Клетка, как структурно-функциональная единица ткани
Биологические мембраны клеток, их строение, химический состав. Основные компоненты ядра и его структурно-функциональная характеристика. Общая морфофункциональная характеристика цитоплазмы. Физико-химические свойства гиалоплазмы. Репродукция клеток.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 27.09.2017 |
Размер файла | 216,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Артерии мышечно-эластического типа. К ним относятся, в частности, сонная и подключичная артерии. Внутренняя оболочка этих сосудов состоит из эндотелия, расположенного на базальной мембране, подэндотелиального слоя и внутренней эластической мембраны. Эта мембрана располагается на границе внутренней и средней оболочек. Средняя оболочка артерий смешанного типа состоит из гладких мышечных клеток, спирально ориентированных эластических волокон и окончатых эластических мембран. Между гладкими мышечными клетками и эластическими элементами обнаруживается небольшое количество фибробластов и коллагеновых волокон. В наружной оболочке артерий можно выделить два слоя: внутренний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительнотканных клеток.
Возрастные изменения. Развитие сосудов под влиянием функциональной нагрузки заканчивается примерно к 30 годам. В дальнейшем в стенках артерий происходит разрастание соединительной ткани, что ведет к их уплотнению. После 60--70 лет во внутренней оболочке всех артерий обнаруживаются очаговые утолщения коллагеновых волокон, в результате чего в крупных артериях внутренняя оболочка по размерам приближается к средней. В мелких и средних артериях внутренняя оболочка разрастается слабее. Внутренняя эластическая мембрана с возрастом постепенно истончается и расщепляется. Мышечные клетки средней оболочки атрофируются. Эластические волокна подвергаются зернистому распаду и фрагментации, в то время как коллагеновые волокна разрастаются. Одновременно с этим во внутренней и средней оболочках у пожилых людей появляются известковые и липидные отложения, которые прогрессируют с возрастом. В наружной оболочке у лиц старше 60--70 лет возникают продольно лежащие пучки гладких мышечных клеток.
4. Сосуды микроциркуляторного отдела кровеносного русла. Морфофункциональная характеристика. Классификация. Особенности структурной организации. Органоспецифичность сосудов микроциркуляторного русла. Понятие о гистогематическом барьере
Микроциркуляторное русло - система мелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кровенаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Чаще всего элементы микроциркуляторного русла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, но могут быть и другие варианты с выделением какого-либо основного, предпочтительного канала. В каждом органе существуют специфические особенности конфигурации, диаметра и плотности расположения сосудов микроциркуляторного русла. Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы, изменять проницаемость для тканевой жидкости.
Артериолы.
Это наиболее мелкие артериальные сосуды мышечного типа диаметром не более 50-100 мкм, которые, с одной стороны, связаны с артериями, а с другой - постепенно переходят в капилляры. В артериолах сохраняются три оболочки, характерные для артерий вообще, однако выражены они очень слабо. Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого субэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована 1- 2 слоями гладких мышечных клеток, имеющих спиралевидное направление. В прекапиллярных артериолах (прекапиллярах) гладкие мышечные клетки располагаются поодиночке. Расстояние между ними увеличивается в дистальных отделах, однако они обязательно присутствуют в месте отхождения прекапилля-ров от артериолы и в месте разделения прекапилляра на капилляры. В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Такие контакты создают условия для передачи информации от эндотелия гладким мышечным клеткам. В частности, при выбросе в кровь адреналина надпочечников эндотелий синтезирует фактор, который вызывает сокращение гладких мышечных клеток. Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Наружная оболочка представлена рыхлой волокнистой соединительной тканью.
Капилляры.
Кровеносные капилляры (vasae haemocapillariae) наиболее многочисленные и самые тонкие сосуды, имеющие, однако, различный просвет. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием сосудистой системы. В стенке капилляров различают три тонких слоя (как аналоги трех оболочек рассмотренных выше сосудов). Внутренний слой представлен эндоте-лиальными клетками, расположенными на базальной мембране, средний состоит из перицитов, заключенных в базальную мембрану, а наружный - из редко расположенных адвентициальных клеток и тонких коллагеновых волокон, погруженных в аморфное вещество.Эндотелиальный слой. Внутренняя выстилка капилляра представляет собой пласт лежащих на базальной мембране вытянутых, полигональной формы эндотелиальных клеток с извилистыми границами, которые хорошо выявляются при импрегнации серебром. Различают три типа капилляров. Наиболее распространенный тип капилляров - соматический, описанный выше (к этому типу относятся капилляры со сплошными эндотелиальной выстилкой и базальной мембраной); второй тип - фенестрированные капилляры с порами в эндотелио-цитах, затянутых диафрагмой (фенестрами), и третий тип - капилляры перфорированного типа со сквозными отверстиями в эндотелии и базальной мембране. Капилляры соматического типа находятся в сердечной и скелетной мышцах, в легких и других органах.
Венулы.
Различают три разновидности венул (venulae): посткапиллярные, собирательные и мышечные. Посткапиллярные венулы (диаметр 8-30 мкм) по своему строению напоминают венозный отдел капилляра, но в стенке этих венул отмечается больше перицитов, чем в капиллярах. Посткапиллярные вену-лы с высоким эндотелием служат местом выхода лимфоцитов из сосудов (в органах иммунной системы). В собирательных венулах (диаметр 30-50 мкм) появляются отдельные гладкие мышечные клетки и более отчетливо выражена наружная оболочка. Мышечные венулы (диаметр 50-100 мкм) имеют один-два слоя гладких мышечных клеток в средней оболочке и сравнительно хорошо развитую наружную оболочку.
Артериоловенулярные анастомозы (ABA) - это соединения сосудов, несущие артериальную кровь в вены в обход капиллярного русла. Они обнаружены почти во всех органах, диаметр ABA колеблется от 30 до 500 мкм, а длина может достигать 4 мм. Объем кровотока в ABA во много раз больше, чем в капиллярах, скорость кровотока значительно увеличена. Так, если через капилляр 1 мл крови проходит в течение 6 ч, то такое же количество крови через ABA проходит за две секунды. ABA отличаются высокой реактивностью и способностью к ритмическим сокращениям с частотой до 12 раз в минуту. Различают две группы анастомозов: 1) истинные ABA (шунты), по которым сбрасывается чисто артериальная кровь; 2) атипичные ABA (полушунты), по которым течет смешанная кровь.
5. Сердце. Общая морфофункциональная характеристика. Источники и ход развития. Вариации и аномалии. Строение оболочек стенки сердца в предсердиях и желудочках. Строение сердечных клапанов. Васкуляризация. Иннервация. Регенерация. Возрастные особенности
Сердце - основной орган, приводящий в движение кровь.
