Введение в биохимические процессы

Изучение процессов биокатализа. Строение и функции нуклеиновых кислот. Сущность обмена белков и липидов. Превращения углеводов. Роль гормонов, нейромедиаторов, витаминов и минеральных веществ. Биохимические процессы в печени, крови и нервной ткани.

Рубрика Химия
Вид шпаргалка
Язык русский
Дата добавления 04.02.2015
Размер файла 539,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По современным же представлениям, ткань-мишень - это ткань, в которой имеются рецепторы к данному гормону.

Концентрация гормонов значительно ниже, чем других БАВ, поэтому клетка-мишень должна отличить гормоны от других соединений, что осуществляется с помощью рецепторов - молекул узнавания. Связывание гормона с рецептором основано на комплиментарности какого-то участка мембраны. G+RGRG+R Комплекс "гормон-рецептор" может быть более активен, чем просто гормон.

Свойства рецепторов: связывают гормоны, генерируют сигналы (усиливают сигналы гормона).

Гормоны - это межклеточные регуляторы рецепторного действия (включая и гормоны и нейромедиаторы).

Классификация гормонов

Существует несколько видов классификации.

По месту образования гормонов:

1. гормоны гипоталамуса;

2. гормоны гипофиза;

3. гормоны щитовидной железы;

4. гормоны поджелудочной железы;

5. гормоны паращитовидных желез;

6. гормоны надпочечников;

7. гормоны половых желез;

8. гормоны местного действия.

По химическому строению:

1. белково-пептидные гормоны: гормоны гипоталамуса, гипофиза, поджелудочной железы, паращитовидных желез;

2. производные аминокислот: адреналин, норадреналин, тироксин, трийодтиронин;

3. стероиды: в их основе лежит структура циклопентанпергидрофенантрена, образуются из холестерина (половые гормоны, коры надпочечников).

По механизму действия (по расположению рецепторов):

1. гормоны, действующие через внутриклеточный рецептор - липофильные гормоны - стероиды и тиреоидные гормоны;

2. гормоны, действующие через рецепторы, находящиеся на поверхности клетки - гидрофильные гормоны. Они действуют через внутриклеточный посредник - мессенджер.

Гормон - первый посредник, а цАМФ, ионы Са 2+, фосфатидилинозиды - вторые (чаще цАМФ, которая образуется из АДФ) посредники. [рис. цАМФ]

Механизм действия гормонов

Липофильные гормоны. Гормон диффундирует через плазматическую мембрану и связывается внутренними рецепторами, образуется комплекс "гормон-рецептор", который активируется и действует на ДНК. G+RGRGR*ДНК. В ДНК выделяют гормон-чувствительный элемент (ГЧЭ). Под его влиянием изменяется транскрипция, что влияет на деградацию мРНК. Гормоны влияют на процессинг белка. Гормоны действуют непосредственно на ДНК, активируют ферменты, стимулируя их синтез.

Гидрофильные гормоны. Самый распространенный второй посредник - цАМФ-аденилатциклазная система. Она состоит из 2 частей: собственно аденилатциклазный компонент и протеинкиназный компонент.

В плазматической мембране находятся рецепторы 2 типов: Rs - стимулирующий и Ri - ингибирующий. Внутри мембран находится G-белок (Gs, Gi) (читается джи-белок). G-белок распадается на и субъединицы, которые могут взаимодействовать между собой. -субъединица и ГТФ действуют на аденилатциклазу, превращая ее в активную форму. Эта активная аденилатциклаза находится на внутренней поверхности ЦПМ. Под влиянием АЦ АТФ превращается в цАМФ+ФФн. Разрушается цАМФ с помощью фермента - фосфодиэстеразы.

После образования АЦ включается протеинциклазный компонент.

цАМФ + протеинкиназа (фермент, вызывающий фосфорилирование других белков) активированая протеинкиназа.

Протеинкиназа - тетрамер, содержащий 2 субъединицы R (регуляторная субъединица) и 2 субъединицы C (каталитическая субъединица).

R2C2+4цАМФR2(4цАМФ) +2C (активная протеинкиназа).

Активная протеинкиназа вызывает фосфорилирование белков.

Белок+ АТФ(над стрелкой 2С) фосфопротеин (серин-фосфат, треонин-фосфат) +АДФ.

В результате образования фосфорилированных белков могут быть:

1. усиленный распад гликогена: фосфорилаза Вфосфорилаза А;

2. изменение транспорта ионов;

3. изменение метаболизма углеводов, липидов;

4. регулируется генная транскрипция.

Таким образом, фосфорилирование белков является важнейшим регуляторным механизмом.

Ионы Са 2+ Образуют соединение с белком - кальмодулин. Комплекс Са 2+-кальмодулин активирует ферменты (аденилатциклазу, фосфодиэстеразу, Са 2+-зависимую протеинкиназу). Есть группа гормонов, для которой второй посредник неизвестен - инсулин, гормон роста, пролактин.

Гормоны центральных желез - гипоталамуса и гипофиза

Раздражитель действует на ЦНС, импульсы передаются в гипоталамус, который выделяет регулирующие факторы - либерины и статины. Эти факторы действуют на аденогипофиз, который выделяет тропные гормоны. Тропные гормоны действуют на периферические эндокринные железы, а те, в свою очередь, на ткани-мишени, в которых формируется физиологический или биохимический ответ. [можно оформить в виде вертикальной схемы со стрелочками] Также существует обратная связь между периферическими железами и тропными гормонами.

Гормоны гипоталамуса поступают в гипофиз через портальную систему сосудов.

Гормоны гипоталамуса:

1. кортикотропин - релизинг-гормон (кортиколиберин) - КРГ - влияет на секрецию АКТГ и выделение эндорфинов;

2. тиреотропин - релизинг-гормон (тиреолиберин) - ТРГ - влияет на секрецию ТТГ;

3. гонадотропин - релизинг-гормон - ГнРГ - влияет на секрецию лютеинизирующего (ЛГ) и фолликулстимулирующего (ФСГ) гормон;

4. гормон роста - релизинг-гормон - СТГ-РГ- влияет на секрецию гормона роста;

5. гормон, ингибирующий высвобождение гормона роста (соматостатин) - СС - тормозит секрецию гормона роста;

6. гормон, ингибирующий высвобождение пролактина (пролактинингибирующий гормон) - ПИГ - тормозит секрецию пролактина.

Многие гормоны гипоталамуса образуются и в других отделах НС и в периферических тканях, например, соматостатин - образуется в поджелудочной железе. Посредником в действии релизинг-факторов является цАМФ, но может использоваться и Са 2+-фосфолипидный механизм. Гормоны гипоталамуса не только влияют на секрецию и выделение гормонов гипофиза, но и могут увеличивать и синтез гормонов.

Гормоны передней доли гипофиза (аденогипофиза):

1. простые белки;

2. гликопротеины;

3. пептиды семейства проопиомеланокортина (ПОМК).

Гормоны - простые белки:

1. гормон роста (ГР);

2. пролактин (ПРЛ);

3. плацентарный пролактин (лактоген) (ПЛ) - хорионический соматомаммотропин (ХС).

