученных результатов. Традиционный способ - это построение изолиний, то есть проведение семейства кривых, соответствующих одному и тому же значению индукции магнитного поля и различающихся друг от друга на постоянное значение. Основные медицинские применения измерений магнитных полей тела человека - это магнитокардиография (МКГ) и магнитоэнцефалография (МЭГ). Достоинством МКГ по сравнению с традиционной электрокардиографией (ЭКГ) является возможность локализовать источники поля с высокой точностью порядка 1 см. Это связано с тем, что динамические магнитные карты позволяют оценить координаты токового диполя.

Рассмотрим два потенциальных приложения МКГ: 1. Локализация источников экстрасистолии. При этом заболевании источником возбуждения миокарда в некоторые моменты времени вместо соответствующих нервных центров сердца являются миоциты желудочка. При этом желудочек сокращается не в фазе с остальными камерами сердца и не обеспечивает выброс крови в кровеносные сосуды. Это приводит к расстройству кровообращения, и радикальным средством в тяжелых случаях является иссечение очага экстрасистолии путем оперативного вмешательства. Для этого очень важно иметь предварительную оценку координат очага - МКГ дает возможность провести подобное исследование. 2. Измерение электрических характеристик плода на ранних стадиях развития. Слабый электрический сигнал плода замаскирован большим кардиосигналом сердца матери, поэтому записать его электрокардиограмму крайне сложно. В то же время датчик магнитокардиографа можно поднести непосредственно к плоду и записать сигнал, на который удаленное сердце матери не окажет существенного влияния.

Таким образом, регистрация магнитных полей человека позволяет получить новую информацию, дополнительную к той, которую дают измерения электрических полей.

Инфракрасное излучение

Наиболее яркую информацию о распределении температуры поверхности тела человека и ее изменениях во времени дает метод динамического инфракрасного тепловидения. В техническом отношении это полный аналог телевидения, только датчик измеряет не оптическое излучение, отраженное от объекта, которое видит человеческий глаз, как в телевидении, а его собственное, не видимое глазом, инфракрасное излучение. Тепловизор состоит из сканера, измеряющего тепловое излучение в диапазоне длин волн от 3 до 10 мкм, устройства для сбора данных и ЭВМ для обработки изображения. Диапазон 3-10 мкм выбран потому, что именно в этом диапазоне наблюдаются наибольшие отличия интенсивности излучения при изменении температуры тела. Простейшие сканеры собраны по следующей схеме: тепловое излучение от разных участков тела последовательно, с помощью колеблющихся зеркал, проецируют на один приемник инфракрасного излучения, охлаждаемый жидким азотом.

Особенности обработки и представления тепловизионного изображения. Тепловизионное изображение можно выводить в черно-белом либо цветном формате. Перепады температуры, которые нужно измерять на термограмме, составляют, как правило, доли градуса, в то время как полный сигнал соответствует приблизительно 300 К, т. е. исходное изображение обладает малым контрастом и его необходимо обрабатывать. Без предварительной обработки на ЭВМ полученная картина неинформативна. ЭВМ позволяет делать следующие операции обработки изображения: 1) усреднение; 2) изменение контраста получившихся изображений; 3) раскраску в квазицвет контрастированных изображений.

Используют два метода усреднения: по пространству и по времени (накопление). В первом случае в полученной карте вместо температуры каждого участка изображения записывают среднюю температуру нескольких соседних точек. Во втором случае суммируют несколько кадров, снятых друг за другом. В обоих случаях случайные шумы подавляются, и полезный сигнал становится более четким. Поскольку тепловые поля во времени меняются достаточно медленно, а их пространственные границы редко бывают резкими, эти методы обработки изображений позволяют значительно поднять чувствительность тепловизоров, которая может достигать нескольких тысячных долей градуса, и в то же время не очень портят качество изображения.