Развитие: первая закладка сердца появляется в начале 3-й недели развития у эмбриона в виде скопления мезенхимных клеток. Позднее эти скопления превращаются в две удлиненные трубочки, впадающие вместе с прилегающими висцеральными листками мезодермы в целомическую полость. Мехенхимные трубочки сливаются - образуется эндокард. Та область висцеральных листков мезодермы, которая прилежит к этим трубочкам, называется миоэпикардиальными пластинками. Из них дифференцируются 2 части - внутренняя, прилежит к мезенхимной трубке - миокард: наружная -эпикард. В стенке сердца различают 3 оболочки: внутреннюю - эндокард, среднюю (мышечную) - миокард, наружную - эпикард. Эндокард напоминает по строению стенку сосуда. В нём выделяют 4 слоя: эндотелийна базальной мембране; подэндотелиальный слой из рыхлой соединительной ткани; мышечно-эластический слой, включающий гладкие миоциты и эластические волокна; наружный соединительнотканный слой.Сосуды имеются лишь в последнем из этих слоёв. Остальные слои питаются путём диффузии веществ непосредственно из крови, проходящей через камеры сердца. В миокарде предсердий различают 2 мышечных слоя: внутренний продольный и наружный циркулярный. В миокарде желудочков - 3 слоя: относительно тонкие внутренний и наружный - продольные, прикрепляющиеся к фиброзным кольцам, окружающим предсердно-желудочковые отверстия; и мощный срединный слой с циркулярной ориентацией. Эпикард включает 3 слоя: а) мезотелий- однослойный плоский эпителий, развивающийся из мезодермы б) тонкую соединительнотканную пластинку, содержащую несколько чередующихся слоёв коллагеновых и эластических волокон и кровеносные сосуды, в) слой жировой ткани.
Васкуляризация. Венечные артерии имеют плотный эластический каркас, в котором четко выделяются внутренняя и наружная эластические мембраны. Гладкие мышечные клетки в артериях обнаруживаются в виде продольных пучков во внутренней и наружной оболочках. В основании клапанов сердца кровеносные сосуды у места прикрепления створок разветвляются на капилляры. Кровь из капилляров собирается в коронарные вены, впадающие в правое предсердие или венозный синус. Проводящая система обильно снабжена кровеносными сосудами. Лимфатические сосуды в эпикарде сопровождают кровеносные. В миокарде и эндокарде они проходят самостоятельно и образуют густые сети. Лимфатические капилляры обнаружены также в атриовентрикулярных и аортальных клапанах. Из капилляров лимфа, оттекающая от сердца, направляется в парааортальные и парабронхиальные лимфатические узлы. В эпикарде и перикарде находятся сплетения сосудов микроциркуляторного русла.
Иннервация: В стенке сердца обнаруживается несколько нервных сплетений (в основном из безмиелиновых волокон адренергической и холинергической природы) и ганглиев. Наибольшая плотность расположения нервных сплетений отмечается в стенке правого предсердия и синусно-предсердного узла проводящей системы. Рецепторные окончания в стенке сердца (свободные и инкапсулированные) образованы нейронами ганглиев блуждающих нервов и нейронами спинномозговых узлов.
Возрастные изменения. 3 периода изменения гистоструктуры сердца: период дифференцировки, период стабилизации и период инволюции. Дифференцировка гистологических элементов сердца заканчивается к 16--20 годам. Существенное влияние на процессы дифференцировки кардиомиоцитов оказывает заращение овального отверстия и артериального протока, которое приводит к изменению гемодинамических условий -- уменьшению давления и сопротивления в малом круге и увеличению давления в большом. Отмечаются физиологическая атрофия миокарда правого желудочка и физиологическая гипертрофия миокарда левого желудочка. Количество миофибрилл прогрессивно увеличивается. В период между 20 и 30 годами сердце - в стадии относительной стабилизации. В возрасте старше 30--40 лет в миокарде обычно начинается некоторое увеличение его соединительнотканной стромы. При этом в стенке сердца, особенно в эпикарде, появляются адипоциты. Степень иннервации сердца также изменяется с возрастом. Максимальная плотность внутрисердечных сплетений на единицу площади и высокая активность медиаторов отмечаются в период полового созревания.В старческом возрасте уменьшается активность медиаторов и в холинергических сплетениях сердца.
6. Строение и гистофизиологическая характеристика проводящей системы сердца
Проводящая система сердца -- мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца. В состав проводящей системы входят синусно-предсердный (синусный) узел, предсердно-желудочковый узел, предсердно-желудочковый пучок (пучок
Гиса) и их разветвления (волокна Пуркинье), передающие импульсы на сократительные мышечные клетки. Различают три типа мышечных клеток:
Клетки узла проводящей системы. Формирование импульса происходит в синусном узле, центральную часть которого занимают клетки первого типа -- пейсмекерные клетки (Р-клетки), способные к самопроизвольным сокращениям. Они отличаются небольшими размерами, многоугольной формой небольшим количеством миофибрилл, не имеющих упорядоченной ориентировки. По периферии узла располагаются переходные клетки, аналогичные большей части клеток в атриовентрикулярном узле. Р-клеток в атриовентрикулярном узле, напротив, мало.
Основную часть составляет второй тип -- переходные клетки. Это тонкие, вытянутые клетки. Миофибриллы более развиты, ориентированы параллельно друг другу. Отдельные переходные клетки могут содержать короткие Т-трубочки. Переходные клетки сообщаются между собой как с помощью простых контактов, так и путем образования более сложных соединений типа вставочных дисков. Функциональное значение этих клеток состоит в передаче возбуждения от Р-клеток к клеткам пучка и рабочему миокарду. Клетки пучка проводящей системы (пучка Гиса) и его ножек (волокон Пуркинье). Они составляют третий тип, содержат относительно длинные миофибриллы. Являются передатчиками возбуждения от переходных клеток к клеткам рабочего миокарда желудочков. По строению клетки пучка отличаются более крупными размерами, почти полным отсутствием Т-систем, тонкостью миофибрилл, которые располагаются по периферии клетки. Эти клетки в совокупности образуют предсердно-желудочковый ствол и ножки пучка (волокна Пуркинье). Клетки Пуркинье -- самые крупные не только в проводящей системе, но и во всем миокарде. В них много гликогена, редкая сеть миофибрилл, нет Т-трубочек. Клетки связаны между собой нексусами и десмосомами.
Органы кроветворения и иммунной защиты
1. Понятие об иммунной системе и ее тканевых компонентах. Классификация и характеристика иммуноцитов и их взаимодействие в реакциях гуморального и клеточного иммунитета. Понятие о медиаторах и регуляторах иммунных реакций
Иммунная система объединяет органы и ткани, в которых происходит образование и взаимодействии иммуноцитов, выполняющих функцию распознавания генетически чужеродных антигенов и осуществляющих специфическую реакцию. Иммунитет - защита организма от всего генетически чужеродного.
