Клетка, как структурно-функциональная единица ткани

Биологические мембраны клеток, их строение, химический состав. Основные компоненты ядра и его структурно-функциональная характеристика. Общая морфофункциональная характеристика цитоплазмы. Физико-химические свойства гиалоплазмы. Репродукция клеток.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 27.09.2017
Размер файла 216,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Цитология

1. Клетка, как структурно-функциональная единица ткани. Общий план строения эукариотических клеток

Основой строения эукариотических организмов является наименьшая единица живого - клетка. Клетка - это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом. Содержимое клетки отделено от внешней среды или от соседних клеток плазматической мембраной (плазмолеммой). Все эукариотические клетки состоят из двух основных компонентов: ядра и цитоплазмы. В ядре - хроматин (хромосомы), ядрышки, ядерная оболочка и нуклеоплазма (кариоплазма). Цитоплазма неоднородна по своему составу и строению включает в себя гиалоплазму (основную плазму), в которой находятся органеллы, каждая из них выполняет обязательную клеточную функцию. Часть органелл имеет мембранное строение: ЭПС, комплекс Гольджи, лизосомы, пероксисомы и митохондрии. Немембранные органеллы: центриоли, рибосомы, микротрубочки и микрофиламенты. Так же встречаются включения: жировые капли, пигментные гранулы и др.

2. Биологические мембраны клеток, их строение, химический состав и функции

В липидном бислое фосфолипидные гидрофобные группы обращены во внутрь, а гидрофильные наружу. Белковые молекулы (интегральные белки) вмонтированы в плазмалемму. Если белковая молекула пронзает всю толщу мембраны - это трансмембранный белок. Если белковая молекула прикрепляется к поверхности мембраны - это периферические белки (внутренние - белки цитоскелета, наружные - рецепторные белки). Трансмембранные белки образуют ионные каналы. Мембранные белки: прикрепляют филаменты цитоскелета к клеточной мембране; прикрепляют клетки к экстрацеллюлярному матриксу (адгезионные молекулы); транспортируют молекулы в клетку или из неё (белки-переносчики, белки мембранных насосов, белки ионных каналов); действуют как рецепторы химического взаимодействия между клетками; обладают специфической ферментативной активностью. В клеточной мембране также присутствуют гликолипиды, холестерин (ограничивает латеральную текучесть фосфолипидов, делает мембрану менее текучей и более стабильной). Гликолипиды вовлечены в межклеточные взаимодействия. На поверхности выступают и молекулы углеводов, соединённые либо с гликолипидами, либо с белками. Между хвостами противолежащих молекул фосфолипидов есть лишь слабые гидрофобные связи, удерживающие две половины мембраны вместе. При замораживании-скалывании клеточная мембрана расщепляется вдоль так, что большая часть интегральных белков отходит к внутреннему листку, и лишь некоторые из них - наружному.

Функции: установление структурной целостности клетки; селективная проницаемость; регуляция межклеточных взаимодействий; узнавание, через рецепторы, антигенов, повреждённых клеток, чужих клеток; трансдукция внешнего химического и физического сигнала во внутриклеточное событие; служит разделом сред между цитоплазмой и внешним окружением; образует транспортные системы для особых молекул, как, например, глюкоза.

Гликокаликс - тонкая филаментозная сеть на поверхности клеток, отходящая от наружного листка плазмалеммы, состоящая из олигосахаридов, ковалентно связанных с гликолипидами и гликопротеинами плазмалеммы. Играет важную роль в определении иммунологических свойств клетки и её взаимодействии с другими клетками.

Кортикальный слой образован жёсткой сетью поперечно связанных белковых нитей из актина и актин-связанных белков, из которых самый распространённый - филамин. Образует слой, выстилающий Р-поверхность плазмалеммы.

3. Ядро, его значение в жизнедеятельности клеток, основные компоненты и их структурно-функциональная характеристика. Ядерно-цитоплазматические отношения как показатель функционального состояния клетки

Ядро клетки - система генетической детерминации и регуляции белкового синтеза. Ядро обеспечивает две группы общих функций: одну, связанную собственно с хранением и передачей генетической информации, другую - с её реализацией, с обеспечением синтеза белка. Ядро состоит из хроматина, ядрышка, кариоплазмы (нуклеоплазмы) и ядерной оболочки, отделяющей его от цитоплазмы. В составе хроматина - ДНК в комплексе с белком. Хроматин представляет собой хромосомы, которые разрыхляются, деконденсируются. Зоны полной деконденсации - эутохроматин. Неполная деконденсация - гетерохроматин. Хромосомы клеток могут находится в двух структурно-функциональных состояниях: в активном (рабочем) - с участием хромосом в интерфазном ядре происходят процессы транскрипции и редупликации ; в неактивном - состояние метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки. Ядрышко - производное хромосомы, не является самостоятельной структурой или органеллой. Является местом образования рибосомных РНК и рибосом, на которых происходит синтез полипептидных цепей как я ядре, так и в цитоплазме. Ядерная оболочка состоит из внешней и внутренней мембран, разделённых перинуклеарным пространством. Содержит ядерные поры. Внешняя мембрана (контактирует с цитоплазмой клетки) - собственно мембранная система ЭПС. Внутренняя мембрана связана с хромосомным материалом ядра.

4. Цитоплазма. Общая морфофункциональная характеристика

Цитоплазма клетки, отделённая от окружающей среды плазматической мембраной, включает в себя гиалоплазму, находящиеся в ней обязательные компоненты - органеллы, а также различные непостоянные структуры, включения. Гиалоплазма - матрикс цитоплазмы, представляет истинную среду клетки. Является сложной коллоидной системой, включающей в себя различные биополимеры: белки, нуклеиновые кислоты, полисахариды и др. Система способна переходить из золеобразного (жидкого) состояния в гелеобразное и обратно. К важнейшим ферментам гиалоплазмы относятся фермента метаболизма сахаров, азотистых оснований, аминокислот, липидов и других важных соединений. В гиалоплазме происходит синтез белков на полирибосомах. Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос аминокислот, ЖК, нуклеотидов, сахаров. Здесь же происходит отложение запасных продуктов: гликогена, жировых капель, некоторых пигментов.

5. Классификация органелл, их структура и функции

Главные мембранные цитоплазматические органеллы: митохондрии, ЭПС (гранулярная и гладкая), аппарат Гольджи, лизосомы. Главные немембранные органеллы: свободные рибосомы и полисомы, микротрубочки, центриоли, реснички, жгутики и филаменты (микрофиламенты, промежуточные филаменты).