Контрастирование изображения и раскраска в квазицвет дают возможность усилить восприятие величины тепловых контрастов. Роль раскраски изображения мы обсудили выше. Остановимся на контрастировании. Контрастированием называется уменьшение диапазона измеряемой величины, которому соответствует полный масштаб изменения яркости или цветовой палитры. Пусть, например, изображение было раскрашено так, чтобы интервалу температур 1 К со средним значением Т0 соответствовало изменение цвета от фиолетового до красного, причем средней температуре изображения Т0 - условному нулю -соответствовал зеленый цвет. Тогда цвет более холодных участков с температурой от Т0 до -0,5 К сдвинут к фиолетовому, более теплых - от Т0 до +0,5 К - к красному. В этом случае малое изменение температуры, например на 0,05 К, проявляется на изображении в виде изменения оттенков зеленого цвета. Если же изображение контрастировать в 4 раза - растянуть его так, чтобы вся палитра соответствовала не 1 К, а 0,25 К, то перепаду температуры 0,05 К будет соответствовать контрастный-оранжевый - хорошо различимый глазом.

Разновидность тепловидения, при которой исследуется переменная динамика температурных полей, иногда называют динамическим тепловидением. Обрабатывая последовательно термокарты, можно определить динамику температуры в каких-то интересующих нас точках, эволюцию во времени меров определенных нагретых участков кожи и т.п.

Тепловидение в биологии и медицине.

Наиболее яркий результат применения тепловидения в биологии - это обнаружение и регистрация пространственного распределения температуры коры головного мозга животных (родился фактически новый раздел физиологии - термоэнцефалоскопия коры мозга).

Термоэнцефалоскопия позволила «увидеть» волны, растраняющиеся по поверхности коры головного мозга. Один из типов волн - волна распространяющейся депрессии (РД) -возникает при инъекции раствора KCI и движется со скоростью 5 мм/мин. Оказалось, что волна РД, которую ранее peгистрировали только в отдельных точках коры с помощью электродов сопровождается интенсивной тепловой волной. Последняя видна как локальное увеличение температуры (до 1 К), длится существенно дольше, чем электрическая волна, и вызвана генерацией тепла в клетках коры мозга.

К сожалению, тепловые карты мозга человека можно получить только в ходе нейрохирургических операций на открытом мозге, поскольку из-за сильного поглощения ИК-излучения скальп и толстая черепная коробка оказываются неприодолимой преградой для сигналов из мозга.

Инфракрасное тепловидение тела человека дает информацию о температуре верхних слоев кожи -- рогового слоя эпидермиса и некоторых подлежащих слоев общей толщиной около 100 мкм, поскольку, как показано специальными измерениями, электромагнитные волны ИК-диапазона затухают, пройдя в биологических тканях расстояние всего около 100 мкм. Температура этого слоя определяется балансом тепла за счет его отдачи в окружающую среду и притока за счет крови, притекающей из теплового ядра организма. Поэтому фактически ИК-тепловидение это способ оценить кожный кровоток в различных участках тела.

Наиболее распространенным применением ИК-тепловидения в медицине является визуализация кровоснабжения нижних конечностей. Если кровоснабжение в них нарушено, то температура дистальных участков резко снижена. Регистрируя размер областей со сниженной температурой, можно определить степень выраженности заболевания, а также эффективность терапевтических мероприятий.

Динамическое тепловидение позволяет отследить изменения температуры тела при различных дозированных воздействиях - функциональных пробах. Например, после снятия одежды кожа пациента оказывается в ином температурном режиме, и происходит длительная (15--20 мин) адаптация. Динамика измерения температуры тела в этот период служит критерием нормального функционирования системы терморегуляции. Плавное монотонное изменение температуры - обычная нормальная реакция, отсутствие динамики - свидетельство неблагополучия. Таким образом, например, контролируют развитие болезни Рейно, при которой нарушается терморегуляция: снижение температуры в комнате вызывает закономерное снижение температуры кожи здоровых испытуемых и не оказывает воздействие на больных этой болезнью. Отсутствие динамики при такой пробе характерно и для больных с поврежденной вследствие травмы иннервацией конечности.