Иммунная система включает:
1) Центральные органы: красный костный мозг - источник СК для иммуноцитов, тимус (центральный орган лимфопоэза);
2) Периферические органы лимфопоэза: селезенка, лимфатические узлы, скопления лимф ткани в органах, лимфоциты крови и лимфы.
Все они функционируют как единое целое благодаря нейрогуморальным механизмам. Главные клетки: лимфоциты, плазматические клетки и макрофаги.
Антигены - вызывают специфический иммунный ответ. Это бактерии, вирусы, паразиты, чужеродные клетки и ткани и продукты их жизнедеятельности.
Антитела - белки IgG, Igm, IgA, IgD, IgE, синтезируемые В-лифмоцитами и плазмоцитами, способны соединяться с антегенами и обезвреживать их. Молекула имеет форму Y и состоит из 2 тяжелых и 2 легких цепей, содиненных S-S. Каждая цепь имеет вариабельные области (Fab-фрагменты - связывают и распознают антигены) и постоянные области (Fc-области, обр Н-цепями, обечиват связывание компонентов комплемента и кл рецепторов).
При первой встрече с антигенами лимфоциты переходят в бластные формы, способные к пролиферации и дифференцировке в иммуноциты: эффекторные - ликвидация и обезвреживание, активированные лимфоциты и плазматические клетки, обеспечивают первичный ответ. Клетки памяти - лимфоциты, возвращающиеся в неактивное состояние, обесп вторичный ответ.
При клеточном иммунитете (трансплантация, опухолевые клетки)эффекторными являются Т-лимфоциты и Лейкоциты. При гуморальном иммунитете эффекторными являются плазматическе клетки, синтезирующие и выделяющие в кровь антитела.
2. Гемопоэз. Понятие о стволовых и полустволовых клетках, дифферонах, особенности их эмбрионального и постэмбрионального развития
Кроветворение (гемопоэз) - процесс образования, развития и созревания клеток крови -- лейкоцитов, эритроцитов, тромбоцитов. Кроветворение осуществляется кроветворными органами. Различают эмбриональный (внутриутробный) гемопоэз, который начинается на очень ранних стадиях эмбрионального развития и приводит к образованию крови как ткани, и постэмбриональный гемопоэз, который можно рассматривать как процесс физиологического обновления крови. Во взрослом организме непрерывно происходит массовая гибель форменных элементов крови, но отмершие клетки заменяются новыми, так что общее количество кровяных клеток сохраняется с большим постоянством.
Эмбриональный гемопоэз. В эмбриональном периоде кроветворение происходит в стенке желточного мешка, а затем в печени, селезенке и костном мозге. У человека процесс кроветворения начинается в конце 2-й -- начале 3-й недели развития эмбриона. В стенке желточного мешка зародыша обособляются зачатки сосудистой системы, или кровяные островки. Клетки, ограничивающие кровяные островки, становятся плоскими и, соединяясь между собой, образуют стенку будущего сосуда. Эти клетки называются эндотелиальными. Внутри кровяных островков клетки округляются и преобразуются в первичные кровяные клетки -- первичные гемоцитобласты. Эти клетки митотически делятся, и большинство из них превращается в первичные эритробласты (предшественники эритроцитов) -- мегалобласты. Лишившись ядра и постепенно накапливая гемоглобин, мегалобласты превращаются сперва в мегалоциты, а затем -- в эритроциты. Одновременно с образованием эритроцитов происходит образование гранулоцитов -- нейтрофилов и эозинофилов. Гранулоциты образуются из гемоцитобластов, располагающихся вокруг стенок сосудов, число их на ранних стадиях развития зародыша незначительно. На более поздних этапах развития зародыша желточный мешок подвергается атрофии, и кроветворная функция перемещается в другие органы. На 3-4-й неделе жизни эмбриона закладывается печень, которая уже на 5-й неделе жизни эмбриона становится центром кроветворения. Гемоцитобласты в печени возникают из окружающих капилляры клеток печеночных долек. Из этих гемоцитобластов образуются вторичные эритроциты. Одновременно из других клеток происходит образование гранулоцитов. Кроме того, в кроветворной ткани печени формируются гигантские клетки, или мегакариоциты, из которых образуются тромбоциты. К концу внутриутробного периода кроветворение в печени прекращается. Универсальный кроветворный орган в первой половине эмбриональной жизни представляет собой селезенка. В ней развиваются все клетки крови. По мере роста плода образование эритроцитов в селезенке и в печени угасает, и этот процесс перемещается в костный мозг, который впервые закладывается в конце 2-го месяца эмбриональной жизни в ключицах, а позднее -- и во всех других костях. На втором месяце внутриутробного развития закладывается вилочковая железа, в которой начинается образование лимфоцитов, в дальнейшем расселяющихся в другие лимфоидные органы. У 3-месячного плода в области шейных лимфатических мешков начинают формироваться зачатки лимфатических узлов. На ранних стадиях развития в них образуются лимфоциты, гранулоциты, эритроциты и мегакариоциты. Позже образование гранулоцитов, эритроцитов, и мегакариоцитов подавляется, и продуцируются только лимфоциты -- основные элементы лимфоидной ткани. К моменту рождения ребенка процессы кроветворения усиливаются.
Постэмбриональный гемопоэз. В постэмбриональном периоде образование различных элементов крови сосредоточено главным образом в красном костном мозге, селезенке и лимфатических узлах. Для образования клеток крови необходимы фолиевая кислота и витамин В12. Дифференцировку кроветворных клеток, а также их баланс контролируют так называемые факторы транскрипции, или гемопоэтины. Эритроциты, гранулоциты и кровяные пластинки развиваются у взрослых в красном костном мозге. От рождения и до полового созревания количество очагов кроветворения в костном мозге уменьшается, хотя костный мозг полностью сохраняет гемопоэтический потенциал. Почти половина костного мозга превращается в желтый костный мозг, состоящий из жировых клеток. Желтый костный мозг может восстановить свою активность, если необходимо усилить гемопоэз (например, при выраженных кровотечениях). В активных участках костного мозга (так называемом красном костном мозге) образуются главным образом эритроциты.
Стволовые клетки. В красном костном мозге находятся так называемые стволовые клетки -- предшественницы всех форменных элементов крови, которые (в норме) поступают из костного мозга в кровяное русло уже полностью зрелыми.
Полустволовые клетки (ПСК) - клетки предшественники миелопоэза, клетки предшественники лимфопоэза.