ЭПС:

· Гранулярная - замкнутые мембраны, которые образуют на сечениях уплощённые мешки, цистерны или же имеют вид трубочек. Отличительной чертой этих мембран является то, что они со стороны гиалоплазмы покрыты рибосомами. Роль - процесс сегрегации, обособление этих синтезированных белков гиалоплазмы клетки; является местом образования как самих мембран вакуолярной системы, так и плазматической мембраны; на рибосомах происходит синтез интегральных белков, которые встраиваются в толщу мембраны.

· Гладкая - мембраны, образующие мелкие вакуоли и трубки, канальцы, которые могут ветвиться, сливаться друг с другом. Деятельность её связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. Сильно развита в клетках, секретирующих стероиды. Функция депонирования ионов кальция в поперечнополосатых мышцах.

Аппарат Гольджи: в диктиосоме расположены плоские мембранные мешки, или цистерны, между которыми располагаются тонкие прослойки гиалоплазмы. Кроме цистерн наблюдается множество вакуолей, которые встречаются в периферических участках зоны пластинчатого комплекса. Мембранные элементы комплекса участвуют в сегрегации и накоплении продуктов, синтезированных в цитоплазматической сети, участвуют в их химических перестройках, созревании, в цистернах происходит синтез полисахаридов, происходит процесс выведения готовых секретов за пределы клетки.

Лизосомы: разнообразный класс вакуолей, ограниченных одиночной мембраной. Характерный признак - гидролитические ферменты (гидролазы), расщепляющие различные биополимеры. Первичные лизосомы - мелкие мембранные пузырьки, заполненные бесструктурным веществом, содержащим активную кислую фосфатазу, маркерный для лизосом фермент. Вторичная лизосома (вакуоль) - первичные лизосомы + фагоцитарные или пиноцитозные вакуоли. Аутофагосомы - относятся к вторичным лизосомам, но с тем отличием, что в составе вакуолей встречаются фрагменты или целые цитоплазматические структуры. Роль - участие в процессах внутриклеточного расщепления как экзогенных, так и эндогенных биологических макромолекул.

Митохондрии: ограничены двумя мембранами. Внешняя отделяет их от гиалоплазмы (ровные контуры и замкнута - мембранный мешок). Внутренняя ограничивает собственно внутреннее содержимое митохондрий, её матрикс. Характерная черта внутренних мембран митохондрий - наличие крист. Функция - окисление органических соединений и использование освобождающейся при распаде этих соединений энергии для синтеза АТФ.

Микротрубочки: белковые структуры, не имеющие мембранного строения, в цитоплазме могут образовывать временные сложные образования, например веретено клеточного деления. Микротрубочки, выделенные из разных источников, имеют сходный состав и содержат белки - тубулины. Функция - принимают участие в создании ряда временных или постоянных структур - внутриклеточный каркас или цитоскелет, веретено клеточного деления, реснички и жгутики, центриоли.

Включения: необязательные компоненты. Возникают и исчезают в зависимости от метаболического состояния клеток. Различают трофические, секреторные, экскреторные, пигментные. К включениям относятся капельки нейтральных жиров, которые могут накапливаться в гиалоплазме. В случае недостатка субстратов для жизнедеятельности клетки эти капельки могут реабсорбироваться. Другим видом включений резервного характера является гликоген, полисахарид, откладывающийся также в гиалоплазме.

6. Эндоплазматическая сеть, ее структура и функции

ЭПС:

· Гранулярная - замкнутые мембраны, которые образуют на сечениях уплощённые мешки, цистерны или же имеют вид трубочек. Отличительной чертой этих мембран является то, что они со стороны гиалоплазмы покрыты рибосомами. Роль - процесс сегрегации, обособление этих синтезированных белков гиалоплазмы клетки; является местом образования как самих мембран вакуолярной системы, так и плазматической мембраны; на рибосомах происходит синтез интегральных белков, которые встраиваются в толщу мембраны.

· Гладкая - мембраны, образующие мелкие вакуоли и трубки, канальцы, которые могут ветвиться, сливаться друг с другом. Деятельность её связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. Сильно развита в клетках, секретирующих стероиды. Функция депонирования ионов кальция в поперечнополосатых мышцах.

7. Включения, их классификация, химическая и морфофункциональная характеристика. Физико-химические свойства гиалоплазмы

Необязательные компоненты. Возникают и исчезают в зависимости от метаболического состояния клеток. Различают трофические, секреторные, экскреторные, пигментные. К включениям относятся капельки нейтральных жиров, которые могут накапливаться в гиалоплазме. В случае недостатка субстратов для жизнедеятельности клетки эти капельки могут реабсорбироваться. Другим видом включений резервного характера является гликоген, полисахарид, откладывающийся также в гиалоплазме.

8. Репродукция клеток

Различают два основных способа размножения клеток:

митоз (кариокенез) - непрямое деление клеток, которое присуще в основном соматическим клеткам;

мейоз или редукционное деление - характерно только для половых клеток.

Митоз подразделяется на 4 фазы: профаза; метафаза; анафаза; телофаза.

В каждой фазе происходят определенные структурные преобразования.

Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.

В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.

Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.

Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомией - перетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.

Интерфаза подразделяется на 3 периода:

J1, или пресинтетический; S, или синтетический; J2, или постсинтетический.

Эндорепродукция - образование клеток с увеличенным содержанием ДНК. Появление таких клеток происходит в результате полного отсутствия или незавершённости отдельных этапов митоза.

Амитоз - прямое деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления.

9. Жизненный цикл клетки: его этапы, морфофункциональная характеристика

Увеличение числа клеток, их размножение происходят путем деления исходной клетки. Делению клеток предшествует редупликация их хромосомного аппарата, синтез ДНК. Это правило является общим для прокариотических и эукариотических клеток. Время существования клетки как таковой, от деления до деления или от деления до смерти, называют клеточным циклом (cyclus cellularis). Во взрослом организме высших позвоночных клетки различных тканей и органов имеют неодинаковую способность к делению. Встречаются популяции клеток, полностью потерявшие свойство делиться. Это большей частью специализированные, дифференцированные клетки (например, зернистые лейкоциты крови). В организме есть постоянно обновляющиеся ткани -- различные эпителии, кроветворные ткани. В таких тканях существует часть клеток, которые постоянно делятся, заменяя отработавшие или погибающие клеточные типы (например, клетки базального слоя покровного эпителия, клетки крипт кишечника, кроветворные клетки костного мозга). Многие клетки, не размножающиеся в обычных условиях, и приобретают вновь это свойство при процессах репаративной регенерации органов и тканей. Размножающиеся клетки обладают разным количеством ДНК в зависимости от стадии клеточного цикла. Это наблюдается при размножении как соматических, так и половых клеток.