Эти гормоны стимулируют рост и лактацию. Содержат 190-195 аминокислот, они близки по строению и эффекту.

Гормон роста содержит 191 АК. Строение на 85 % аналогично строению холестерина (ХС) и на 35 %- с пролактином (ПРЛ). Концентрация гормона роста выше, чем других гормонов. Секретируется эпизодически. Влияют стрессовые состояния, белковая пища, физические упражнения - при этом повышается секреция.

Влияние на обмен веществ:

а) повышает синтез белка:

- повышает транспорт АК в клетки;

- повышает синтез РНК и ДНК;

- повышает интенсивность трансляции белков.

Гормон роста действует через инсулинподобный фактор роста (ИФР-1,2). ИФР-1 - это главный посредник в действии гормона роста.

б) влияет на углеводный обмен - антагонист инсулина:

- повышает содержание глюкозы в крови - гипергликемия;

- снижает периферическую утилизацию;

- повышает продукцию глюкозы в процессе глюконеогенеза.

в) влияет на липидный обмен, стимулирует липолиз:

- увеличивает скорость окисления ВЖК (в печени).

г) влияет на минеральный обмен:

- задерживает в организме кальций, магний, фосфор, стимулирует рост костной ткани.

Гиперсекреция гормона роста у детей проявляется в виде гигантизма, у взрослых - акромегалия. Дефицит - гипосекреция - приводит к карликовости.

Пролактин - белок, состоящий из 198 АК. Его секреция увеличивается при беременности и лактации. Участвует в инициации лактации и поддерживает ее уровень. Внутриклеточный медиатор для ПЛ не известен.

Хорионический соматомаммолиберин (плацентарный лактоген) - не выполняет строго специфических функций, стимулирует лактацию и лютеотропную активность. Эффекты метаболизма такие же, как и у гормона роста.

Гликопротеиновые гормоны гипофиза и плаценты:

1. тиреотропный гормон (ТТГ);

2. лютеинизирующий гормон (ЛГ);

3. фолликулостимулирующий гормон (ФСГ);

4. хорионический гонадотропин (ХГ или ВХГ или ХГЧ).

Первые 3 гормона вырабатываются гипофизом, а ХГ - плацентой.

Эти 4 гормона структурно близки, они действуют через цАМФ. ФСГ, ЛГ, ХГ - гонадотропины, т.е. они действуют на половые железы.

ФСГ связывается с клетками-мишенями (у женщин - фолликулярные клетки яичников, у мужчин - клетки Сертоли семенников). Стимулирует рост фолликулов, подготавливает их к действию ЛГ. В мужском организме ФСГ индуцирует синтез андроген-связывающего белка, стимулирует рост семенников, семенных канальцев, сперматогенез.

ЛГ (лютропин). Клетки-мишени - клетки желтого тела у женщины и клетки Лейдена у мужчин. ЛГ стимулирует образование прогестерона у женщин и тестостерона (из холестерина) у мужчин. У женщин стимулирует овуляцию.

ХГЧ - хорионический гонадотропин человека - плацентарный гормон, синтезируется в плаценте и по строению близок к ЛГ. Его содержание возрастает в крови и в моче после имплантации (ранний признак беременности).

ТТГ. Клетки-мишени - клетки щитовидной железы. Увеличивает синтез трийодтиронина (Т 3) и тироксина (Т 4). Стимулирует включение йода и гидролиз тиреоглобулина с образованием трийодтиронина и тироксина. ТТГ увеличивает синтез белка в ЩЖ, синтез нуклеиновых кислот, что приводит к увеличению числа и размеров тиреоидных клеток. Образование ТТГ зависит от уровня периферических гормонов - Т 3 и Т 4. Если их концентрация увеличивается, то синтез ТТГ снижается.

Семейство проопиомеланокортина (ПОМК)

ПОМК - это молекула-предшественник, состоит из 285 АК-остатков. Этот белок гидролизуется до пептидов, которые и имеют гормональный эффект.

Выделяют 3 группы пептидов:

1. АКТГ (адренокортикотропный гормон) Из него могут образовываться -МСГ (меланоцитстимулирующий гормон) и кортикотропиноподобный пептид;

2. -липотропин - из него образуются -липотропин, -МСГ, -эндорфины (из него - -эндорфины, -эндорфины);

3. N-концевой пептид, из него образуется -МСГ.

АКТГ - полипептид, состоит из 39 АК. Клетки-мишени - клетки коры надпочечников. Повышает синтез стероидов коры надпочечников за счет превращения холестерола в прегненалон. Его содержание значительно возрастает - это предшественник кортикостероидов. Повышает синтез белков и РНК в коре надпочечников. Внутриклеточный посредник - цАМФ.

АКТГ стимулирует синтез аденилатциклазы в надпочечниках и жировой ткани, следовательно, интенсивность липолиза повышается. При избытке АКТГ - синдром Кушинга - повышается пигментация кожи, наблюдается отрицательный азотистый баланс, отрицательный баланс К и Р, но задерживается в организме натрий, что приводит к развитию отеков, повышению давления. Гиперсекреция АКТГ повышает уровень глюкозы в крови и может развиться стероидный диабет, повышается уровень свободных жирных кислот в крови, так как повышается липолиз - это характерно для стрессовых ситуаций.

-липотропин - стимулирует липолиз.

-эндорфины - в гипофизе они ацилированны и неактивны, а в ЦНС они свободны и проявляют активность. Они выполняют нейромедиаторную функцию и нейрорегуляторную. Эндорфины имеют те же рецепторы, что и морфины. Эндорфины регулируют чувство удовольствия (счастья). Применение различных опиатов приводит к увеличению числа рецепторов и возникает зависимость от внешних веществ (если количество рецепторов снижается).

МСГ - стимулирует меланогенез, т.е. образование меланоцитов и меланина.

Гормоны задней доли гипофиза (нейрогипофиза):

- вазопрессин (антидиуретический гормон);

- окситоцин.

Синтезируются в гипоталамусе, а выделяются из задней доли гипофиза.

Вазопрессин - по структуре пептид, состоящий из 9 АК.

Эти гормоны влияют на сокращения гладкой мышечной ткани, но клетки-мишени различны. Для вазопрессина это клетки сосудов и дистальных извитых канальцев и извитых трубочек почек. В связи с этим вазопрессин повышает обратное всасывание воды (реабсорбцию) в почках, т.е. диурез снижается и повышается сокращение гладкомышечных клеток сосудов. Он действует через вторичный посредник - цАМФ. При нарушении секреции вазопрессина может развиться несахарный диабет (несахарное мочеизнурение - нарушается реабсорбция и объем воды повышается - полиурия, но в моче нет глюкозы).

Окситоцин действует на гладкомышечную ткань матки и молочных желез. Посредник неизвестен. Используется для стимуляции родовой деятельности, оптимизирует секрецию молока.

Гормоны щитовидной железы

В щитовидной железе образуются 3 гормона, 2 из которых близки по действию и образуются из тирозина:

1. 3,5,3'-трийодтиронин (Т 3);

2. 3,5,3',5'-тетрайодтиронин (Т 4);

3. тиреокальцитонин.

Т 3 и Т 4 образуются из АК - тирозина.