3. Строение красного костного мозга. Характеристика постэмбрионального кроветворения. Взаимодействие стромальных и гемопоэтических элементов
Красный костный мозг является кроветворной частью костного мозга. Он содержит стволовые кроветворные клетки (СКК) и диффероны гемопоэтических клеток эритроидного, гранулоцитарного и мегакариоцитарного ряда, а также предшественники В- и Т-лимфоцитов. Стромой костного мозга является ретикулярная ткань, образующая микроокружение для кроветворных клеток. В настоящее время к элементам микроокружения относят также остеогенные, жировые, адвентициальные, эндотелиальные клетки и макрофаги.
Постэмбриональный гемопоэз. В постэмбриональном периоде образование различных элементов крови сосредоточено главным образом в красном костном мозге, селезенке и лимфатических узлах. Для образования клеток крови необходимы фолиевая кислота и витамин В12. Дифференцировку кроветворных клеток, а также их баланс контролируют так называемые факторы транскрипции, или гемопоэтины. Эритроциты, гранулоциты и кровяные пластинки развиваются у взрослых в красном костном мозге. От рождения и до полового созревания количество очагов кроветворения в костном мозге уменьшается, хотя костный мозг полностью сохраняет гемопоэтический потенциал. Почти половина костного мозга превращается в желтый костный мозг, состоящий из жировых клеток. Желтый костный мозг может восстановить свою активность, если необходимо усилить гемопоэз (например, при выраженных кровотечениях). В активных участках костного мозга (так называемом красном костном мозге) образуются главным образом эритроциты.
Стволовые клетки. В красном костном мозге находятся так называемые стволовые клетки -- предшественницы всех форменных элементов крови, которые (в норме) поступают из костного мозга в кровяное русло уже полностью зрелыми.
Стромальные ретикулярные и гемопоэтические элементы. Для миелоидной и всех разновидностей лимфоидной ткани характерно наличие стромальных ретикулярных и гемопоэтических элементов, образующих единое функциональное целое.
Центральные органы иммунопоэза
4. Понятие о центральных и периферических органах иммунной системы. Возрастные изменения
К центральным органам кроветворения у человека относятся красный костный мозг и тимус (вилочковая железа). В красном костном мозге из стволовых клеток образуются эритроциты, кровяные пластинки (тромбоциты), гранулоциты, В-лимфоциты и предшественники Т-лимфоцитов. В тимусе происходит антигеннезависимая пролиферация и дифференцировка Т-лимфоцитов с огромным разнообразием рецепторов антигенов.
В периферических кроветворных органах - селезенке, лимфатических узлах, миндалинах, червеобразном отростке, а также лимфоидной ткани, ассоциированной со слизистыми оболочками, происходят размножение приносимых сюда из центральных органов Т- и В-лимфоцитов и специализация их под влиянием антигенов в эффекторные клетки, осуществляющие иммунную защиту, и клетки памяти. Органы кроветворения, скопления лимфоцитов и другие клетки иммунной защиты функционируют содружественно и обеспечивают поддержание морфологического состава крови и иммунного статуса организма. Все они обеспечивают защиту организма от генетически чужеродных белков (микробов, вирусов и др.) или генетически измененных клеток собственного организма. Деятельность органов кроветворения и иммунной защиты тесно связана с эндокринной и нервной системами. Так, нейропептиды, синтезируемые эндокринными нейронами, влияют на активность иммунокомпетентных клеток. В свою очередь, биологические вещества, синтезируемые иммунокомпетентными клетками, оказывают влияние на клетки и ткани, вызывая эффекты, сходные с эффектами гормонов эндокриноцитов и пептидов нейронов.
5. Костный мозг. Развитие, особенности строения и функции
Костный мозг (medulla osseum) - центральный кроветворный орган, в котором находятся самоподдерживающиеся популяции стволовых стро-мальных клеток и гемопоэтических стволовых клеток. Здесь же образуются эритроциты, гранулоциты, тромбоциты, моноциты, В-лимфоциты с разнообразными рецепторами антигенов, естественные киллерные клетки и предшественники Т-лимфоцитов.
Развитие. Костный мозг у человека появляется впервые на 2-м мес внутриутробного периода в ключице эмбриона, на 3-м мес он образуется в развивающихся плоских костях - лопатках, тазовых костях, затылочной кости, ребрах, грудине, костях основания черепа и позвонках, а в начале 4-го мес развивается также в трубчатых костях конечностей. До 11-й нед это остеобластический костный мозг, который выполняет остео-генную функцию. С момента врастания кровеносных сосудов из надкостницы в развивающуюся костную ткань между костными трабекулами возникают условия для формирования кроветворного микроокружения, миграции гемопоэтических стволовых и полустволовых клеток. В данный период костный мозг накапливает стволовые клетки, а клетки стро-мы с остеогенными потенциями создают микросреду, необходимую для пролиферации и дифференцировки гемопоэтических стволовых клеток. У 12-14-недельного плода человека в костных полостях начинается гемопоэз. У 20-28-недельного плода человека отмечается усиленная резорбция костных перекладин, в результате чего красный костный мозг получает возможность расти в направлении эпифизов. К этому времени костный мозг начинает функционировать как основной кроветворный орган, причем большая часть образующихся в нем клеток относится к эритроидному дифферону. У 36-недельного зародыша в костном мозге диафиза трубчатых костей обнаруживаются жировые клетки. Одновременно появляются очаги кроветворения в эпифизах.
Строение. Во взрослом организме человека различают красный и желтый костный мозг.
Красный костный мозг (medulla ossium rubra) является кроветворной частью костного мозга. Он находится в губчатом веществе плоских и трубчатых костей и во взрослом организме составляет в среднем около 4-5 % общей массы тела. Красный костный мозг имеет темно-красный цвет и полужидкую консистенцию, что позволяет легко приготовить из него тонкие мазки на стекле. Стромой костного мозга является ретикулярная ткань, образующая микроокружение для кроветворных клеток. К элементам гемопоэтической среды относятся также остеогенные, жировые, адвентициальные, эндотелиальные клетки и макрофаги.
Желтый костный мозг (medulla ossium flava) у взрослых находится в диа-физах трубчатых костей. В его составе находятся многочисленные жировые клетки (адипоциты). Благодаря наличию в жировых клетках пигментов типа липохромов костный мозг в диафизах имеет желтый цвет, что и определяет его название. В обычных условиях желтый костный мозг не осуществляет кроветворной функции, но в случае больших кровопотерь или при некоторых патологических состояниях организма в нем появляются очаги миелопоэза за счет дифференцировки приносимых сюда с кровью стволовых и полустволовых клеток.
Резкой границы между желтым и красным костным мозгом не существует. Небольшое количество адипоцитов постоянно встречается и в красном костном мозге. Соотношение желтого и красного костного мозга может меняться в зависимости от возраста, условий питания, нервных, эндокринных и других факторов.