Весь клеточный цикл состоит из 4 отрезков времени: собственно митоза (М), пресинтетического (G1), синтетического (S) и постсинтетического (G2) периодов интерфазы. Митоз включает в себя 4 фазы: профаза, метафаза, анафаза, телофаза. В G1-периоде, наступающем сразу после деления, клетки имеют диплоидное содержание ДНК на одно ядро (2с). После деления в период G1 в дочерних клетках общее содержание белков и РНК вдвое меньше, чем в исходной родительской клетке. В период G1 начинается рост клеток главным образом за счет накопления клеточных белков, что обусловлено увеличением количества РНК на клетку. В этот период начинается подготовка клетки к синтезу ДНК (S-период). В следующем, S-периоде происходит удвоение количества ДНК на ядро и соответственно удваивается число хромосом. В разных клетках, находящихся в S-периоде, можно обнаружить разные количества ДНК -- от 2 до 4 с. Постсинтетическая (G2) фаза называется также премитотической. В данной фазе происходит синтез иРНК, необходимый для прохождения митоза. Несколько ранее этого синтезируется рРНК. Среди синтезирующихся в это время белков особое место занимают тубулины -- белки митотического веретена. В конце G2-периода или в митозе синтез РНК резко падает и полностью прекращается во время митоза. Синтез белка во время митоза достигает своего максимума в G2-периоде. В растущих тканях растений и животных всегда есть клетки, которые находятся как бы вне цикла. Такие клетки принято называть клетками Go-периода. Это клетки, которые после митоза не вступают в пресинтетический период (G1). Именно они представляют собой покоящиеся, временно или окончательно переставшие размножаться клетки. В некоторых тканях такие клетки могут находиться длительное время, не изменяя своих морфологических свойств: они сохраняют способность к делению. Это камбиальные клетки (например, стволовые в кроветворной ткани). Чаще потеря способности делиться сопровождается специализацией и дифференцировкой. Такие дифференцирующиеся клетки выходят из цикла, но в особых условиях могут снова входить в цикл. Например, большинство клеток печени находится в G0-nepиоде; они не синтезируют ДНК и не делятся. Однако при удалении части печени у экспериментальных животных многие клетки начинают подготовку к митозу (G1-период), переходят к синтезу ДНК и могут митотически делиться. В других случаях, например в эпидермисе кожи, после выхода из цикла размножения и дифференцировки клетки некоторое время функционируют, а затем погибают (ороговевшие клетки покровного эпителия). Многие клетки теряют полностью способность возвращаться в митотический цикл. Так, например, нейроны головного мозга и кардиомиоциты постоянно находятся в G0-периоде (до смерти организма).

10. Основные положения клеточной теории и значение в развитии биологии и медицины

· Клетка - наименьшая единица живого. «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне её»; «Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел».

· Сходство клеток разных организмов по строению. Сходство, гомология, в строении клеток определяется одинаковостью общеклеточных функций, связанных с поддержанием самой живой системы.

· Размножение клеток путём деления исходной клетки. «Всякая клетка от клетки». Размножение клеток происходит только путём деления исходной клетки, которому предшествует воспроизведение её генетического материала. Виды деления: митоз, мейоз, амитоз.

· Клетки как части целостного организма. Каждое проявление деятельности целого организма, будь то реакция на раздражение или движение, иммунные реакции и многое другое, осуществляется специализированными клетками.

Эмбриология

1. Образование, строение и функции зародышевых оболочек и провизорных органов у человека

Внезародышевые органы, развивающиеся в процессе эмбриогенеза вне тела зародыша, выполняют многообразные функции, обеспечивающие рост и развитие самого зародыша. Некоторые из этих органов, окружающих зародыш, называют также зародышевыми оболочками. К этим органам относятся амнион, желточный мешок, аллантоис, хорион, плацента.

Амнион -- временный орган, обеспечивающий водную среду для развития зародыша. В эмбриогенезе человека он появляется на второй стадии гаструляции сначала как небольшой пузырек, дном которого является первичная эктодерма (эпибласт) зародыша Амниотическая оболочка образует стенку резервуара, заполненного амниотической жидкостью, в которой находится плод. Основная функция амниотической оболочки -- выработка околоплодных вод, обеспечивающих среду для развивающегося организма и предохраняющих его от механического повреждения. Эпителий амниона, обращенный в его полость, не только выделяет околоплодные воды, но и принимает участие в обратном всасывании их. В амниотической жидкости поддерживаются до конца беременности необходимый состав и концентрация солей. Амнион выполняет также защитную функцию, предупреждая попадание в плод вредоносных агентов.

Желточный мешок --орган, депонирующий питательные вещества (желток), необходимые для развития зародыша. У человека он образован внезародышевой энтодермой и внезародышевой мезодермой (мезенхимой). Желточный мешок является первым органом, в стенке которого развиваются кровяные островки, формирующие первые клетки крови и первые кровеносные сосуды, обеспечивающие у плода перенос кислорода и питательных веществ.

Аллантоис небольшой отросток в отделе зародыша, врастающий в амниотическую ножку. Он является производным желточного мешка и состоит из внезародышевой энтодермы и висцерального листка мезодермы. У человека аллантоис не достигает значительного развития, но его роль в обеспечении питания и дыхания зародыша все же велика, так как по нему к хориону растут сосуды, располагающиеся в пупочном канатике. Пупочный канатик, или пуповина, представляет собой упругий тяж, соединяющий зародыш (плод) с плацентой.

Хорион, или ворсинчатая оболочка, развивается из трофобласта и внезародышевой мезодермы. Трофобласт представлен слоем клеток, образующих первичные ворсинки. Они выделяют протеолитические ферменты, с помощью которых разрушается слизистая оболочка матки и осуществляется имплантация. Дальнейшее развития хориона связано с двумя процессами -- разрушением слизистой оболочки матки вследствие протеолитической активности наружного слоя и развитием плаценты.