Образование тиреотропных гормонов происходит на белке тиреоглобулине. Сначала молекулы тирозина включаются в белковую структуру.

Особенности образования тиреоидных гормонов:

- они связаны со структурой тиреоглобулина в ЩЖ;

- для синтеза необходим йод.

ЩЖ способна концентрировать йод в виде йодидов, при этом происходит:

1. окисление йодидов с помощью тиреопероксидазы;

2. йодирование тирозина;

3. конденсация (соединение) йод-тирозина.

Тиреоглобулин, который содержит Т 3 и Т 4, разрушается с образованием этих гормонов под влиянием тиреотропного гормона (тиреоглобулин(над стрелкой ТТГ, под - KI) Т 3+Т 4. KI тормозит распад тиреоглобулина и поэтому применяется для лечения гипертериоза.

В кровь поступают свободные тиронины, но в крови они транспортируются с тироксин-связывающим глобулином (ТСГ). Биологически более активны свободные тиронины, но их немного.

Механизм действия тиреоидных гормонов

Тиреоидные гормоны проникают через плазматическую мембрану и связываются с ядерными рецепторами (рецепторы есть в ядре и цитоплазме). Сродство Т 3 в 10 раз больше, чем Т 4. Эти гормоны (Т 3, Т 4) индуцируют синтез белков, активируют транскрипцию мРНК.

Влияние на обмен веществ:

1. увеличивают поглощения кислорода почти во всех тканях, кроме мозга и половых желез;

2. повышают активность Na+,K+-АТФ-азы, но если активность повышается, концентрация АТФ снижается, следовательно усиливаются окислительные процессы;

3. снижают отношение кислорода к АТФ.

Тиреоидные гормоны повышают синтез белка, при их нормальной концентрации наблюдается положительный азотистый баланс, но при очень высокой концентрации этих гормонов проявляется обратный эффект.

Нарушения секреции

Гипофункция - гипотиреоз - у детей может привести к нарушению умственного и физического развития, кретинизм. У взрослых - микседема (слизистый отек). Развитие эндемичного зоба связано с недостатком йодидов в воде и пище. Железистая ткань не развивается, а вместо нее образуется соединительная ткань, что приводит к увеличению массы ЩЖ.

Гиперсекреция тиреоидных гормонов - гипертиреоз - проявляется в виде тиреотоксикоза - увеличение ЩЖ, но за счет железистой ткани. При этом повышаются окислительные процессы в организме. Наблюдается отрицательный азотистый баланс, потеря массы тела, повышается возбудимость, пучеглазие, дрожание конечностей.

Кальцитонин образуется в клетках ЩЖ. Это пептид, состоящий из 32 АК. Он снижают уровень Са 2+ в крови, но механизм действия недостаточно изучен.

Гормоны паращитовидных желез

Парат-гормон, состоит из 84 АК, регулирует уровень Са 2+, стимулирует выход кальция (и фосфора) из костей в кровь; Повышают реабсорбцию кальция в почках, но стимулируется выход фосфора; Стимулирует образование кальцитриола из витамина Д 3 в почках; Повышает всасывание кальция в кишечнике. Действует через цАМФ.

Гормоны поджелудочной железы (ПЖ)

ПЖ обладает и экзокринной и эндокринной функцией. В островках Лангерганса находятся клетки А, B, D, F. Инсулин - 70 % - B-клетки; глюкагон - 25 %- А-клетки; соматостатин - около 5 % - D-клетки; панкреатический полипептид (PP)- следы - F- клетки.

Инсулин - это полипептид, состоящий из 51 АК. Состоит из двух полипептидных цепей: А и B-цепи. Эти цепи соединяются дисульфидными мостиками. [рис. 2-х цепей. А-цепь на левом (N-конце) завершается ГЛИ, на правом (С-конце) - АСП, 21 АК; В-цепь слева ФЕН, справа ТРЕ, 30 АК. 2 дисульфидных мостика].

Инсулин синтезируется в виде проинсулина, который состоит из 84 АК - синтезируется в виде 1 полипептидной цепи. При превращении проинсулина в инсулин отщепляется С-цепь из 33 АК (проинсулининсулин+С-пептид).

Клетки-мишени - мышечная ткань, печень, жировая ткань. Рецепторы к инсулину находятся на поверхности клеток. Рецепторы могут подвергаться интернализации, т.е. проникать внутрь мембраны комплексов "инсулин- рецептор", что приводит к разрушению путем эндоцитоза. Это объясняется снижением чувствительности клеток организма к инсулину при ожирении, т.к. количество рецепторов снижается и возникает устойчивость к инсулину. Внутриклеточный медиатор к инсулину не известен. Инсулиновые рецепторы являются ферментами и повышают активность фосфодиэстеразы и снижают уровень цАМФ.

Влияние инсулина на метаболизм:

1. углеводный обмен:

- снижение уровня глюкозы;

- повышение транспорта глюкозы через мембрану мышц и жировую ткань, без повышения специфических переносчиков глюкозы в печень.

- в печени активируется глюкокиназа, т.е. глюкоза(над стрелкой инсулин) глюкозо-6-фосфат;

- инсулин повышает интенсивность утилизации глюкозы - гликолиз;

- активирует гликогенсинтазу, повышая синтез гликогена;

- снижает активность глюкозо-6-фосфатазы, т.е. глюкоза не выходит из печени;

- инсулин ингибирует глюконеогенез.

Т.е. инсулин стимулирует усвоение глюкозы организмом. 30-40 % глюкозы превращается в жиры, 50 % идет на гликолиз, а 10 % превращается в гликоген.

2. липидный обмен:

- стимулирует липогенез;

- ингибирует липолиз.

3. белковый обмен:

- повышает синтез белка;

- ингибирует распад белка;

- стимулирует транспорт АК в клетки;

- повышает транскрипцию мРНК;

- повышает пролиферацию клеток, усиливая факторы роста фибробластов, тромбоцитарного фактора роста и фактора роста эпидермиса.

Дефицит инсулина - гипосекреция - развитие сахарного диабета. Есть 2 вида сахарного диабета:

1. недостаток инсулина - инсулинзависимый сахарный диабет - 10 % (ИНЗСХ) - нарушение секреции инсулина в следствие генетических нарушений или поражение поджелудочной железы;

2. устойчивость к действию инсулина - инсулиннезависимиый сахарный диабет - 90 % (ИнНСД)- снижение количества рецепторов к инсулину за счет интернализации рецепторов. Наблюдается при ожирении и повышенном потреблении сахара.

Клинические проявления одинаковы:

- гипергликемия - в клетках углеводное голодание, распад белков и жиров, стимуляция глюконеогенеза;

- глюкозурия - содержание глюкозы в крови больше 10 ммоль/л;

- полиурия;

- полидипсия - избыточное потребление воды;

- полифагия - повышенный голод;

- кетоз;

- ацидоз (кетоацидоз);

- диабетическая кома.

Глюкагон - это полипептид, состоящий из 29 АК. Синтезируется в А-клетках поджелудочной железы. Клетки-мишени - печень. Рецепторы к глюкагону находятся на поверхности клетки, посредник - цАМФ. Глюкагон повышает уровень цАМФ, следовательно увеличивается протеинкиназа увеличивается количество фосфорилазы-В увеличивается количество фосфорилазы-А, которая действует на превращение гликогена в глюкозу.