6. Костный мозг и аналоги фабрициевой сумки как центральные органы иммунопоэза, их роль в образовании В-лимфоцитов. Разновидности В-лимфоцитов, их антигеннезависимая и антигензависимая дифференцировка. Характеристика рецепторов
Из костного мозга пре-В-клетки мигрируют в тимуснезависимые зоны лимфоидных органов. Так, в физиологических условиях в селезёнке В-лимфоциты располагаются в краевой зоне белой пульпы, в лимфатических узлах -- в наружной зоне кортикального слоя, где они формируют зародышевые центры фолликулов. Сигналы, определяющие судьбу и дифференцировку этих иммунокомпетентных клеток, поступают из красного костного мозга, стромальных клеток и других клеток иммунной системы. На периферии (вне костного мозга) В-лимфоциты приобретают характерные для них поверхностно-клеточные маркёры. Продолжительность жизни В-лимфоцитов различна -- от многих лет (В-клетки памяти) до нескольких недель (клоны плазматических клеток). После антигенной стимуляции В-лимфоциты дифференцируются в плазматические клетки (интенсивно синтезирующие и секретирующие AT) и В-клетки памяти. Плазматические клетки синтезируют Ig того же класса, что и мембранный Ig В-лимфоцита-предшественника.
Дифференцировка В-лимфоцитов условно делится на две стадии -- антигеннезависимую (в которую происходит перестройка генов иммуноглобулинов и их экспрессия) и антигензависимую (при которой происходит активация, пролиферация и дифференцировка в плазматические клетки). Выделяют следующие промежуточные формы созревающих В-лимфоцитов:
· Ранние предшественники В-клеток -- не синтезируют тяжёлых и лёгких цепей иммуноглобулинов, содержат зародышевые IgH и IgL гены, но содержат антигенный маркер, общий со зрелыми пре-В-клетками.
· Ранние про-В-клетки -- D-J перестройки в IgН генах.
· Поздние про-В-клетки -- V-DJ перестройки в IgН генах.
· Большие пре-В-клетки -- IgН гены VDJ-перестроены; в цитоплазме имеются тяжёлые цепи класса м, экспрессируется пре-В-клеточный рецептор.
· Малые пре-В-клетки -- V-J перестройки в IgL генах; в цитоплазме имеются тяжёлые цепи класса м.
· Малые незрелые В-клетки -- IgL гены VJ-перестроены; синтезируют тяжёлые и лёгкие цепи; на мембране экспрессируются иммуноглобулины (В-клеточный рецептор).
· Зрелые В-клетки -- начало синтеза IgD.
Антигенраспознающие рецепторы В-лимфоцитов представляют собой молекулы иммуноглобулинов. Циркулирующие антитела структурно подобны основной части B-клеточных рецепторов, но лишены их трансмембранных и цитоплазматических сегментов. Основными классами мембранно-связанных иммуноглобулинов ( mIg ), находящихся на поверхности зрелых, нестимулированных В-лимфоцитов, являются IgM и IgD. На одной В-клетке могут одновременно присутствовать оба типа молекул, причем они имеют одинаковую специфичность, и, возможно, что эти антигенные рецепторы могут взаимодействовать между собой, осуществляя контроль за активацией лимфоцитов и супрессией лимфоцитов.
Рецептором B-лимфоцитов, узнающим антиген, является IgM. Мембраносвязанный IgM (mIgМ), как правило, представляет собой мономерный иммуноглобулин, т.е. отдельную единицу из четырех полипептидных цепей. Эта молекула имеет гидрофобную последовательность, расположенную на C-концевом участке тяжелой цепи и предназначенную для фиксации молекулы на клеточной мембране. Число молекул рецептора достигает 10 - 100тыс. на клетку.
7. Тимус. Особенности строения и развития. Взаимодействие эпителиальных, стромальных и гемопоэтических элементов. Понятие о возрастной и акцидентальной инволюции тимуса
Тимус (вилочковая железа, thymus), - центральный орган лимфоцитопо-эза и иммуногенеза. Из костномозговых предшественников Т-лимфоцитов в тимусе происходит антигеннезависимая их дифференцировка в Т-лимфоциты, разновидности которых осуществляют реакции клеточного иммунитета и регулируют реакции гуморального иммунитета.
Развитие. Закладка тимуса у человека происходит в конце первого месяца внутриутробного развития из эпителия глоточной кишки, в области главным образом III и IV пар жаберных карманов в виде тяжей многослойного эпителия. Дистальная часть зачатков III пары, утолщаясь, образует тело тимуса, а проксимальная - вытягивается, подобно выводному протоку экзокринной железы. В дальнейшем тимус обособляется от жаберного кармана. Правый и левый зачатки сближаются и срастаются. На 7-й нед развития в эпителиальной строме тимуса человека появляются первые лимфоциты. На 8-11-й нед врастающая в эпителиальную закладку органа мезенхима с кровеносными сосудами подразделяет закладку тимуса на дольки. На 11-12-й нед развития плода человека происходит дифференцировка лимфоцитов, а на поверхности клеток появляются специфические рецепторы и антигены. На 3-м мес происходит дифференцировка органа на мозговую и корковую части, причем последняя обильнее инфильтрируется лимфоцитами, и первоначальная типичная эпителиальная структура зачатка становится трудноразличимой. Эпителиальные клетки пласта раздвигаются и остаются связанными друг с другом только межклеточными мостиками, приобретая вид рыхлой сети. В мозговом веществе появляются своеобразные структуры - так называемые слоистые эпителиальные тельца. Образующиеся в результате митотического деления Т-лимфоциты мигрируют затем в закладки лимфатических узлов (в тимусзависимые зоны) и другие периферические лимфоидные органы. В течение 3-5 мес наблюдаются дивергентная дифференцировка клеток и появление различных типов ретикулярных эпителиоцитов (периваскуляр-ных, подкапсульных, питающих и др.). Формирование тимуса завершается к 6 мес, когда некоторые типы ретикулярных эпителиоцитов органа начинают секретировать гормоны, а вне тимуса появляются дифференцированные формы - Т-киллеры, Т-супрессоры, Т-хелперы. В первые 15-17 сут после рождения наблюдаются массовое выселение Т-лимфоцитов из тимуса и резкое повышение активности внетимусных лимфоцитов. К моменту рождения масса тимуса равна 10-15 г. В период половой зрелости организма его масса максимальна - 30-40 г, далее наступает возрастная инволюция.