Плацента (детское место) человека относится к типу дискоидальных гемохориальных ворсинчатых плацент. Плацента обеспечивает связь плода с материнским организмом, создает барьер между кровью матери и плода. Функции: дыхательная; транспорт питательных веществ, воды, электролитов; выделительная; эндокринная; участие в сокращении миометрия.

2. Оплодотворение. Зигота. Особенности строения. Дробление. Строение бластулы человека

Оплодотворение является одним из этапов эмбриогенеза. В этом процессе участвует множество мужских половых клеток и одна женская. Но только ядро одного сперматозоида, сливаясь с яйцеклеткой, образует одноклеточный зародыш - зиготу, который несет материнский и отцовский наследственные генетические факторы. В процессе оплодотворения различают 3 фазы.

1) Сближение - как при наружном, так и при внутреннем оплодотворении сперматозоиды в результате хемотаксиса в условиях слабощелочной среды очень быстро перемещаются по направлению к яйцеклеткам; сперматозоиды млекопитающих обладают также реотаксисом, т.е. способностью двигаться против тока жидкости, направленного из яйцевода, где происходит оплодотворение, в матку. Сближению половых клеток способствует определённая разность потенциалов между положительной электрозарядностью для семенной жидкости и отрицательной для яйцеклетки.

2) Проникновение сперматозоида через оболочки яйцеклетки - контактное взаимодействие гамет наступает, когда сперматозоид сблизится с яйцеклеткой (у млекопитающих - моноспермия, у беспозвоночных, рыб, амфибий, рептилий и птиц - полиспермия). После вхождения сперматозоида на периферии ооплазмы происходит уплотнение цитоплазмы и образуется оболочка оплодотворения.

3) Образование мужского и женского пронуклеусов с последующим слиянием их (синкарион) - ядра мужской и женской клеток во время сближения переходят в состояние метафазы. Затем хромосомы обоих ядер образуют единую материнскую «звезду», но уже с удвоенным числом хромосом.

После оплодотворения начинается процесс дробления, в результате которого получается многоклеточный зародыш, имеющий у человека вид клеточного узелка - морулы. Затем в первичном узелке появляется полость и образуется зародышевый пузырек или бластула. В процессе дробления зародыш в размерах не увеличивается, а возрастает только количество клеток (бластомеров), его составляющих.

Строение бластулы определяется ходом дробления: целобластула - результат полного равномерного (или неравномерного) дробления первично изолецитальных и умеренно телолецитальных яйцеклеток, дискобластула - результат частичного дискоидального дробления, а также полного и асинхронного дробления. Бластула имеет стенку - бластодерму и полость - бластоцель, заполненную жидкостью - продуктом секреции бластомеров. В бластодерме различают крышу, образовавшуюся за счёт раздробившегося материала анимального полюса, дно - из материала вегетативного полюса и краевую зону, расположенную между ними.

3. Этапы эмбриогенеза

Эмбриогенез включает в себя процессы с момента оплодотворения до рождения и включает следующие его дни.

1. Оплодотворение, в результате которого образуется зигота (одноклеточный зародыш),

2. Дробление зародыша с образованием бластулы.

3. Гаструляция -- образование 3-х листкового зародыша.

4. Гистогенез, органогенез и ситемагенез -- дифференцировка зародышевых листков в ткани органов, образование из органов систем органов.

Оплодотворение -- это сближение и слияние половых клеток с образованием одноклеточного зародыша -- зиготы. У человека оплодотворение внутреннее, т.е. происходит и женских половых путях. В процессе оплодотворения выделяют:

1. Дистантное взаимодействие и сближение половых клеток.

2. Контактное взаимодействие половых клеток и активизация яйцеклетки.

3. Вхождение сперматазоида в в яйцеклетку и последующей синкарион (сингамия)- слияние женского и мужского пронуклеусов.

4. Гаструляция, особенности гаструляции у человека

Гаструляция - сложный процесс химических и морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки - источники зачатков тканей и органов. Гаструляция совершается четырьмя основными способами:

· Иммиграция - часть бластомеров стенки бластулы перемещается, образуя второй слой

· Инвагинация (впячивание) - часть стенки вдавливается внутрь бластулы

· Эпиболия - обрастание

· Деламинация (расщепление) - бластомеры стенки бластулы делятся тангенциально, что приводит к образованию двух слоёв клеток

5. Зародышевые листки. Образование, дифференцировка. Эктодерма и ее производные

Мезодерма образуется из клеточного материала первичной полоски и узелка; в ходе гаструляции и инвагинации клеток эпибласта; к концу 3-й недели различаются 3 вида: дорсальная, промежуточная, вентральная.

Дифференцировка мезодермы:

· 17-й день - мезодерма образует плоский слой между эктодермой и энтодермой.

· 19-й день - уплощается часть мезодермального листка, ближайшая к хорде - дорсальная (параксиальная) мезодерма. Между ней и латеральной пластинкой находится промежуточная мезодерма.

· 20-й день - полости, появившиеся в латеральной пластинке, сливаются и между двумя её листками появляется зародышевый целом (внутризародышевая целомическая полость).

· 21-й день - зародышевый целом сообщается с внезародышевым.

Производные эктодермы: эктодерма даёт начало нервной системе и наружному покрову тела. Она образует эпителиальный компонент кожи, её производных, включая железы. Плакоды - уплощения поверхностной эктодермы головы, а ротовая бухта - инвагинация эктодермы, покрывающей ротовую полость. Необычна судьба эктодермы в образовании соединительной ткани и мышц головы и шеи из нервного гребня. Эктодерма, как и все остальные листки, происходит из эпибласта.

Дифференцировка энтодермы приводит к образованию в теле зародыша энтодермы кишечной трубки и формированию внезародышевой энтодермы, формирующей выстилку желточного пузырька и аллантоиса. Выделение кишечной трубки начинается с момента появления туловищной складки. Последняя, углубляясь, отделяет кишечную энтодерму будущей кишки от внезародышевой энтодермы желточного пузырька. В задней части зародыша в состав образующейся кишки входит и тот участок энтодермы, из которого возникает энтодермальный вырост аллантоиса. Из энтодермы кишечной трубки развивается однослойный покровный эпителий желудка, кишечника и их желез. Кроме того, из энтодермы развиваются эпителиальные структуры печени и поджелудочной железы. Внезародышевая энтодерма дает начало эпителию желточного мешка и аллантоиса.