Эти процессы активизируются в печени. Глюкагон повышает глюконеогенез, липолиз.

Панкреатический полипептид - функции неизвестны.

Инсулиноподобные факторы роста (ИФР) - не образуются в ПЖ, но близки по строению и функции к инсулину и влияют на рост и пролиферацию клеток. ИФР больше действуют на синтез белка и пролиферацию.

Соматостатин - образуется в гипоталамусе и в D-клетках ПЖ, а также в ЖКТ. Подавляет секрецию других гормонов ПЖ, т.е. обладает паракринным эффектом. Снижает секрецию гастрина в желудке, опорожнение желудка, снижает всасывание углеводов.

Гормоны коры и мозгового вещества надпочечников

Гормоны мозгового слоя - адреналин и норадреналин - производные тирозина.

Схема образования:

тирозин (оксигеназа, 1/2О 2)диоксифенилаланин (декарбоксилаза, -СО 2)дофамин (+О 2)норадреналин (+СН 3)адреналин].

Органы-мишени - печень, скелетные мышцы, сердечная мышца, слюнные железы, матка.

Механизм: через аденилатциклазную систему. Увеличивается цАМФ увеличение протеинкиназы увеличение фосфорилирования. Фосфорилазы действуют на превращение гликогена в глюкозу.

Адреналин действует и в печени, и в мышцах, вследствие чего повышается содержание глюкозы в крови, повышается содержания молочной кислоты. Адреналин повышает потребление кислорода, увеличивает липолиз, что приводит к росту количества свободных жирных кислот в крови. Повышает кровяное давление, частоту сердечных сокращений. Адреналин действует на 1, 2, 1 и 2-адренорецепторы. Если гормоны связаны с -рецепторами, то происходит активация цАМФ, если с -рецепторами - ингибирование цАМФ.

Гормоны коркового вещества надпочечников (кортикостероиды)

Известно более 30 гормонов-стероидов, т.е. производные циклопентанпергидрофенантрена:

1. глюкокортикоиды - оказывают влияние на углеводный обмен;

2. минералокортикоиды - на минеральный обмен;

3. половые гормоны.

Глюкокортикоиды: кортикостерон, кортизол (самый активный в организме человека), кортизон.

Клетки-мишени для глюкокортикоидов - печень, почки, лимфоидная ткань, соединительная ткань, мышцы.

Рецепторы находятся в цитозоле, проходят через мембрану и действуют на ген. Гормон ген белок.

Влияние на обмен веществ:

1. активация глюконеогенеза;

2. повышение уровня глюкозы в крови;

3. повышение синтеза гликогена в печени;

4. стимулируют липолиз в области конечностей и липогенез в области туловища и лица;

5. повышение окисления жирных кислот;

6. повышение образования кетоновых тел;

7. в печени увеличивается синтез белка, в мышцах, лимфоидной, соединительной тканях увеличивается распад белка;

8. противовоспалительное действие, вызывают инволюцию лимфоидной ткани;

9 антиаллергический эффект, подавляют образование антител;

10. подавление синтеза белка в соединительной ткани, задержка образования рубцов и спаек.

Использование глюкокортикоидов в клинике - противовоспалительные, при трансплантации органов для снижения образования рубцов и спаек. Глюкокортикоиды влияют и на минеральный обмен, но в меньшей степени.

Минералокортикоиды:

- диоксикортикостерон;

- альдостерон.

Клетки-мишени - дистальные канальцы почек. Рецепторы находятся внутри клеток - цитозольные рецепторы. Влияют на синтез белков, транспорт натрия через мембраны, т.е. повышают реабсорбцию натрия и хлоридов из первичной мочи, задерживая натрий в организме. Влияют на углеводный обмен, как и гипоталамус, но в меньшей степени.

Гипофункция коры надпочечников - болезнь Адиссона (бронзовая болезнь). Снижается устойчивость организма к стрессам, гипогликемия, потеря натрия и накопление калия, гипотония, мышечная слабость, утомляемость, повышение пигментации кожи, возможна гибель из-за нарушения водно-солевого обмена.

Гиперфункция - синдром Иценко-Кушинга.

Гормоны половых желез

Гонады - яйчники и семенники - железы смешанного типа. По химической природе их гормоны - стероиды. Андрогены (мужские) синтезируются в семенниках и коре надпочечников. Эстрогены (женские) - в яичниках и коре надпочечников. Синтезируются из холестерола, который образуется из Ац-КоА. Ац-КоА холестерол прегненолон прогестерон кортикостероиды. Из прогестерона также образуются андрогены (тестостерон), а из них - эстрогены.

Эстрогены: эстрадиол, эстрон (образуется из эстрадиола в плаценте), эстриол, прогестерон.

Андрогены: тестостерон, андростерон (образуется из тестостерона).

Органы-мишени для эстрадиолов - матка и молочные железы, для андрогенов - простата, семенные пузырьки, мышцы.

Механизм действия - цитозольный - гормоны соединяются с цитозольными рецепторами и действуют на ген.

Основной эффект - синтез специальных белков репродуктивной системы.

Влияние на обмен веществ

Эстрогены:

1. синтезируют специфические белки;

2. обуславливают положительный азотистый баланс;

3. активируют пентозный цикл;

4. препятствуют накоплению липидов в жировой ткани и печени.

Эстрогены имеют цикличность секреции: в фолликулярной фазе синтезируются эстрогены, в лютеиновой фазе - прогестерон.

Андрогены:

1. синтезируют специальные белки половой сферы;

2. стимулируют синтез мышечных белков;

3. стимулируют синтез белков печени и почек;

4. ускоряют развитие костной ткани;

5. ускоряют аэробное окисление;

6. обладают анаболическим эффектом;

7. влияют на развитие половых органов, вторичных половых признаков, половое влечение.

Витамины

К концу XIX века сложились представления, что основными компонентами пищи являются белки, жиры, углеводы и минеральные вещества. Но ряд наблюдений указывал на недостаточность только этих групп питательных веществ. (Напр., Лунин, 1880: при кормлении одной группы мышей естественными продуктами, а другой - белками, жирами, углеводами, полученными из этих же продуктов, гибель мышей во второй группе была значительно выше.)

В 1911 г. польский ученый Функ выделил в рисовых отрубях соединение, содержавшее аминогруппу, которое было необходимо для нормальной жизнедеятельности. Он назвал его витамином (от лат. vitae amine - амин жизни).

Витамины - это необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения, синтез которых в организме ограничен или отсутствует.

Отличительные признаки витаминов:

1) витамины не выполняют пластических функций;

2) витамины не играют энергетической роли (т.е. не используются как источник энергии);

3) витамины не синтезируются в организме или синтезируются в недостаточных количествах;

4) дефицит витаминов вызывает специфические нарушения обмена веществ с характерными клиническими проявлениями;

5) выполняют специфические функции, которые невозможно заменить другими органическими соединениями;

6) витамины необходимы в миллиграммах или микрограммах в сутки (!).