Метод динамического тепловидения открыл возможности визуализировать реакцию организма в зонах Захарьина-Геда. В прошлом веке русский врач Захарьин и австрийский ученый Гед обнаружили, что определенные участки поверхности тела сигнализируют о неблагополучии в соответствующем ему внутреннем органе. В частности, при сердечной недостаточности боль ощущается с левой стороны и отдает в левую руку. Однако границы этих областей удается оконтурить с большим трудом, так как приходится опираться лишь на субъективные реакции пациентов. Использование тепловидения основано на том, что в случае болевой реакции какого-либо органа на функциональную пробу возникает сосудистая реакция в соответствующей зоне Захарьина-Геда - это приводит к изменению локальной температуры кожи

Электромагнитные волны СВЧ-диапазона

Интенсивность излучения волн СВЧ-диапазона за счет теплового движения ничтожна. Эти волны в теле человека затухают слабее, чем инфракрасное излучение. Поэтому с помощью приборов для измерения слабых электромагнитных полей этого диапазона частот, так называемых СВЧ-радиометров, можно измерить температуру в глубине тела человека.

Волны из тела человека принимают посредством контактной антенны - апликатора. Дистанционные измерения в этом диапазоне, к сожалению, практически невозможны, так как волны, выходящие из тела, сильно отражаются обратно от границы тело-воздух.

Главная трудность при анализе измерений глубинной температуры по радиотепловому излучению на его поверхности состоит в том, что трудно локализовать глубину источника температуры. Для ИК-излучения эта проблема не возникает: излучение поглощается на глубине 100 мкм, так что его источником однозначно является поверхность кожи. Радиоволны СВЧ-диапазона поглощаются на расстоянии, которое составляет несколько см.

Средняя глубина, с которой измеряется температура, определяется глубиной проникновения d. Она зависит от длины волны и типа ткани. Чем больше в ткани воды (электролита), тем с меньшей глубины можно измерить температуру: в жировой ткани с низким содержанием воды d = 4-8 cм, a в мышечной ткани (с высоким содержанием воды) эта величина уменьшается до значений d =1,5 - 2 см.

Оптимальными для измерения глубинной температуры являются радиометры с длиной волны в свободном пространстве л, = 20 - 40 см. У более коротковолновых устройств глубина проникновения снижается до нескольких миллиметров, то есть они фактически, так же как и ИК-тепловизоры, измеряют температуру кожи. У более длинноволновых радиометров (л = 60 см) слишком велик размер антенны и мала пространственная разрешающая способность.

Хотя метод СВЧ-радиометрии измеряет среднюю по глубине температуру в теле человека, сейчас известно, какие органы могут менять температуру, и поэтому можно однозначно связать изменения температуры с этими органами. Например, изменение температуры во время мышечной работы, очевидно, связано именно с мышечной тканью, изменения глубинной температуры головного мозга, которые достигают 1-2 К, определяются его корой.

Механизмы изменения температуры в теле человека. Тепловой баланс каждого участка тела поддерживается за счет трех факторов:

генерации тепла вследствие метаболизма;

2) обмена теплом с соседними участками тела из-за термодиффузии;

конвективного теплообмена посредством кровотока, то есть за счет притока и оттока тепла с кровью.

За счет конвективного теплообмена одни ткани могут нагреваться, а другие охлаждаться. Температура крови, притекающей по артериям в различные органы, определяется температурой «теплового ядра» тела (фактически грудной клетки) и составляет около 37 °С. Кровь, притекающая в покоящиеся мышцы (их температура около 35,5 °С), вызывает их нагрев. Напротив, температура мозга из-за активной работы нейронов ближе к 38 °С, т.е. притекающая кровь его охлаждает. В силу этого различия временное прекращение кровотока приводит к охлаждению мышцы и, наоборот, к нагреву мозга.

В качестве примера физиологических исследований приведем временную зависимость глубинной температуры мышцы под действием мышечной работы. Глубинная температура бицепса человека в покое составляет около 35,5 °С, после начала совершения мышечной работы рост температуры начинается не сразу, а после некоторой задержки - латентного периода, равного 20 - 30 с. Подъем температуры связан с увеличением кровотока и метаболизма в мышце и продолжается после окончания работы.

Существенно, что этот подъем температуры не прекращается в момент окончания работы, он длится еще некоторое время, а лишь потом наступает медленный спад. Если на руку предварительно наложить жгут и остановить кровообращение, то и в этом случае при работе температура бицепса растет, однако медленнее. Из этих данных вытекает ряд важных данных о работе мышц человека.