6. Дифференцировка зародышевых листков, образование осевого комплекса зачатков органов у человека на 2-3 неделе развития. Мезенхима

Зародышевые листки являются эмбриональными источниками развития тканей, из совокупности и взаимодействия которых развиваются органы. Каждый зародышевый листок дифференцируется в определённых направлениях. При дифференцировке мезодермы дорсальный её отдел сначала подразделяется на сомиты, начиная с головного конца. В каждом сомите из наружной части дифференцируется дерматом - источник соединительнотканной части кожи, из внутренней (медиальной) склеротом - источник хрящевой и костной ткани, из центральной миотом - источник скелетной мышечной ткани. Из сегментных ножек (нефротом) закладывается эпителий почек и гонад. Вентральная мезодерма - спланхотом - расщеплена на два листка, которые входят в состав наружных оболочек многих внутренних органов. В процессе развития зародыша очень рано образуется мезенхима, представляющая собой скопления отросчатых клеток. Она появляется на ранних стадиях, тотчас после сформирования зародышевых листков, заполняя промежутки между ними. Мезенхима представляет собой эмбриональный зачаток многих тканей и органов.

7. Ранний эмбриогенез человека. Особенности развития эмбриона на 2-3 неделях развития

· 13-е сутки - формирование ворсин хориона, сосудов и клеток крови эмбриона. Кровеносные сосуды появляются в области хориона, окружающего эмбрион. В стенке желточного мешка начинается гемопоэз. Эмбрион связан соединительным стебельком с развивающейся плацентой. Появляется первичная полоска, чо характеризует начало 2-й фазы гаструляции.

· 16-е сутки - продолжение гаструляции. Формируются хорда, энтодерма с прехордальной пластинкой, мезодерма и эктодерма.

· 17-19-е сутки - зародыш грушевидной формы с широким головным концом. Утолщение эктодермы формирует сначала нервную пластинку и далее - нервный желобок, который является источником развития тканей нервной системы эмбриона. Возникают клетки крови и параллельно образуются сосуды.

· 19-21-е сутки - внешний вид зародыша характеризуется вытянутой формой с более широким головным и узким каудальным концами и сужением посередине. Появляются первые три пары сомитов как уплотнения мезодермы. Первичная полоска составляет от ј до 1/3 длины зародыша. Возникают первичные ворсинки хориона, содержащие сосуды. В стенке желточного мешка обнаруживаются гемопоэтические клетки одновременно с эндотелиальными клетками, которые формируют стенку кровеносного сосуда. Начинается формированиесердца в виде двух пока раздельных моиэндокардиальных трубок. Возникает и быстро редуцируется предпочка.

8. Особенности строения эмбриона на 2-4 неделях эмбрионального развития. Понятие о критических периодах. Влияние экзо- и эндогенных факторов на развитие

В ходе онтогенеза, особенно эмбриогенеза, отмечаются периоды более высокой чувствительности развивающихся половых клеток (в период прогенеза) и зародыша (в период эмбриогенеза). Сущность теории критических периодов развития заключается в утверждении общего положения, что каждый этап развития зародыша в целом и его отдельных органов начинается относительно коротким периодом качественно новой перестройки, сопровождающейся детерминацией, т.е. вводом в действие определённой меры наследственной информации. В это время эмбрион наиболее восприимчив к повреждающим воздействиям различной природы.

9. Гисто- и органогенез. Особенности основных органных систем человека на 4-8 неделях эмбрионального развития

· 4-я неделя - из эпителия пищеварительной трубки возникают закладки печени, поджелудочной железы, а из эпителия толстой кошки - закладки пищевода, трахеи, лёгких. Обнаруживаются закладки верхних конечностей, намечаются закладки ног. Формируется эпителиальный покров кожи. В результате взаимодействия глазного бокала и эктодермы формируется хрусталик. Обнаруживаются первичная ротовая бухта и закладка языка. Происходит развитие щитовидной железы. В пищеварительной трубке происходит утолщение, соответствующее поджелудочной железе; продолжается развитие тонкой кишки, желчного пузыря, закладывается первичная почка.

· 5-я неделя - мозг и сердце быстро растут. Различимы три части мозга - передний, средний и задний. Развивается передняя доля гипофиза. Продолжается развитие хрусталика, увеличиваются размеры слуховых пузырьков. Пищевод отделяется от трахеи. Сердце становится 4-камерным, начинают формироваться полулунные клапаны. Формируется постоянная почка, появляется мочевой пузырь.

· 6-я неделя - развиваются ушные раковины. Смыкаются веки, хорошо выявляются две симметричные носовые ямки. Растёт пищевод, удлиняется пищеварительная трубка. Прогрессирует развитие почек. В верхних конечностях различаются сегменты плеча, предплечья, кисти. В нижних конечностях начинается формирование стоп и их иннервация. Появляются нижнечелюстные и лицевые мышцы. Закладываются зубные пластинки и зачатки зубов. Формируется гипофиз. Формируется грудобрюшная переграда - диафрагма.

· 6,5-7,5-я неделя - хорошо заметна развивающаяся нижняя челюсть, тогда как верняя четко не определяется. Формируются ткани будущего черепа и лица. Начинает развиваться задний мозг, выделяются мост и мозжечок. В брюшной полости определяется брыжейка, в которой ясно видны нервы, кровеносные и лимфатические сосуды. Удлиняются мочеточники, растущие от почек по направлению к закладке мочевого пузыря. Формируется межпресердная перегородка.

· 8-9-я неделя - завершается критический период развития сердца. Развиты веки и ушные раковины, глаза наполовину закрыты, сетчатка пигментирована. Полностью сформировано наружное ухо. Возникают вкусовые луковицы языка, развиваются эпителиальные закладки зубов. Кости твёрдого нёба начинают сливаться. Кишка продолжает миграцию в полость тела.

10. Развитие плода в течение 2-9 мес. Особенности строения органов и систем плода на 3-9 месяцах внутриутробного развития, строения. Периодизация постнатального онтогенеза

· 8-9-я неделя - завершается критический период развития сердца. Развиты веки и ушные раковины, глаза наполовину закрыты, сетчатка пигментирована. Полностью сформировано наружное ухо. Возникают вкусовые луковицы языка, развиваются эпителиальные закладки зубов. Кости твёрдого нёба начинают сливаться. Кишка продолжает миграцию в полость тела.