Классификация витаминов
Принята классификация по растворимости:
1) жирорастворимые (A, D, E, K);
2) водорастворимые (все остальные: В, С, Р, Н);
3) витаминоподобные вещества - синтезируются в организме, но в недостаточном количестве (парааминобензойная к-та, коэнзим Q, холин, инозит, пангамовая к-та).
Номенклатура витаминов представлена химическим названием и буквенным обозначением.
Напр., витамин А - ретинол, витамин РР - никотинамид или никотиновая кислота, витамин В 6 - пиридоксин, пиридоксаль или пиридоксамин.
Также существует клиническое название витамина, которое состоит из названия патологического проявления недостатка витамина с приставкой анти-. (напр., витамин А - антиксерофтальмический витамин, витамин D - антирахитический витамин).
Жирорастворимые витамины могут откладываться в печени в виде резервов (A, D, K), витамин Е может накапливаться в жировой ткани. Так как эти витамины нерастворимы в воде, то они не могут свободно проникать в кровь и выводиться с мочой. При избыточном поступлении этих витаминов могут развиваться токсические эффекты (в основном, витамина А и D).
Водорастворимые витамины выводятся с мочой, поэтому их избытка не наблюдается. Возможен небольшой резерв фолиевой к-ты и витамина В 12 в печени. Токсические эффекты не наблюдаются.
Роль витаминов в обмене веществ
1. витамины - предшественники коферментов и простетических групп ферментов.
Напр., В 1 - тиамин - входит в состав кофермента декарбоксилаз кетокислот в виде ТПФ (ТДФ), В 2 - рибофлавин - входит в состав коферментов дегидрогеназ в форме ФМН и ФАД, РР - никотинамид - входит в состав НАД и НАДФ - коферментов дегидрогеназ;
2. витамины - предшественники гормонов (витамин D3 - предшественник кальцитриола);
3. витамины могут использоваться для синтеза медиаторов (витамин С - для синтеза норадреналина и серотонина);
4. витамины участвуют в образовании гормонов (витамин С - в образовании кортикостероидов);
5. витамины необходимы для синтеза незаменимых АК (витамин В 12 - метионин).
Понятие о гиповитаминозах, авитаминозах и гипервитаминозах
Гиповитаминоз - патологическое состояние, связанное с недостатком витамина в организме.
Авитаминоз - патологическое состояние, вызванное отсутствием витамина в организме.
Полигиповитаминоз - патологическое состояние, связанное с недостатком нескольких витаминов в организме.
Гипервитаминоз - патологическое состояние, связанное с избытком каких-либо витаминов в организме (обычно витаминов А или D).
Чаще присутствует недостаточная витаминная обеспеченность, т.е. отсутствуют характерные клинические проявления, а лишь снижена работоспособность, повышена сонливость, увеличивается частота простудных заболеваний и их тяжесть, появляются заболевания сердечно-сосудистой системы и т.д.

Причины гиповитаминозов

1. Первичные: недостаток витамина в пище.

2. Вторичные:

а) снижение аппетита;

б) повышенный расход витаминов;

в) нарушения всасывания и утилизации, напр., энтероколиты, желчнокаменная болезнь;

г) химиотерапия (антибиотики, аспирин - недостаток фолиевой к-ты);

д) хирургические вмешательства;

е) физиотерапия и др.

3. Врожденные: отсутствие ферментов, катализирующих превращение провитамина в витамин (напр., каротин не превращается в ретинол - витамин А).

Причины недостаточной витаминной обеспеченности в современных условиях

Чешские исследователи выяснили, что при оптимальной диете человек не получает достаточное количество витаминов.

Причины:

1) снижение энерготрат с 3500-4000 ккал/сут до 2000-2500 ккал/сут за сто лет, из-за чего снижение количества пищи и, следовательно, уменьшение количества витаминов;

2) использование бедных витаминами продуктов (рафинированных и высококалорийных: сахар, белый хлеб, спирт);

3) использование рафинированных продуктов;

4) недостаточное потребление овощей и фруктов;

5) отсутствие централизованной системы витаминизации.

Т.о., рацион современного человека достаточен по калорийности, но не удовлетворяет его потребностей в витаминах.

Жирорастворимые витамины

Витамин А: Витамеры: А 1 - ретинол и А 2 - ретиналь.
Клиническое название: антиксерофтальмический витамин.
По химической природе: циклический непредельный одноатомный спирт на основе кольца -ионона.
Может разрушаться кислородом, т.е. является антиоксидантом.

Роль витамина А в метаболизме:

1. Участвует в росте и дифференцировке клеток эмбриона, развивающегося организма. Участвует в делении и дифференцировке быстро пролиферирующих тканей (хрящевые, костные, эпителиальные ткани), т.к. витамин А может инициировать репликацию и участвует в образовании хондроитинсульфата.

2. Участвует в фотохимическом процессе зрения. В состав зрительного пигмента родопсина входит 11-цис-ретиналь, который при освещении переходит в 11-транс-ретиналь, активирующий фосфодиэстеразу, которая расщепляет цГМФ, в результате чего ионные каналы мембраны закрываются, возникает гиперполяризация мембраны и генерируется нервный импульс. При этом родопсин разлагается на белок опсин и 11-транс-ретиналь. В темноте наблюдается регенерация родопсина:

транс-ретиналь (алкоголь-ДГ, НАД·Н 2 > НАД) транс-ретинол (изомераза) цис-ретинол (алкоголь-ДГ, НАД·Н 2 > НАД) цис-ретиналь (+опсин) родопсин

Гиповитаминоз А проявляется нарушением темновой адаптации. Если наблюдается в растущем организме, то имеет место задержка роста. Гиповитаминоз А может перерасти в авитаминоз А, проявляющийся гемеролопией ("ночной слепотой"). При недостатке витамина А нарушается эпителизация, наблюдается избыточное ороговение эпителия (сухость кожи, сухость роговицы глаз - ксерофтальмия). Ксерофтальмия может привести к развитию микрофлоры, кератомаляции (размягчению роговицы), затем к её помутнению и амблеопии (слепоте).

Причины гипо- и авитаминозов А:

- недостаток в пище

- нарушение всасывания в кишечнике

- заболевания печени, при которых провитамин (кератин) не превращается в витамин

- повышенная потребность в витамине А - у растущего организма, беременных, ночных водителей)

Суточная потребность витамина А 1,0-2,5 мг, а провитамина А (каротина) 2,0-4,0 мг.

Каротин (провитамин А) - димер витамина А. Содержится в растительных продуктах. (Различают альфа-, бета- и гамма-каротин.)

Источники витамина А:

- животные жиры (рыбий жир, печень, яичный желток, сливочное масло);

- каротин растительного происхождения (морковь, свекла, томаты, зеленый горошек).

Витамин D. Антирахитический витамин. Существуют два витамера:

D2 - эргокальциферол и D3 - холекальциферол.

Витамин D2 содержится в грибах. Витамин D3 синтезируется в организме под действием УФО (ультрафиолетового облучения):

7-дегидрохолестерол > холекальциферол (D3)

Роль витамина D в обмене веществ. Витамин D3 (холекальциферол) подвергается в организме превращению.

Он поступает в печень, где под действием 25-гидроксилазы превращается в 25-гидроксихолекальциферол, затем в почках под действием ПТГ и 1-гидроксилазы - в 1,25-дигидроксихолекальциферол (гормон кальцитриол).