Сократительная система мышцы - миофибриллы - имеет высокий коэффициент полезного действия. Об этом говорит отсутствие роста температуры во время латентного периода, когда мышца использует готовый запас макроэргов; АТФ и креатинфосфата.

2. Главное повышение температуры связано не с совершением работы, а с теплопродукцией, обусловленной энергетическим обеспечением синтеза АТФ в работающей мышце и после окончания работы; равным образом ответственно за рост температуры и увеличение кровотока.

Применение СВЧ-радиометрии в медицине.

Основными сферами практического применения СВЧ-радиометрии в настоящее время представляются диагностика злокачественных опухолей различных органов: молочной железы, мозга, легких, метастазов, а также функционального состояния коры головного мозга. При этом используют так называемые функциональные пробы: воздействия, вызывающие известный отклик организма. В этом качестве применяется, например, глюкозная проба - пациент принимает несколько граммов раствора глюкозы, после чего начинают измерения внутренней температуры антеннами, установленными в нескольких точках на поверхности тела около исследуемого органа. Если есть злокачественные опухоли или метастазы, то после глюкозной пробы видно увеличение глубинной температуры тела в этих областях.

Возможный биофизический механизм повышения температуры связан с тем, что глюкоза активно усваивается клетками. Эффективность преобразования глюкозы в АТФ в раковых клетках значительно ниже, чем у здоровых; из одной молекулы глюкозы в раковых клетках синтезируется 2 молекулы АТФ, а в здоровых - 38, Поэтому раковым клеткам необходимо переработать гораздо большее количество глюкозы. Поскольку коэффициент полезного действия этого процесса не превышает 50%, раковые клетки сильно разогреваются. Этот разогрев в силу физиологических механизмов индуцирует повышение температуры и близлежащих нормальных тканей. Суммарный подъем температуры регистрируется СВЧ-радиометром.

Оптическое излучение тела человека

Оптическое излучение тела человека надежно регистрируется с помощью современной техники счета фотонов. В этих устройствах используют высокочувствительные фотоэлектронные умножители (ФЭУ), способные регистрировать одиночные кванты света и выдавать на выходе кратковременные импульсы тока, которые затем считаются с помощью специальных электронных счетчиков.

Измерения, проведенные в ряде лабораторий, показали, что 1 см2 кожи человека за 1 с спонтанно излучает во все стороны 6 -- 60 квантов, главным образом, в сине-зеленой области спектра. Светимости различных участков кожи отличаются - наиболее сильное излучение исходит от кончиков пальцев, гораздо слабее, например, от живота или предплечья. Это свечение не связано с наличием загрязнений на коже и зависит от функционального состояния пациента, снижаясь в покое и повышаясь с ростом его активности.

Можно индуцировать свечение кожи, например, с помощью обработки ее перекисью водорода или воздействия на кожу предварительной засветкой. Сильное последействие - фосфоресценцию - вызывает излучение на длине волны 254 нм, соответствующее пику поглощения ДНК. Предварительная засветка вызывает рост свечения в тысячи раз, которое затем спадает во времени по сложной кинетической кривой с несколькими постоянными времени от единиц до десятков минут.

Оптическое излучение кожи не является тепловым. Интенсивность теплового излучения в оптическом диапазоне ничтожна - с 1см2 поверхноститела один квант в среднем может излучаться лишь за много секунд.

Наиболее вероятный механизм спонтанного свечения -- это хе-милюминесценция, вызванная перекисным окислением липидов, которое сопровождается появлением радикалов, т.е. молекул в возбужденном электронном состоянии. При взаимодействии таких молекул в определенном (малом) проценте случаев дроисходит излучение света. При индуцированном свечении розможны и другие механизмы, например, измерено излучение при активации определенных клеток крови - нейтрофилов, связанное с генерацией активных форм кислорода.

Акустические поля человека

Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.

Низкочастотные механические колебания с частотой ниже нескольких килогерц дают информацию о работе легких, сердца, нервной системы. Регистрировать движения поверхности тела человека можно дистанционными или контактными датчиками в зависимости от решаемой задачи. Например, в фоно-кардиографии для измерения акустических шумов, создаваемых сердцем, используют микрофоны, устанавливаемые на поверхности тела. Электрические сигналы с датчиков усиливают и подают на регистрирующее устройство либо ЭВМ и по их форме и величине делают заключения о движениях тех или иных участков тела.