· 10-11-я неделя - в результате выделения назолакримальной области и интермаксиллярного сегментов лицевая часть плода становится похожей на лицо человека. Конечности хорошо развиты во всех своих частях. Начинают расти ногти. Плод начинает издавать звуки, т.к. развиваются голосовые связки. Начинается закладка волосяных фолликулов. Увеличивается масса мозга, совершенствуется его структура. В ротовой полости присутствуют закладки 20 зубов. Кишка продолжает перемещаться из пупочного канатика в брюшную полость, инициируется её перистальтика, появляются кишечные ворсинки. Печень начинает вырабатывать жёлчь, которая накапливается в жёлчном пузыре. Поджелудочная железа заканчивает своё развитие, клетки панкреатических островков дифференцированы и синтезируют инсулин.

· 12-13-я неделя - продолжают развиваться органы нервной системы. Развиваются зубы, начинают функционировать слюнные железы. В лёгких дифференцируются бронхи, которые заполнены амниотической жидкостью. Продолжается развитие пищеварительной системы. Завершается формирование селезёнки, в которой происходит гемопоэз и образование антител. Наружные половые органы развиты.

· 14-15-я неделя - плод становится ещё более подвижным. Хорошо развиты конечности. Продолжается развитие всех висцеральных систем.

· 16-18-я неделя - глаза сформированы, возникает рефлекс моргания. Уши занимают обычное положение. Продолжается развитие пальцев и когтей конечностей. Утолщается пупочный канатик, плацента достигает размеров, соответствующих размеру плода. Начинается процесс миелинизации нервов, функционирует процесс кровообращения плода. На голове появляются временные волосы, формируются ресницы.

· 20-24-я неделя - плод совершает сосательные и глотательные движения. Скелет становится более прочным. Быстро растёт масса сердца. Органы слуха и зрения плода могут воспринимать соответствующие раздражения, вкусовые рецепторы в области рта и губ обладают чувствительностью. Начинается развитие сосудистой системы лёгких, в последних формируются альвеолы и вырабатывается сурфактант. Появляются закладки постоянных зубов. Подкожная жировая клетчатка слабо развита.

· 26-28-я неделя - формируется волосяной покров головы. Глаза частично открыты, есть ресницы. Большие полушария мозга растут, прикрывая остальные участки мозга, увеличивается количество извилин в коре головного мозга. Лёгкие готовы к газообмену. Кроветворение сосредотачивается в красном костном мозге.

· 29-32-я неделя - замедляются темпы роста плода. Плод «отдыхает» в полости матки, почти не двигается. Продолжается быстрый рост головного мозга, формируются множетсвенные извилины коры больших полушарий. Создаются многочисленные интернейрональные связи.

· 34-36-я неделя - масса его подкожно-жировой клетчатки увеличивается до 15% масы тела, что необходимо для поддержания постоянства температуры плода. Гастроинтестинальная система остается незрелой. Прогрессирует оссификация костей.

· 38-я неделя - череп нетвёрдый, т.к. 5 костных пластин разделены родничками и могут смещаться при родах, способствуя изменению формы и длины головы. Грудная клетка становится более выраженной, лёгкие увеличивают продукцию сурфактанта. Живот большой и круглый, выпулый в области печени. Кожа становится толще.

11. Связь зародыша с материнским организмом. Имплантация. Плацента человека, ее развитие, строение, функции. Типы плацент млекопитающих

Плацента (детское место) человека относится к типу дискоидальных гемохориальных ворсинчатых плацент. Обеспечивает связь плода с материнским организмом. Вместе с тем плацента создает барьер между кровью матери и плода. Плацента состоит из двух частей: зародышевой, или плодной и материнской. Плодная часть представлена ветвистым хорионом и приросшей к нему изнутри амниотической оболочкой, а материнская -- видоизмененной слизистой оболочкой матки, отторгающейся при родах. Развитие плаценты начинается на 3-й неделе, когда во вторичные ворсины начинают врастать сосуды и образовываться третичные ворсины, и заканчивается к концу 3-го месяца беременности. На 6--8-й неделе вокруг сосудов дифференцируются элементы соединительной ткани. В основном веществе соединительной ткани хориона содержится значительное количество гиалуроновой и хондроитинсерной кислот, с которыми связана регуляция проницаемости плаценты. Кровь матери и плода в нормальных условиях никогда не смешивается. Гематохориальный барьер, разделяющий оба кровотока, состоит из эндотелия сосудов плода, окружающей сосуды соединительной ткани, эпителия хориальных ворсин. Зародышевая, или плодная, часть плаценты представлена ветвящейся хориальной пластинкой, состоящей из волокнистой соединительной ткани. Структурно-функциональной единицей сформированной плаценты является котиледон, образованный стволовой ворсиной.Материнская часть плаценты представлена базальной пластинкой и соединительнотканными септами, отделяющими котиледоны друг от друга, а также лакунами, заполненными материнской кровью. Формирование плаценты заканчивается в конце 3-го месяца беременности. Плацента обеспечивает питание, тканевое дыхание, рост, регуляцию образовавшихся к этому времени зачатков органов плода, а также его защиту. Основные функции плаценты: 1) дыхательная, 2) транспорт питательных веществ, воды, электролитов и иммуноглобулинов, 3) выделительная, 4) эндокринная, 5) участие в регуляции сокращения миометрия. Дыхание плода обеспечивается за счет кислорода, присоединенного к гемоглобину материнской крови, который путем диффузии поступает через плаценту в кровь плода, где он соединяется с фетальным гемоглобином. Транспорт всех питательных веществ, необходимых для развития плода (глюкоза, аминокислоты, жирные кислоты, нуклеотиды, витамины, минеральные вещества), происходит из крови матери через плаценту в кровь плода, и, наоборот, из крови плода в кровь матери поступают продукты обмена веществ, выводимые из его организма (выделительная функция). Плацента обладает способностью синтезировать и секретировать ряд гормонов, обеспечивающих взаимодействие зародыша и матери: прогестерон, хорионический гонадотропин, эстрогены. Эпителиохориальная плацента. Ворсины хориона врастают в отверстия маточных желёз и контактируют с интактным эпителием этих желёз. Примеры животных - лошади, свиньи, китообразные. Синдесмохориальная плацента. Ворсины хориона частично разрушают эпителий желёз матки и контактируют с подлежащей соединительной тканью матки. Примеры - коровы, овцы, олени. Эндотелиохориальная плацента. Ворсины хориона полностью разрушают

эпителий желёз и частично - подлежащую соединительную ткань, прорастая до сосудов эндометрия; т.е. они контактируют непосредственно с кровеносными сосудами. Примеры - кошки, собаки, тюлени, моржи. Гемохориальная плацента. Ворсины хориона разрушают также стенки сосудов матки и контактируют с материнской кровью (омываются ею в лакунах). Примеры - грызуны, зайцы, приматы, человек.