Рис. Кальцитриол

Функции кальцитриола:

1. регулирует всасывание кальция и фосфора в кишечнике путем активации синтеза в энтероцитах кальций-связывающего белка (кальбиндина D);

2. в костях способствует минерализации ткани, поддержанию нормальной концентрации кальция и фосфора в межклеточном пространстве.

(повышает активность щелочной фосфатазы, повышает концентрацию кальций-связывающего белка и остеокальцина).

Гиповитаминоз D приводит к снижению уровня кальция в крови, снижению кальция и фосфора в межклеточном пространстве, нарушению минерализации костной ткани.

Авитаминоз D - рахит. Различают рахит I типа (при недостатке витамина D) и рахит II типа (при недостатке рецепторов). Проявляется рахит деформациями скелета ("рахитические четки", Х-образные или О-образные голени, килевидная грудная клетка).

Недостаток витамина D у взрослых сопровождается остеомаляцией, а в крови увеличивается активность щелочной фосфатазы.

Причины гиповитаминозов D:

- недостаток витамина D в пище

- недостаток УФ (солнечного) облучения

- недостаток парат-гормона

Суточная потребность вит. D 0,012-0,025 мг.

Источники витамина D: яичный желток, рыбий жир, сливочное масло (лучше летнее), печень, молоко.

Витамин Е. Устар.: антистерильный витамин, антиоксидантный энзим.
В химическом плане это альфа-, бета-, гамма- и дельта-токоферолы, но преобладающим является альфа-токоферол.
Витамин Е устойчив к нагреванию.

Роль витамина Е в обмене веществ:

1. регулирует интенсивность свободно-радикальных реакций. Препятствует перекисному окислению липидов биомембран;

2. повышает активность витамина А.

Гиповитаминоз Е специфической картины не имеет. Наиболее специфичны гемолитическая анемия недоношенных и патологии мембран.

Суточная потребность витамина Е 20-25 мг.

Источники витамина Е: растительные масла (!), а также печень, желток яиц, проросшие зерна; масло облепихи.

Витамин К. Антигеморрагический витамин.
Витамеры: К 1 - филлохинон и К 2 - менахинон.

Роль витамина К в обмене веществ. Это кофактор карбоксилирования глутаминовой кислоты (ГЛУ) в белке крови протромбине для его превращения в тромбин.

протромбин > тромбин [карбоксилирование гамма-углеродного звена остатка глутамата].

Антагонист витамина К - варфарин (крысиный яд), он близок по структуре к витамину К, является антикоагулянтом.

Витамин К поступает в организм с зелеными растениями (шпинат, крапива), жирами, а также синтезируется микрофлорой кишечника.

Гиповитаминоз К проявляется геморрагиями.

Авитаминоз К чаще наблюдается при нарушении всасывания его в кишечнике.

{водорастворимая форма витамина К - викасол}.

Водорастворимые витамины
Витамин С. Аскорбиновая кислота, антискорбутный витамин (скорбут = цинга).
Является лактоном. Легко окисляется:

О=С-¬ О=С-¬

| ¦ | ¦

НО-С ¦ -2Н О=С ¦

¦ О <===> | О

НО-С ¦ +2Н О=С ¦

| ¦ | ¦

НС-- НС--

| |

НО-СН НО-СН

| |

Н 2С-ОН Н 2С-ОН

Аскорбат дегидроаскорбат. Енольные гидроксилы неустойчивы, особенно в присутствии кислорода. В кислой среде витамин С сохраняется лучше.

Роль витамина С в обмене веществ:

1. участвует в реакциях гидроксилирования (ЛИЗ>ОЛИ, ПРО>ОПР), что требуется для "сшивок" молекул коллагена в соединительной ткани;

2. участвует в триптофана и диоксиметила с образованием нейромедиаторов (норадреналин и др.);

3. необходим для синтеза кортикостероидов;

4. необходим для образования нейромедиаторов.

Гиповитаминоз С проявляется поражением соединительной ткани - повышенная хрупкость сосудов, пипехии (точечные кровоизлияния на коже), кровоточивость десен.

Авитаминоз С - цинга (скорбут): кровоизлияния во внутренние органы, более выраженные повреждения соединительной ткани.

Суточная потребность витамина С 100-150 мг. Она возрастает при инфекционных заболеваниях, стрессовых состояниях, лактации, беременности - до 300 мг/сут.

Источники витамина С: овощи, фрукты, зеленые растения; главные - черная смородина, шиповник, грецкий орех, цитрусовые. В России основным источником его является картофель (10 мг/100 г) и квашенная капуста.

Причины гиповитаминоза С:

1. витамин С неустойчив;

2. он необходим в относительно больших количествах;

3. в организме отсутствуют запасы витамина С.