Кохлеарная акустическая эмиссия. Из уха животных и человека могут излучаться звуки - это явление называют кохлеарной акустической эмиссией, поскольку их источник локализован в улитке (cochlea) органа слуха. Эти звуки можно зарегистрировать микрофоном, расположенным в ушном канале. Обнаружен ряд видов кохлеарной акустической эмиссии, среди которых выделяется так называемая спонтанная эмиссия и акустическое эхо.

Спонтанная эмиссия - это самопроизвольное непрерывное излучение звука из ушей человека. Уровень звукового давления достигает 20 дБ, т.е. в 10 раз выше порогового значения 2 - 105 Па, которое способно воспринимать ухо человека на частоте 1 кГц. Частоты эмиссии у разных лиц отличаются и лежат в диапазоне 0,5 - 5 кГц, излучение обладает высокой монохроматичностью. Эмиссия наблюдается в среднем у 25% мужчин и у 50% женщин. Спонтанная эмиссия не имеет никакого отношения к «звону в ушах» - субъективному ощущению чисто нервного происхождения.

Кохлеарная акустическая эмиссия связана с деятельностью так называемых наружных волосковых клеток, расположенных в кортиевом органе улитки. В ответ на приходящую ковую волну они изменяют свои размеры и вызывают во внутрением ухе механические колебания, которые способны, распространяясь в обратном направлении, выходить наружу через среднее ухо. Биофизический механизм быстрых изменений геометрии клеток пока неясен, его быстродействие в сто раз выше, чем у мышц.

Из всех видов кохлеарной акустической эмиссии применение в медицине пока что нашло явление акустического эха - излучения звуков из уха спустя некоторое время после подачи в ухо короткого звукового сигнала. Оно используется для диагностики слуха новорожденных в первые несколько дней жизни, когда невозможно использовать обычные методы аудиометрии. Отсутствие эха является тревожным симптомом не только глухоты, но и зачастую сопряженных с ней поражений других отделов центральной нервной системы. Ранняя диагностика позволяет уже с первых дней жизни принять активные меры в значительной степени ослабить неблагоприятные последствие этого недуга.

Акустическое излучение ультразвукового диапазона. Tело человека является источником теплового акустического излучения с различными частотами. Обычно акустические волны подходят из глубины тела, отражаются от его поверхности уходят обратно, однако пьезодатчик, контактирующий с сигналом, может их зарегистрировать. Особенность акустических волн, распространяющихся в теле человека, в том, что, чем выше частота, тем они сильнее затухают. Поэтому из глубины человеческого тела с расстояний 1 -10 см могут дойти только тепловые ультразвуковые волны мегагерцевого диапазона с частотами не выше 0,5 - 10 МГц. Интенсивность этих волн пропорциональна абсолютной температуре тела. Для изменения интенсивности теплового акустического излучения используют прибор - акустотермометр. С помощью этого прибора можно, например, измерить температуру тела человека погруженного в воду.

Существенной областью применения акустотермографии станет измерение глубинной температуры в онкологии, при процедурах, связанных с нагревом опухолей в глубине тела с пoмощью разных методов: ультравысокими и сверхвысокими частотами, ультразвуком, лазерным излучением. Акустотермография - потенциально единственный неинвазивный метод способный обеспечить высокое пространственное разрешение за приемлемое время измерения порядка одной минуты.

Физические поля человека и экстрасенсы.

Изучение физических полей организма человека позволяет ответить на ряд вопросов, возникающих при объяснении механизмов воздействия экстрасенсов, хотя полученные данные о физических полях человека позволяют не столько объяснить наблюдаемые феномены, сколько указать трудности в таком объяснении.

В режиме «диагностики», прослеживая цепь событий, в результате которой экстрасенс мог бы получить информацию о больном органе пациента, можно отметить следующее:

1. Больной орган отличается от здорового как по своим физическим характеристикам, например, температуре, так и по физиологическим параметрам - сигналам, поступающим от него в нервную систему.