Эпителиальные ткани и железы

1. Ткань как один из уровней организации живого. Определение. Классификация. Вклад советских и зарубежных ученых в учение о тканях. Восстановительная способность и пределы изменчивости тканей. Значение гистологии для медицины

Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.

Все ткани делятся на 4 морфофункциональные группы:

I. эпителиальные ткани (куда относятся и железы);

II. ткани внутренней среды организма - кровь и кроветворные ткани, соединительные ткани (волокнистые, соединительные ткани; соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая), скелетные соединительные ткани).

III. мышечные ткани (поперечно-полосатая, гладкая мышечная ткань).

IV. нервная ткань (нейроциты, глиоциты, нервные волокна).

Московская школа гистологов была создана одним из крупных представителей материалистического направления в естествознании 19века - А.И. Бабухиным. Большое внимание уделялось вопросам гистогенеза различных тканей.

А.А. Заварзин считал основной задачей гистологии - выяснение общих закономерностей филогенетической дифференцировки разновидностей специализированных клеток в пределах каждой ткани при сохранении ограниченного числа морфофункциональных типов тканей.

Н. Г. Хлопин сделала обобщение в области изучения эволюционного развития тканей. Знание нормальной структуры клеток, тканей и органов является необходимым условием для понимания механизмов изменений в низ в патологических условиях. Поэтому гистология тесно связана с патологической анатомией и многими клиническими дисциплинами.

Таким образом, гистология занимает важное место в системе медицинского образования, закладывая основы научного структурно - функционального подхода в анализе жизнедеятельности организма человека в норме и при патологии.

Под восстановительной способностью следует понимать регенерацию.

Физиологическая регенерация - восстановление организмом утраченных или поврежденных органов или тканей.

2. Эпителиальная ткань. Морфофункциональная характеристика. Классификация. Особенности строения различных эпителиоцитов. Базальная мембрана

Это наиболее древняя и наиболее распространённая ткань в организме. Развиваются из всех трёх зародышевых листков. Выполняют защитную и барьерную функцию, обменную, трофическую, секреторную и выделительную. Они подразделяются на покровные, которые выстилают тело и все полости, имеющиеся в организме, и железистые, которые вырабатывают и выделяют секрет. Все эпителиальные ткани являются пластом эпителиальных клеток. В них крайне мало межклеточного вещества. Эпителиальные клетки плотно прилегают друг к другу и прочно соединены клеточными контактами.

Для эпителиальных клеток характерна полярность - в базальной части почти всегда находятся ядро и органеллы. Здесь идёт синтез секретов, в верхушечной части накапливаются гранулы секрета и там располагаются микроворсинки и реснички. Полярность характерна для эпителиального пласта в целом. Внутри клетки содержат тонофибриллы, они выполняют функцию каркаса. Эпителиальный пласт всегда лежит на базальной мембране, содержит фибриллы и аморфное вещество и регулирует проницаемость. Под базальной мембраной находится рыхлая соединительная ткань, которая содержит кровеносные сосуды. Из них питательные вещества через базальную мембрану поступают в эпителий, а продукты обмена в обратном направлении. В самом эпителиальном пласте сосудов нет. Все эпителиальные ткани отличаются высокой способностью к регенерации за счёт деления и дифференцировки стволовых клеток. Регенерация усиливается при снижении концентрации в эпителиальной ткани кибионов.

Эпителий содержит большое число рецепторов. В эпителиях находятся иммуннокомпетентные клетки. Это лимфоциты памяти и макрофаги, которые обеспечивают местный иммунитет.

3. Покровный эпителий. Морфофункциональная характеристика. Классификация. Физиологическая регенерация и возрастные изменения. Особенности строения эпителиоцитов в различных видах эпителия

Поверхностные эпителии -- это пограничные ткани, располагающиеся на поверхности тела (покровные), слизистых оболочках внутренних органов (желудка, кишечника, мочевого пузыря и др.) и вторичных полостей тела (выстилающие). Они отделяют организм и его органы от окружающей их среды и участвуют в обмене веществ между ними, осуществляя функции поглощения веществ (всасывание) и выделения продуктов обмена (экскреция). Кроме этих функций, покровный эпителий выполняет важную защитную функцию, предохраняя подлежащие ткани организма от различных внешних воздействий -- химических, механических, инфекционных и др. Наконец, эпителий, покрывающий внутренние органы, создает условия для их подвижности, например для сокращения сердца, экскурсии легких и т. д.

Можно выделить ряд особенностей эпителиев:

1. Эпителии участвуют в построении многих органов.

2. Эпителии представляют собой пласты клеток - эпителиоциты.

3. Эпителии располагаются на базальных мембранах.

4. Эпителии не содержат кровеносных сосудов.

5. Эпителии обладают полярностью.

6. Эпителиям присуща высокая способность к регенерации.

Источники развития эпителиальных тканей. Эпителии развиваются из всех трех зародышевых листков, начиная с 3--4-й недели эмбрионального развития человека. В зависимости от эмбрионального источника различают эпителии эктодермального, мезодермального и энтодермального происхождения. Родственные виды эпителиев, развивающиеся из одного зародышевого листка, в условиях патологии могут подвергаться метаплазии, т.е. переходить из одного вида в другой.