Витамин Р. Витамин проницаемости.
Витамеры: рутин, катехины, цитрин.
Это витамин-спутник витамина С.
Гиповитаминоз Р: поражение сосудов, нарушение их проницаемости.
Роль в обмене веществ. Витамин Р тормозит активность гиалуронидазы, чем сохраняет соединительную ткань. А также участвует в окислительно-восстановительных реакциях.
Потребность в витамине Р не установлена.
Витамин В 1. Тиамин, антиневритный витамин.
Тиамин устойчив в кислой среде (до 140єС), а в щелочной среде быстро разрушается.
Роль витамина В 1 в обмене веществ:
1. из него образуется ТПФ (тиаминпирофосфат) - кофермента декарбоксилаз кетокислот (пируват-ДК-комплекс, альфа-КГ-ДК) и транскетолазы;
2. участвует в передаче нервного импульса;
3. является коферментом транскетолазы.
Гиповитаминоз В 1: накопление ПВК и альфа-КГ в крови из-за нарушения их превращений, поражение нервной ткани из-за недостатка глюкозы.
Авитаминоз В 1 - болезнь бери-бери: полиневриты, отеки, сердечно-сосудистая недостаточность (иногда до некрозов), нарушения секреции и моторики ЖКТ (атония кишечника). Чаще развивается при хроническом алкоголизме, когда витамин В 1 не всасывается.
Суточная потребность витамина В 1 2-3 мг. Потребность возрастает при углеводной пище (0,5 мг витамина на каждые 1000 ккал).
Источники тиамина: дрожжи, хлеб грубого помола, каши, крупы (овсяная, гречневая, фасоль).
Витамин В 2. Рибофлавин
Устойчив в кислой среде, но разрушается в нейтральной и щелочной. Легко окисляется по двойной связи, что позволяет ему участвовать в о/в реакциях в виде коферментов (ФМН, ФАД):
- окисляет восстановленную форму НАД·Н (компонент НАД·Н-дегидрогеназы в дыхательной цепи),
- окисляет жирные к-ты, янтарную к-ту, аминокислоты.
Авитаминоз В 2: поражение эпителия слизистых, кожи, глаз; сухость слизистых губ, полости рта, трещины губ; дерматиты, сухость конъюнктивы, переходящая в конъюнктивиты, кератиты, васкуляризация глазных яблок.
Суточная потребность 2-4 мг.
Источники: дрожжи, печень; хлеб грубого помола, соя, яйца, молоко.
Витамин РР. Антипеллагрический витамин.
Витамеры: никотиновая к-та, никотинамид, ниацин.
Устойчив при кипячении.
Роль витамина РР в обмене веществ
Используется для синтеза НАД и НАДФ - коферментов дегидрогеназ.
Гиповитаминоз РР: усталость, слабость. Более выраженный - пеллагра: диарея, дерматиты, деменция (слабоумие).
Суточная потребность витамина РР 20-25 мг.
Источники: дрожжи, печень, грибы, соя, бобы, мясо, мука пшеничная грубого помола. Может синтезироваться в организме из аминокислоты триптофана при участии витамина В 6.
Поэтому гиповитаминоз РР бывает при белковом голодании и при гиповитаминозе В 6.
Витамин В 6. Антидерматитный витамин.
Рис. Пиридоксин > пиридоксаль > пиридоксамин (все три эти соединения обладают витаминным действием)
Роль витамина В 6 в обмене веществ:
1. он необходим для образования ПФ (пиридоксальфосфата) - кофермента амино-ТФ, декарбоксилаз АК, дезаминаз АК;
2. необходим для превращения триптофана в витамин РР;
3. нужен для превращения дельта-аминолевулиновой кислоты в гем.
{Т.е., вит. В 6 нужен для обмена аминокислот}
Гиповитаминоз В 6: анемия из-за нарушения обмена АК, плюс дерматиты, стоматиты, глосситы, конъюнктивиты.
Суточная потребность в витамине В 6 2-3 мг.
Источники: печень, дрожжи, хлеб грубого помола, горох. Также он синтезируется микрофлорой кишечника.
Гиповитаминоз возможен при длительном употреблении антибиотиков, особенно, противотуберкулезных препаратов.
Витамин В 9, В 10, ВС (фолиевая кислота)
Фолиевая кислота, фолацин. Антианемический витамин.
Роль фолиевой кислоты в обмене веществ. Участвует в транспорте одноуглеродных фрагментов (-СООН, -СН 3, СН=О): превращение урацила в тимин, этаноламина в холин; синтез АК метионина, серина, пуриновых оснований.
{Т.е., фолиевая кислота нужна для обмена белков и нуклеиновых кислот}.
Гиповитаминоз фолиевой кислоты: анемия, затем диарея.
Суточная потребность фолиевой к-ты 0,2 мг.
Источники: зеленые растения (шпинат, капуста), фасоль, печень, молоко, яйца; плюс синтезируется микрофлорой кишечника.
Причины недостатка фолиевой к-ты:
- использование антибиотиков;
- заболевания ЖКТ (кишечника);
- недостаточность белкового питания.
Особенно недостаток фолиевой к-ты проявляется при беременности (у 58 % беременных), им нужно до 0,6 мг/сут. Считается, что 98 % недоношенных и имбицильных детей обусловлено дефицитом фолиевой кислоты.
Витамин В 12. Кобаламин. Антианемический витамин.
Имеет красный цвет. На свету разлагается.
Роль кобаламина в обмене веществ
- транспорт метильных групп;
- участвует в транспорте водорода;
- превращение рибозы в дезоксирибозу;
- участвует в синтезе метионина.
{Т.е., кобаламин нужен для обмена белков и нуклеиновых кислот.}
Недостаток кобаламина: анемия, поражение нервной системы, снижение кислотности желудочного сока.
Суточная потребность в кобаламине 0,003 мг.
Источники: печень, рыба, яйца, молоко, + синтезируется микрофлорой. (в дрожжах - нет).
Недостаток кобаламина может возникать при заболеваниях желудка, в котором вырабатывается внутренний фактор Касла (транскоррин), необходимый для всасывания витамина В 12.
Витамин В 3. Пантотеновая кислота:
НОСН 2-С((СН 3)2)-СН(ОН)-СО-NH-СН 2-СН 2-СООН]
Состоит из масляной кислоты с -аланином.
Роль в обмене веществ
Участвует в образовании КоА, который в свою очередь участвует:
1. синтезе и распаде жирных кислот;
2. транспорте ацильных остатков (пр., АцКоА)
3. в реакциях окислительного декарбоксилирования пирувата и -кетоглутаровой кислоты.
{Т.е. витамин В 3 необходим для обмена Б, Ж, У}.
Авитаминоз - представлен разными формами; характерны дерматиты, поражения слизистой оболочки внутренних органов, поражение ЖВС (надпочечники, тимус), поражение нервной ткани. Авитаминозы практически не встречаются.
Суточная потребность 10 мг.
Этот витамин широко распространен, содержится в печени, яйцах. овсяных хлопьях, дрожжах. Также синтезируется микрофлорой кишечника.
Витамин Н (биотин). Антисеборейный витамин. Структура: тиофен, соединеный с мочевиной+ боковая цепь (валериановая кислота).
Устойчив при нагревании. Роль биотина в обмене веществ. Биотин - кофермент карбоксилирования (превращение ацетил-КоА в малонил-КоА в синтезе ВЖК) и кофермент транскарбоксилирования в синтезе пуриновых оснований.
Авитаминоз Н - себорея: покраснение и шелушение сальной кожи на волосистой части головы. Суточная потребность витамина Н 0,010 мг.
Источники: печень, яйца, молоко.
Авитаминоз бывает при употреблении сырых яиц, содержащих авидин (антивитамин Н).
Витаминоподобные вещества
Парааминобензойная кислота. Роль: входит в состав фолиевой кислоты, участвует в пигментации. При авитаминозах нарушение пигментации.
Холин. Относится к витаминоподобным веществам:
НО-СН 2-СН 2-N(CH3)3
Роль в обмене веществ:
1. холин входит в состав сложных липидов (фосфатидилхолин);
2. источник метильных групп при синтезе различных соединений.
В организме синтезируется из серина и метионина в необходимых количествах. Но метионин - незаменимая АК!
Антивитамины. Это вещества, которые нарушают использование витаминов. Их 2 группы:
1. антивитамины, прямо воздействующие на снижение активности витаминов, например, авидин на витамин А, аскорбатоксидаза на витамин С;
2. структурные аналоги витаминов, похожие на витамины, но оказывающие противоположное действие, например, сульфаниламиды похожи по структуре на ПАБК. Такие вещества используют для гибели микроорганизмов, которые их не различают.

Биохимия печени

Роль печени в обмене веществ. Печень занимает центральное место в обмене веществ организма. Особенность анатомического расположения и связи с другими органами, позволяет печени участвовать во всех видах обмена веществ. Печень кровоснабжается печеночной артерией и воротной веной, которые в ней образуют обширную капиллярную сеть, следовательно, все вещества, поступающие в организм вместе с пищей, после их всасывания в кровь распределяются печенью по всему организму. Через печень протекает около 1,2 литра крови в минуту. Площадь капиллярных синусоидов в печени взрослого человека 400-450 м2.

Важнейшие функции печени:

1. синтетическая - происходит превращение питательных веществ в такие формы, которые могут быть использованы другими тканями:

- белки плазмы крови (альбумины, глобулины, фибриноген, протромбины);

- группа белков участвующих в транспорте липидов (ЛПОНП, ЛПНП, ЛПВП);

- гормонов (транскортины);

- витаминов;

- микроэлементы (трансферины, церрулоплазмины - переносчики ионов меди).