2. Информация о различных состояниях органа может поступать на поверхность тела из глубины либо непосредственно в соответствии с физическими законами переноса энергии, либо путем «физиологического» проектирования. В первом случае это не может происходить посредством обычной теплопередачи, которая происходит за очень большие времена; возможны способы передачи с помощью теплового сверхвысокочастотного электромагнитного излучения либо мегагерцевого акустического излучения. Эти излучения позволяют «выводить» на поверхность тела источники тепла с глубины в несколько сантиметров. «Физиологическое» проектирование может осуществляться за счет нервных механизмов, например, в зоны Захарьина-Геда.

3. Передача информации о больном органе дистанционно может производиться только с помощью электромагнитных долей, так как передача акустического излучения требует непосредственного контакта с телом пациента. Возможность использовать тот или иной диапазон электромагнитного излучения определяется интенсивностью соответствующего излучения и чувствительностью к нему рецепторов руки экстрасенса. Существующие данные позволяют исключить низкочастотное электрическое и магнитное поле, а также волны СВЧ-диапазона, так как к известным слабым полям человек нечувствителен. Излучение оптического диапазона также не может служить таким агентом, так как интенсивность собственного свечения кожи в миллион раз меньше интенсивности солнечного, либо искусственного излучения в комнате. Таким образом, наиболее вероятный переносчик информации в режиме «диагностики» - это электромагнитное излучение тела в инфракрасном либо близком к нему диапазонах частот.

В режиме «лечения» главная проблема также состоит в неясности механизма переноса информации от экстрасенса к пациенту. По данным, полученным в Институте радиотехники и электроники ИРЭ РАН, у экстрасенсов, за исключением одного случая, не отмечалось каких-либо отличий их физических полей от полей обычных испытуемых: нет ни мощного оптического, ни инфракрасного, ни СВЧ-излучения дециметрового диапазона. В то же время ИК-тепловидение отслеживает в случаев изменение поверхностной температуры испытуемых результате бесконтактного воздействия экстрасенса на испытуемых.

Механизмы бесконтактного воздействия или так называемого бесконтактного массажа пока неясны. Как показано сотрудниками ИРЭ РАН, тепловое инфракрасное излучение могло бы играть существенную роль в процессах воздействи: следующим образом. В ИК-диапазоне весьма велика мощность излучения, так что тепловое равновесие кожи испытуемого в значительной мере определяется разностью мощностей, излучаемой кожей и поглощаемой ею от стен комнаты. Поскольку температуры кожи и стен комнаты различаются на несколько градусов, то существует непрерывная отдача мощности от тела человека. Если против какого-либо участка кожи испытуемого оказывается рука экстрасенса, температура которой выше, чем у комнаты, то этот участок начинает отдавать меньше тепла, в результате чего его температура повышается - на это могли бы отреагировать терморецепторы кожи. Основная трудность объяснения дальнейшей реакции кожи испытуемого заключается в том, что соответствующее повышение температуры кожи весьма мало - не свыше десятых долей К, а терморецепторы кожи обладают весьма низкой чувствительностью. Возможно, что в зонах кожной проекции, соответствующих «больным» органам, чувствительность терморецепторов значительно выше. В этом случае удалось бы понять, почему чувствительность кожи испытуемого оказывается достаточной для реакции на поднесение руки экстрасенса и почему воздействие оказывается специфичным. Выяснение этих механизмов требует специальных физических и физиологических исследований.

Следует отметить, что в соответствии с этим механизмом описанный выше «бесконтактный массаж» требует достаточно близкого поднесения руки экстрасенса к телу испытуемого, поскольку интенсивности теплового ИК-излучения руки и стенок помещения достаточно близки.

Давно высказываются также предположения о том, что так называемое «экстрасенсорное» восприятие связано с электромагнитным излучением крайне высоких частот (миллиметровых волн) с длиной волны в свободном пространстве 2-8 мм, причем интенсивность такого излучения заметно выше интенсивности теплового излучения. Пока нет прямых экспериментальных данных о сравнительных измерениях интенсивности подобного излучения у экстрасенсов и у обычных людей.