Классификация. Существует несколько классификаций эпителиев, в основу которых положены различные признаки: происхождение, строение, функция. Из них наибольшее распространение получила морфологическая классификация, учитывающая главным образом отношение клеток к базальной мембране и их форму. Согласно этой классификации, среди покровных и выстилающих эпителиев, расположенных на поверхности тела, а также на слизистых и серозных оболочках внутренних органов различают две основные группы эпителиев: однослойные и многослойные. В однослойных эпителиях все клетки связаны с базальной мембраной, а в многослойных с ней связан лишь один нижний слой клеток. В соответствии с формой клеток, составляющих однослойный эпителий, последние подразделяются на плоские (сквамозные), кубические и призматические (столбчатые). В определении многослойных эпителиев учитывается лишь форма наружных слоев клеток. Однослойный эпителий может быть однорядным и многорядным. У однорядного эпителия все клетки имеют одинаковую форму -- плоскую, кубическую или призматическую, их ядра лежат на одном уровне, т.е. в один ряд. Такой эпителий называют еще изоморфный. Однослойный эпителий, имеющий клетки различной формы и высоты, ядра которых лежат на разных уровнях, т.е. в несколько рядов, носит название многорядного, или псевдомногослойного (анизоморфного). Многослойный эпителий бывает ороговевающим, неороговевающим и переходным. Эпителий, в котором протекают процессы ороговения, связанные с дифференцировкой клеток верхних слоев в плоские роговые чешуйки, называют многослойным плоским ороговевающим. При отсутствии ороговения эпителий является многослойным плоским неороговевающим. Переходный эпителий выстилает органы, подверженные сильному растяжению, -- мочевой пузырь, мочеточники и др. При изменении объема органа толщина и строение эпителия также изменяются. Наряду с морфологической классификацией используется онтофилогенетическая классификация. В основе ее лежат особенности развития эпителиев из тканевых зачатков. Она включает эпидермальный (кожный), энтеродермальный (кишечный), целонефродермальный, эпендимоглиальный и ангиодермальный типы эпителиев. Эпидермальный тип эпителия образуется из эктодермы, имеет многослойное или многорядное строение, приспособлен к выполнению прежде всего защитной функции (например, многослойный плоский ороговевающий эпителий кожи). Энтеродермальный тип эпителия развивается из энтодермы, является по строению однослойным призматическим, осуществляет процессы всасывания веществ (например, однослойный каемчатый эпителий тонкой кишки), выполняет железистую функцию (например, однослойный эпителий желудка).

Целонефродермальный тип эпителия развивается из мезодермы, по строению однослойный, плоский, кубический или призматический; выполняет главным образом барьерную или экскреторную функцию (например, плоский эпителий серозных оболочек -- мезотелий, кубический и призматический эпителии в мочевых канальцах почек). Эпендимоглиальный тип представлен специальным эпителием, выстилающим, например, полости мозга. Источником его образования является нервная трубка. К ангиодермальному типу эпителия относят эндотелиальную выстилку кровеносных сосудов, имеющую мезенхимное происхождение. По строению эндотелий подобен однослойным плоским эпителиям.

Регенерация. Покровный эпителий, занимая пограничное положение, постоянно испытывает влияние внешней среды, поэтому эпителиальные клетки сравнительно быстро изнашиваются и погибают. Источником их восстановления являются стволовые клетки эпителия. Они сохраняют способность к делению в течение всей жизни организма. Размножаясь, часть вновь образованных клеток вступает в дифференцировку и превращается в эпителиоциты, подобные утраченным.

...

Подобные документы

  • Определение эукариотов и прокариотов (ядерных и безядерных организмов). Ознакомление с характеристиками растительной, животной, грибной клеток. Изучение органоидов и включений как структурных компонентов клетки. Строение плазматической мембраны.

    презентация [3,9 M], добавлен 09.11.2014

  • История развития клеточной теории, ее эволюция. Строение и функции оболочки клетки, характеристика оболочки, цитоплазмы, ядра. Роль плазматической мембраны и аппарата Гольджи в жизнедеятельности клеток. Рибосомы и митохондрии, их функции и состав.

    реферат [529,8 K], добавлен 16.08.2009

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Клетка как структурно-функциональная единица развития живых организмов. Мембранные и немембранные компоненты: лизосомы, митохондрия, пластиды, вакуоли и рибосомы. Эндоплазматическая сеть и комплекс Гольджи. Строение животной клетки. Функции органоидов.

    презентация [3,5 M], добавлен 07.11.2014

  • Виды и формы клеток. Структурные компоненты клетки. Особенности биологической мембраны. Характеристика цитоплазмы и ее основных органоидов. Функции митохондрий, эндоплазматической сети и аппарата Гольджи. Роль лизосом, центриолей и микротрубочек.

    презентация [7,2 M], добавлен 06.06.2012

  • Роль стромы и микроокружения кроветворных органов в образовании и развитии клеток крови. Теории кроветворения, постоянство состава клеток крови и костного мозга. Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.

    реферат [1,1 M], добавлен 07.05.2012

  • Структурная и функциональная единица жизнедеятельности одноклеточного и многоклеточного организмов. Многообразие клеток и тканей. Основные части в строении клетки. Клеточный цикл жизни клетки. Эпителиальные, соединительные, мышечные и нервные ткани.

    реферат [20,4 K], добавлен 18.10.2013

  • Изучение клеточного уровня организации жизни. Сущность и строение эукариотической клетки - открытой системы, связанной с окружающей средой обменом веществ и энергии. Взаимосвязь строения и функций органоидов клеток: цитоплазмы, ядра, лизосом, митохондрий.

    презентация [954,6 K], добавлен 26.02.2012

  • Цитоплазма и ее структурные компоненты. Немембранные, одномембранные, двумембранные органеллы. Выполнение жизненно важных функций клеток. Синтез и накопление энергии в виде АТФ. Регуляция водного обмена. Единая внутриклеточная циркуляторная система.

    реферат [84,2 K], добавлен 08.03.2017

  • Коллоидно-химическая физиология человека. Особенности коллоидной системы клеток. Коллоидные свойства мембран. Переходы гиалоплазмы из состояния золя в гель. Коллоидная среда ядра. Характеристика состава лимфы. Универсальность соединительной ткани.

    презентация [1,8 M], добавлен 18.02.2014

  • Химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Положения клеточной теории по М. Шлейдену и Т. Шванну.

    презентация [1,3 M], добавлен 17.12.2013

  • Особенности строения клеток прокариот и эукариот. Структура фосфолипидного бислоя. Связи в молекуле фосфолипида, расщепляемые разными классами фосфолипаз. Липидный состав плазматической мембраны. Обзор основных способов переноса веществ через мембраны.

    презентация [8,1 M], добавлен 26.03.2015

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

  • Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.

    презентация [6,8 M], добавлен 27.12.2011

  • Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.

    контрольная работа [47,7 K], добавлен 22.12.2014

  • Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.

    презентация [2,9 M], добавлен 26.11.2013

  • Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.

    презентация [1,4 M], добавлен 19.10.2013

  • Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.

    презентация [2,1 M], добавлен 12.02.2017

  • Клетка как единая система сопряженных функциональных единиц. Гомологичность клеток. Размножение прокариотических и эукариотических клеток. Роль отдельных клеток во многоклеточном организме. Разнообразие клеток в пределах одного многоклеточного организма.

    реферат [28,6 K], добавлен 28.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.