В печени синтезируется глюкоза, гликоген, нейтральные жиры, ХС, ФЛ, ВЖК (заменимые), кетоновые тела.

В печени активно синтезируются из АК небелковые азотистые соединения: коферменты (HS-KoA), креатин, глутатион, никотиновая кислота, пуриновые и пиримидиновые основания, порфирины.

В печени происходит биосинтез мочевины, мочевой кислоты, активно протекают реакции обмена АК (переаминирование, окислительное дезаминирование, декарбоксилирование), что обеспечивает поддержание в организме баланса заменимых АК, биогенных аминов.

2. депонирующая. В печени может депонироваться гликоген, ТГ, жирорастворимые витамины (А, D, Е, К), некоторые водорастворимые витамины (В 1, В 2, В 12), микроэлементы.

3. пищеварительная - связана с образованием и секретированием желчи и желчных кислот.

4. выделительная (экскреторная) - связана с образованием специально жидкого экскрета - желчи. Вместе с желчью из клеток удаляются избытки ХС, желчные кислоты, продукты распада гема (желчные пигменты), инактивированные витамины и гормоны, обезвреженные токсические вещества, вода.

...

Подобные документы

  • Превращения крахмала и низших углеводов, азотистых и пектиновых веществ во время водно-тепловой обработки крахмалистого сырья. Превращения крахмала и белковистых веществ под действием ферментов солода и ферментных препаратов при осахаривании сырья.

    контрольная работа [26,6 K], добавлен 03.06.2017

  • Физиологическая химия. Общая характеристика витамина А. Биохимические функции. Авитаминоз. Роль АТФ. Глюкоза. Формула глюкозы. Энергетика обмена. Функции липидов: структурная, энергетическая, резервная, защитная, регуляторная.

    контрольная работа [28,7 K], добавлен 27.09.2006

  • Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.

    курс лекций [156,3 K], добавлен 24.12.2010

  • Основные процессы, происходящие на стадии затирания и фильтрования затора, во время кипячения сусла с хмелем, на стадии охлаждения и осветления сусла. Химический состав дрожжевой клетки. Метаболизм аминокислот и белков. Биосинтез высших спиртов, эфиров.

    контрольная работа [50,7 K], добавлен 03.06.2017

  • Строение и основные свойства белков, их роль в живой природе. Пространственное строение белков. Качественные реакции на белки. Образование сгустков крови при ее свертывании. Белковые компоненты крови. Процесс образования и свертывания казеина.

    презентация [1,2 M], добавлен 01.10.2012

  • Изучение возможности существования форм жизни, которым свойственны биохимические процессы, полностью отличающиеся от возникших на Земле. Попытки замены углерода в молекулах органических веществ на другие атомы, и воды как растворителя на другие жидкости.

    реферат [15,7 K], добавлен 06.12.2010

  • Особенности водородной связи в жидкой воде, льду и водяном пару. Биохимические процессы конструктивного обмена или анаболизма и факторы стойкости дисперсных систем. Классификация водных микроорганизмов и способы их питания. Понятие кислотности воды.

    контрольная работа [26,0 K], добавлен 12.11.2010

  • Определение белков и их составных частей – аминокислот. Структура и функции белков в организме. Роль в обеспечении воспроизводства основных структурных элементов органов и тканей, а также образовании таких веществ, как, например, ферментов и гормонов.

    курсовая работа [735,6 K], добавлен 16.12.2014

  • Функции липидов в организме, сущность и биохимия жирового обмена в организме. Взаимодействие углеводного и липидного обменов, роль L-карнитина. Характеристика факторов, продуцирующих нарушения обмена, улучшение его за счет физических упражнений.

    реферат [35,9 K], добавлен 17.11.2011

  • Ферменты - белки-катализаторы, регулирующие процессы жизнедеятельности и обмена веществ в организме. Строение ферментов, их специфичность к субстрату, селективность и эффективность, классификация. Структура и механизм действия ферментов; их применение.

    презентация [670,0 K], добавлен 12.11.2012

  • Класс органических соединений, содержащих карбоксильные и аминогруппы, обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходное соединение при биосинтезе гормонов, витаминов, алкалоидов).

    доклад [20,6 K], добавлен 06.10.2006

  • Изучение строение гетероциклов с конденсированной системой ядер: индол, скатол, пурин и пуриновые основания. Особенности структуры нуклеозидов и нуклеотидов. Строение АТФ и нуклеиновых кислот. Биологическая роль ДНК и РНК, их химическая структура.

    реферат [45,6 K], добавлен 22.06.2010

  • Изучение истории открытия нуклеиновых кислот, которые были названы так потому, что впервые были открыты в ядрах клеток, и из-за наличия в их составе остатков фосфорной кислоты. Нахождение нуклеиновых кислот в природе, их химические свойства и применение.

    реферат [312,3 K], добавлен 18.04.2010

  • Основные процессы, происходящие на стадии замачивания ячменя. Активация и синтез заново технологически значимых ферментов и растворение эндосперма под их действием с целью подготовки к переработке в процессе пивоварения. Процесс сушки солода, его стадии.

    контрольная работа [26,0 K], добавлен 03.06.2017

  • Процессы окисления этилена. Режимы, продукты, принципиальные типы и конструкции реакторов. Производство карбоновых кислот. Способы получения капролактама из первичного сырья (нефти, газа, угля). Процессы дегидрохлорирования в хлорорганическом синтезе.

    курс лекций [719,2 K], добавлен 27.02.2009

  • Работа и зона мощности, выполняемая спринтером бегуном в соревновательных условиях. Соотношение аэробных и анаэробных процессов в организме при ее выполнении. Биохимические изменения в мышцах, крови и моче спортсмена. Антиоксидантные системы организма.

    курсовая работа [448,4 K], добавлен 01.12.2013

  • Структура и функция нуклеотидов. Физико-химические показатели и оптические характеристики нуклеиновых кислот. Азотистые основания. Моносахариды: рибоза и дезоксирибоза. Молекулярная масса, содержание и локализация в клетке ДНК и РНК. Правила Чаргаффа.

    курсовая работа [1,6 M], добавлен 11.12.2014

  • Активные формы, функции и механизмы возникновения кислорода. Типы окислительных реакций. Антиоксидантная система организма, факторы клеточной защиты. Антиоксидантные ферменты крови. Виды свободных радикалов. Процессы перекисного окисления липидов.

    курсовая работа [56,0 K], добавлен 29.09.2015

  • Исходное сырье для получения стероидных гормонов, основные требования к их качеству и содержанию. Главные микробиологические превращения стероидов: введение гидроксильной группы, дегидрогенизация, микробиологическое восстановление, гидролиз эфиров.

    контрольная работа [29,3 K], добавлен 19.02.2014

  • Основные методы разделения и выделения веществ при биохимических исследованиях. Количественное определение белка в сыворотке крови. Химическая природа нуклеопротеидов. Применение единиц СИ для выражения результатов клинико-биохимических исследований.

    учебное пособие [4,2 M], добавлен 11.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.