В целом, имеющиеся в настоящее время данные по физическим полям организма человека и по механизмам чувствительности его рецепторных систем не позволяют дать последовательного физического описания проблемы экстрасенсорного воздействия. Возможно, такое воздействие - это некая разновидность психотерапии. Для проверки этой гипотезы необходимы опыты с сенсорной изоляцией пациентов от экстрасенса - отсутствие эффектов в этом случае будет аргументом в ее пользу.

Физические поля человека в настоящее время один из разделов медицинской и биологической физики. Наиболее важное его приложение - это исследование состояния различных органов человека с помощью пассивной регистрации электромагнитного или акустического излучения непосредственно этого органа либо каких-либо других участков тела, связанных с исследуемым органом нервными или гуморальными связями.

ЛИТЕРАТУРА

1. Физиология человека. Т. 2. М.: Мир, 1996 г. . Под ред. Шмидта Р. и Тевса Г, т. 1. М.:Мир, 1996.

2. Васильев В А., Романовский Ю.Я., Яхно В.Г. Автоволновые процессы. М.: Наука, 1987 г.

3. Иваницкий Г.Р., Кринский ВМ„ Селъков Е.Е. Математическая биофизика клетки. М.: Наука, 1978 г.

4.Бендол Дж. Мышцы, молекулы и движение. М.: Мир, 1989г.

5. Черныш AM. Биомеханика неоднородностей сердечной мышцы. М.: Наука, 1993г.

6. Антонов В.Ф., Черныш А.М., Пасечник В.И., и др. Биофизика.: М.: Владос, 2000г. 288 с.

7. Романовский Ю.М., Степанова Н.В., ЧернавскийД.С. Математическая биофизика. М.: Наука, 1984.

8. Хакен Г. Синергетика / М.: Мир, 1980.

9. К. Каро и др. Механика кровообращения / Пер. с англ. М.: Мир, 1981.

10.Физический энциклопедический словарь. М., Советская энциклопедия, 1984.

11.Кудряшов Ю.Б., Беренфельд B.C. Основы радиационной биофизики. М.: МГУ, 1982.

12.Радиация. Дозы, эффекты, риск // М.: Мир, 1988.

13. Годик Э.Э., Гуляев Ю.В. Физические поля человека и животных // В мире науки. - 1990. - № 5. - С. 75-83.

Размещено на Allbest.ru

...

Подобные документы

  • Строение мембран. Мембраны эритроцитов. Миелиновые мембраны. Мембраны хлоропластов. Внутренняя (цитоплазматическая) мембрана бактерий. Мембрана вирусов. Функции мембран. Транспорт через мембраны. Пассивный транспорт. Активный транспорт. Ca2+ –насос.

    реферат [18,2 K], добавлен 22.03.2002

  • Виды биологических мембран и их функции. Мембранные белки. Виды и функции мембранных белков. Структура биологических мембран. Искусственные мембраны. Липосомы. Методы исследования структуры мембран. Физическое состояние и фазовые переходы в мембранах.

    презентация [9,0 M], добавлен 21.05.2012

  • Ультраструктура биологических и молекулярное строение цитоплазматических мембран, их основные функции. Физическая природа сил взаимодействия белков и липидов в их структурах. Методы изучения и исследования искусственных моделей цитоплазматических мембран.

    презентация [68,6 K], добавлен 06.06.2013

  • Химический состав и строение биологических мембран. Процессы трансформации и запасания энергии путем фотосинтеза и тканевого дыхания. Транспорт веществ через клеточные мембраны, способность генерировать биоэлектрические потенциалы и проводить возбуждение.

    реферат [223,3 K], добавлен 06.02.2015

  • Назначение и характеристика функции мембран как невидимых пленок, окружающих клетки живых организмов. Изучение строения и анализ химического состава биологических мембран. Описание систем трансмембранного переноса веществ и мембранной передачи сигналов.

    реферат [110,5 K], добавлен 10.12.2015

  • Изучение изолированного и сочетанного действия 1,1-диметилгидразина и ионов свинца и ртути на состояние мембран эритроцитов. Возможности повышения резистентности мембран с помощью биологически активных веществ (витаминов С, Е и препарата "Селевит").