Строение. Снаружи тимус покрыт соединительнотканной капсулой. От нее внутрь отходят перегородки, разделяющие его на дольки. В каждой дольке различают корковое и мозговое вещество. Долька органа включает эпителиальную ткань, состоящую из отростчатых клеток - ретикулярных эпителиоцитов, а также клеток моноцитоидного происхождения. Для всех ретикулярных эпителиоцитов характерно наличие десмосом, тоно-филаментов и белков кератинов, продуктов главного комплекса гистосовме-стимости I и II классов в составе плазматической мембраны. Корковое вещество (cortex) - периферическая часть долек, содержит Т-лимфоциты, которые густо заполняют просветы сетевидной эпителиальной основы. В подкапсулярной зоне коркового вещества находятся крупные лимфоидные клетки - лимфобласты - предшественники Т-лимфоцитов, мигрировавшие сюда из красного костного мозга. Мозговое вещество (medulla) дольки на гистологических препаратах имеет более светлую окраску, так как по сравнению с корковым веществом содержит меньшее количество лимфоцитов. Лимфоциты этой зоны представляют собой рециркулирующий пул Т-лимфоцитов и могут поступать в кровь и выходить из кровотока через посткапиллярные венулы.
Возрастная и акцидентальная инволюция тимуса. Тимус достигает максимального развития в раннем детском возрасте. В период от 3 до 20 лет отмечается стабилизация его массы. В более позднее время происходит обратное развитие (возрастная инволюция) тимуса. Это сопровождается уменьшением количества лимфоцитов, особенно в корковом веществе, появлением липидных включений в соединительнотканных клетках и развитием жировой ткани. Слоистые эпителиальные тельца сохраняются гораздо дольше. В редких случаях тимус не претерпевает возрастной инволюции (status thymicolymphaticus). Обычно это сопровождается дефицитом глюкокортикоидов коры надпочечников. Такие люди отличаются пониженной сопротивляемостью инфекциям и интоксикациям. Особенно увеличивается риск развития опухолей. Временная, быстрая, или акцидентальная, инволюция может наступить в связи с воздействием на организм различных чрезвычайно сильных раздражителей (травма, интоксикация, инфекция, голодание и др.). При стресс-реакции происходят выброс Т-лимфоцитов в кровь и массовая гибель лимфоцитов в самом органе, особенно в корковом веществе. В связи с этим становится менее заметной граница коркового и мозгового вещества. Кроме лимфоцитолиза, наблюдается фагоцитоз макрофагами внешне не измененных лимфоцитов. Биологический смысл лимфоцитолиза окончательно не установлен. Вероятно, гибель лимфоцитов является выражением селекции Т-лимфоцитов. Одновременно с гибелью лимфоцитов происходит разрастание эпителиальной части органа. Эпителиоциты набухают, в цитоплазме появляются секретоподобные капли, дающие положительную реакцию на гликопро-теины. В некоторых случаях они скапливаются между клетками, образуя подобие фолликулов. Тимус вовлекается в стресс-реакции вместе с надпочечниками. Увеличение в организме количества гормонов коры надпочечника, в первую очередь глюкокортикоидов, вызывает очень быструю и сильную акциденталь-ную инволюцию тимуса.
Строение периферических органов иммунопоэза
8. Лимфатические узлы: особенности развития, строения и функции. Возрастные изменения
Лимфатические узлы располагаются по ходу лимфатических сосудов, являются органами лимфоцитопоэза, иммунной защиты и депонирования протекающей лимфы. В лимфатических узлах происходят антигензависимая пролиферация (клонирование) и дифференцировка Т- и В-лимфоцитов в эффекторные клетки, образование клеток памяти. Обычно лимфатические узлы с одной стороны имеют вдавление. В этом месте, называемом воротами, в узел входят артерии
и нервы, а выходят вены и выносящие лимфатические сосуды. Сосуды, приносящие лимфу, входят с противоположной, выпуклой стороны узла. Благодаря такому расположению узла по ходу лимфатических сосудов он является не только кроветворным органом, но и своеобразным фильтром для оттекающей от тканей жидкости (лимфы) на пути в кровяное русло.
Строение. Снаружи узел покрыт соединительнотканной капсулой, несколько утолщенной в области ворот. В капсуле много коллагеновых и мало эластических волокон. Кроме соединительнотканных элементов, в ней главным образом в области ворот располагаются отдельные пучки гладких мышечных клеток, особенно в узлах нижней половины туловища. Внутрь от капсулы через относительно правильные промежутки отходят тонкие соединительнотканные перегородки, или трабекулы, анастомозирующие между собой в глубоких частях узла. Можно различить периферическое, более плотное корковое вещество, состоящее из лимфатических узелков, паракортикальную (диффузную) зону, а также центральное светлое мозговое вещество, образованное мозговыми тяжами и синусами. Большая часть кортикального слоя и мозговые тяжи составляют область заселения В-лимфоцитов (В-зона), а паракортикальная,
тимусзависимая зона содержит преимущественно Т-лимфоциты (Т-зона). Корковое вещество. Характерным структурным компонентом коркового вещества являются лимфатические узелки.
В ретикулярном остове узелков проходят толстые, извилистые ретикулярные волокна, в основном циркулярно направленные. В петлях ретикулярной ткани залегают лимфоциты, лимфобласты, макрофаги и другие клетки. В периферической части узелков находятся малые лимфоциты в виде короны. Лимфатические узелки покрыты ретикулоэндотелиальными клетками, лежащими на ретикулярных волокнах. Среди ретикулоэндотелиальных клеток много фиксированных макрофагов. Центральная часть узелков состоит из лимфобластов, типичных макрофагов, «дендритных клеток», лимфоцитов. Лимфобласты обычно находятся в различных стадиях деления, вследствие чего эту часть узелка называют герминативным центром, или центром размножения. Паракортикальная зона. На границе между корковым и мозговым веществом располагается паракортикальная тимусзависимая зона. Она содержит главным образом Т-лимфоциты. Микроокружением для лимфоцитов паракортикальной зоны является разновидность макрофагов, потерявших способность к фагоцитозу, -- «интердигитирующие клетки». Мозговое вещество. От узелков и паракортикальной зоны внутрь узла, в его мозговое вещество, отходят мозговые тяжи, анастомозирующие между собой. В основе их лежит ретикулярная ткань, в петлях которой находятся В-лимфоциты, плазматические клетки и макрофаги. Здесь происходит созревание плазматических клеток.
9. Селезенка: развитие, строение функциональное значение. Особенности кровоснабжения, эмбрионального и постэмбрионального кроветворения в селезенке. Т- и В-зоны
Селезенка -- важный кроветворный (лимфопоэтический) и защитный орган, принимающий участие как в элиминации отживающих или поврежденных эритроцитов и тромбоцитов, так и в организации защитных реакций от антигенов, которые проникли в кровоток, а также в депонировании крови. В селезенке происходят антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов и образование антител, а также выработка веществ, угнетающих эритропоэз в красном костном мозге.