    диссертация [2,8 M], добавлен 25.10.2013

  • Основные факты о строении клеточной мембраны. Общие представления о проницаемости. Перенос молекул через мембрану. Облегченная диффузия, пассивный и активный транспорт. Уравнение Фика. Сущность понятия "селективность". Строение и функции ионных каналов.

    презентация [323,1 K], добавлен 19.10.2014

  • Единство и отличительные особенности нервных и гуморальных регуляций. Механизмы гуморальной регуляции в организме. Особенности строения и свойства клеточных мембран, функции и механизм их реализации. Диффузия и транспорт веществ через клеточные мембраны.

    курсовая работа [195,5 K], добавлен 09.01.2011

  • Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.

    реферат [19,1 K], добавлен 20.12.2009

  • Преобразование химической энергии в механическую работу или силу как основная функции мышц, их механические свойства. Применение закона Гука в отношении малых напряжений и деформаций. Механизм мышечного сокращения. Ферментативные свойства актомиозина.

    презентация [3,0 M], добавлен 23.02.2013

  • Изобилие и сложность строения внутренних мембран как одна из основных особенностей всех эукариотических клеток. Понятие, свойства и функции мембран: барьерная, транспортная. Сущность и назначение ионных и кальциевых каналов, способы из исследования.

    реферат [207,1 K], добавлен 19.10.2014

  • Основные физиологические свойства мышц: возбудимость, проводимость и сократимость. Потенциал покоя и потенциал действия скелетного мышечного волокна. Механизм сокращения мышц, их работа, сила и утомление. Возбудимость и сокращение гладкой мышцы.

    курсовая работа [1,1 M], добавлен 24.06.2011

  • Белки и липиды как основные компоненты мембран. Фосфолипидный состав субклеточных мембран печени крысы. Длинные углеводородные цепи. Мембраны грамположительных бактерий. Пути биосинтеза мембранных липидов и механизмы их доставки к местам назначения.

    реферат [1,3 M], добавлен 30.07.2009

  • Особенности строения клеток прокариот и эукариот. Структура фосфолипидного бислоя. Связи в молекуле фосфолипида, расщепляемые разными классами фосфолипаз. Липидный состав плазматической мембраны. Обзор основных способов переноса веществ через мембраны.

    презентация [8,1 M], добавлен 26.03.2015

  • Разнообразие и роль мембран в функционировании прокариотических и эукариотических клеток. Морфология мембран, их выделение. Дифракция рентгеновских лучей, электронная микроскопия. Разрушение клеток, разделение мембран. Критерии чистоты мембранных фракций.

    курсовая работа [1,2 M], добавлен 30.07.2009

  • Возбудимые ткани и их свойства. Структура и функции биологических мембран, транспорт веществ через них. Электрические явления возбудимых тканей, их характер и обоснование. Рефрактерные периоды. Законы раздражения в возбудимых тканях, их применение.

    презентация [1,8 M], добавлен 05.03.2015

  • Подготовка студентов-биохимиков в области мембранологии. Совершенствование в методах биотехнологии и медицинской биохимии. Изучение строения, тонкой организации биологических мембран и механизмов функционирования включенных в мембраны компонентов.

    учебное пособие [26,7 K], добавлен 19.07.2009

  • Мембранный транспорт: транслокация веществ через биологические мембраны с участием молекул-посредников. Механизмы клеточной проницаемости. Способы сопряжения транспорта с энергией метаболизма. Транспорт веществ из клетки в среду: секреция и экскреция.

    реферат [420,6 K], добавлен 26.07.2009

  • Понятие и строение биологической мембраны, принципы ее жизнедеятельности. Функциональные особенности липидов в ее деятельности и развитии, механизмы. Гипотеза возникновения плазматических мембран, оценка биологической роли и значения в них белков.

    реферат [18,8 K], добавлен 03.06.2014

  • Окислительное фосфорилирование как процесс преобразования кинетической энергии электромагнитной природы в энергию химическую, путем связывания АДФ и неорганического фосфата на АТФ-синтезе. Особенности формирования и оценка биологических функций мембран.

    презентация [639,0 K], добавлен 11.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.