Строение. Селезенка человека покрыта соединительнотканной капсулой и брюшиной. Наиболее толстая капсула в воротах селезенки, через которые проходят кровеносные и лимфатические сосуды. Капсула состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна. Между волокнами залегает небольшое количество гладких мышечных клеток. Внутрь от капсулы отходят трабекулы селезенки, которые в глубоких частях органа анастомозируют между собой. В трабекулах селезенки человека немного гладких мышечных клеток. Эластические волокна в трабекулах более многочисленны, чем в капсуле. В селезенке различают белую пульпу и красную пульпу. В основе пульпы селезенки лежит ретикулярная ткань, образующая ее строму. Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов.
Васкуляризация. В ворота селезенки входит селезеночная артерия, которая разветвляется на трабекулярные артерии. От трабекулярных артерий отходят пульпарные артерии. Недалеко от трабекул в адвентиции пульпарных артерий появляются периартериальные лимфатические влагалища и лимфатические узелки. Центральная артерия, проходящая через узелок, отдает несколько гемокапилляров и разветвляется на несколько кисточковых артериол. Дистальный конец этой артериолы продолжается в эллипсоидную (гильзовую) артериолу. Далее следуют короткие артериальные гемокапилляры. Большая часть капилляров красной пульпы впадает в венозные синусы (закрытое кровообращение), однако некоторые могут непосредственно открываться в ретикулярную ткань (открытое кровообращение). Закрытое кровообращение -- путь быстрой циркуляции и оксигенации тканей. Открытое кровообращение -- более медленное, обеспечивающее контакт форменных элементов крови с макрофагами. Отток венозной крови из пульпы селезенки совершается по системе вен.
Особенности кроветворения. Универсальный кроветворный орган в первой половине эмбриональной жизни представляет собой селезенка. В ней развиваются все клетки крови. По мере роста плода образование эритроцитов в селезенке и в печени угасает, и этот процесс перемещается в костный мозг, который впервые закладывается в конце 2-го месяца эмбриональной жизни в ключицах, а позднее -- и во всех других костях.
T- и B-зоны. В лимфатическом узле можно различить периферическое, более плотное корковое вещество, состоящее из лимфатических узелков, паракортикальную (диффузную) зону, а также центральное светлое мозговое вещество, образованное мозговыми тяжами и синусами. Большая часть кортикального слоя и мозговые тяжи составляют область заселения В-лимфоцитов (В-зона), а паракортикальная, тимусзависимая зона содержит преимущественно Т-лимфоциты (Т-зона).
Эндокринная система
1. Эндокринная система. Морфофункциональная характеристика. Классификация. Понятие о клетках-мишенях и рецепторах к гормонам
Эндокринная система -- совокупность структур: органов, частей органов, отдельных клеток, секретирующих в кровь и лимфу гормоны. Эндокринная система совместно с нервной системой осуществляет регуляцию и координацию функций организма. В состав эндокринной системы входят специализированные эндокринные железы, или железы внутренней секреции, лишенные выводных протоков, но обильно снабженные сосудами микроциркуляторного русла, в которые выделяются продукты секреции этих желез. Одиночные эндокринные клетки рассеяны по разным органам и тканям организма. Подавляющее большинство гормонов принадлежит к белкам (пептиды, олигопептиды, гликопептиды) и производным аминокислот, часть -- к стероидам (половые гормоны и гормоны коры надпочечников).
Различают центральные и периферические отделы:
I. Центральные регуляторные образования эндокринной системы
1. Гипоталамус (нейросекреторные ядра)
2. Гипофиз (аденогипофиз и нейрогипофиз)
3. Эпифиз
II. Периферические эндокринные железы
1. Щитовидная железа
2. Околощитовидные железы
3. Надпочечники (корковое и мозговое вещество)
III. Органы, объединяющие эндокринные и неэндокринные функции
1. Гонады (семенники, яичники)
2. Плацента
3. Поджелудочная железа
IV.Одиночные гормонпродуцирующие клетки -эндокринные клетки в разных отделах пищевариткльной, дыхательной и нервной систем.
1. Нейроэндокринные клетки группы неэндокринных органов -- APUD-серия
2. Одиночные эндокринные клетки, продуцирующие стероидные и другие гормоны.
2. Эпифиз: источники развития, строения и функции. Понятие об эпиталамо-эпифизарной системе
Эпифиз возникает у зародыша человека на 5-6-й неделе внутриутробного развития как выпячивание крыши промежуточного мозга, т.е. развивается как часть ЦНС, приобретающая способность к гормонообразованию. Снаружи эпифиз одет тонкой соединительнотканной капсулой, от которой отходят разветвляющиеся перегородки, образующие строму железы и разделяющие паренхиму на неотчётливые дольки. Паренхима эпифиза образована двумя видами клеток - пинеальными и нейроглиальными. В железистой деятельности эпифиза сочетаются выработка и секреция как нейроаминов, так и белковых гормонов, что свидетельствует о принадлежности эпифизарных пинеалоцитов к эндокринным клеткам APUD-серии. Гормоны, вырабатываемые эпифизом: вазопрессин, вазотоцин, пинеальный антигонадотропин.
3. Клетки АПУД-системы, их роль в организме, их гистофизиологическая характеристика
Для клеток APUD-серии характерно присутствие в них нейроаминов (например, серотонина), катехоламинов и других биогенных аминов, которые выявляются благодаря специфической флюоресценции после обработки в парах формальдегида и просмотра препаратов в ультрафиолетовых лучах; поглощение предшественников аминов при введении их в организм (например, 5-окситриптофана, диоксифенилаланина и др.); декарбоксили-рование аминов. Пептидные гормоны выявляются преимущественно имму-ноцитохимическими методами. В клетках APUD-серии определяется высокое содержание ряда ферментов (эстераз, холинэстераз, альфа-глицерофосфатдегидрогеназ). Иными словами, клетки данной серии сочетают признаки нервных и эндокринных клеток. Гистогенетические и гистофизиологические различия не дают оснований для объединения всех так называемых апудоцитов в единую (генетически) клеточную систему. Несмотря на сходство по некоторым, главным образом гистохимическим, признакам, эндокринные клетки неэндокринных органов являются составными элементами соответствующих тканей, образуя в этих тканях линии дивергентной клеточной дифференцировки, или клеточные диффероны. По этой причине различают клетки APUD-серии: производные нейроэктодермы (нейроэндокриноциты гипоталамуса, эпифиза, пептидергические нейроны ЦНС и ПНС); производные кожной эктодермы (клетки Меркеля, эндокриноциты APUD-серии аденогипофиза); производные кишечной энтодермы (эндокриноциты гастроэнтеропанкреати-ческой системы); производные мезодермы (клетки Лейдига, эндокриноциты теки фолликула яичника) и др.
4. Понятие о гипоталамо-гипофизарной системе, ее взаимосвязях. Гипофиз: источники и основные этапы эмбрионального развития. Клеточный состав адено- и нейрогипофиза. Морфофункциональная характеристика аденоцитов, их участие в регуляции функций организма
Гипофиз состоит из аденогипофиза (передняя доля) и нейрогипофиза (задняя доля). Нейрогипофиз: гормоны не синтезируются: здесь лишь происходит поступление в кровь нейрогормонов, образованных в гипоталамусе, АДГ и окситоцина. Три компонента. В задней доле гипофиза нет секреторных клеток. Имеются три компонента. Питуициты - мелкие глиальные клетки, имеют многочисленные отростки, образующие строму. Кровеносные сосуды - многочисленны, среди них преобладают капилляры. Аксоны нервных клеток гипоталамуса - образуют многочисленные пучки и кончаются накопительными тельцами.
Аденогипофиз: гормоны: Гонадотропные гормоны (стимулируют гонады): фолликулостимулирующий гормон (ФСГ), лютеинизирующий гормон (ЛГ), или лютропин, лактотропный гормон (ЛТГ), пролактин, или лютеотропный гормон. Действие: ФСГ стимулирует в яичниках - рост фолликулов, в семенниках - рост семенных канальцев и сперматогенез. ЛГ стимулирует в яичниках - окончательное созревание фолликула и секрецию эстрогенов, в семенниках - секрецию тестостерона. ЛТГ стимулирует выработку прогестерона жёлтым телом яичника, секреторную активность молочных желёз. Гормоны: Гормоны, стимулирующие другие (не половые) железы: тиреотропный гормон (ТТГ), адренокортикотропный гормон (АКТГ). Действие: ТТГ стимулирует образование и секрецию гормонов щитовидной железы (тироксина и др.). АКТГ стимулирует образование гормонов в коре надпочечников.
5. Гипоталамус. Морфофункциональная характеристика. Нейросекреторные отделы. Источники развития и строение. Регуляция функций гипоталамуса
Гипоталамус является высшим нервным центром регуляции эндокринных функций. Он контролирует висцеральные функции организма и объединяет эндокринные механизмы регуляции с нервными, будучи мозговым центром симпатического и парасимпатического отделов вегетативной нервной системы. Субстратом объединения нервной и эндокринной систем являются нейросекреторные клетки, которые располагаются в нейросекреторных ядрах гипоталамуса. В гипоталамо-аденогипофизарной системе аккумулируются аденогипофизотропные нейрогормоны -- либерины и статины, которые затем поступают в портальную систему гипофиза. В гипоталамо-нейрогипофизарной системе нейрогемальным органом оказывается нейрогипофиз (задняя доля
...Подобные документы
Определение эукариотов и прокариотов (ядерных и безядерных организмов). Ознакомление с характеристиками растительной, животной, грибной клеток. Изучение органоидов и включений как структурных компонентов клетки. Строение плазматической мембраны.
презентация [3,9 M], добавлен 09.11.2014История развития клеточной теории, ее эволюция. Строение и функции оболочки клетки, характеристика оболочки, цитоплазмы, ядра. Роль плазматической мембраны и аппарата Гольджи в жизнедеятельности клеток. Рибосомы и митохондрии, их функции и состав.
реферат [529,8 K], добавлен 16.08.2009Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.
лекция [44,4 K], добавлен 27.07.2013Клетка как структурно-функциональная единица развития живых организмов. Мембранные и немембранные компоненты: лизосомы, митохондрия, пластиды, вакуоли и рибосомы. Эндоплазматическая сеть и комплекс Гольджи. Строение животной клетки. Функции органоидов.
презентация [3,5 M], добавлен 07.11.2014Виды и формы клеток. Структурные компоненты клетки. Особенности биологической мембраны. Характеристика цитоплазмы и ее основных органоидов. Функции митохондрий, эндоплазматической сети и аппарата Гольджи. Роль лизосом, центриолей и микротрубочек.
презентация [7,2 M], добавлен 06.06.2012Роль стромы и микроокружения кроветворных органов в образовании и развитии клеток крови. Теории кроветворения, постоянство состава клеток крови и костного мозга. Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.
реферат [1,1 M], добавлен 07.05.2012Структурная и функциональная единица жизнедеятельности одноклеточного и многоклеточного организмов. Многообразие клеток и тканей. Основные части в строении клетки. Клеточный цикл жизни клетки. Эпителиальные, соединительные, мышечные и нервные ткани.
реферат [20,4 K], добавлен 18.10.2013Изучение клеточного уровня организации жизни. Сущность и строение эукариотической клетки - открытой системы, связанной с окружающей средой обменом веществ и энергии. Взаимосвязь строения и функций органоидов клеток: цитоплазмы, ядра, лизосом, митохондрий.
презентация [954,6 K], добавлен 26.02.2012Цитоплазма и ее структурные компоненты. Немембранные, одномембранные, двумембранные органеллы. Выполнение жизненно важных функций клеток. Синтез и накопление энергии в виде АТФ. Регуляция водного обмена. Единая внутриклеточная циркуляторная система.
реферат [84,2 K], добавлен 08.03.2017Коллоидно-химическая физиология человека. Особенности коллоидной системы клеток. Коллоидные свойства мембран. Переходы гиалоплазмы из состояния золя в гель. Коллоидная среда ядра. Характеристика состава лимфы. Универсальность соединительной ткани.
презентация [1,8 M], добавлен 18.02.2014Химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Положения клеточной теории по М. Шлейдену и Т. Шванну.
презентация [1,3 M], добавлен 17.12.2013Особенности строения клеток прокариот и эукариот. Структура фосфолипидного бислоя. Связи в молекуле фосфолипида, расщепляемые разными классами фосфолипаз. Липидный состав плазматической мембраны. Обзор основных способов переноса веществ через мембраны.
презентация [8,1 M], добавлен 26.03.2015Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.
учебное пособие [76,4 K], добавлен 12.12.2009Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.
реферат [5,5 M], добавлен 01.12.2016Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.
презентация [6,8 M], добавлен 27.12.2011Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.
контрольная работа [47,7 K], добавлен 22.12.2014Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.
презентация [2,9 M], добавлен 26.11.2013Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.
презентация [1,4 M], добавлен 19.10.2013Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.
презентация [2,1 M], добавлен 12.02.2017Клетка как единая система сопряженных функциональных единиц. Гомологичность клеток. Размножение прокариотических и эукариотических клеток. Роль отдельных клеток во многоклеточном организме. Разнообразие клеток в пределах одного многоклеточного организма.
реферат [28,6 K], добавлен 28.06.2009