Строительные материалы
Связь состава и строения материалов с их свойствами. Каменные материалы и древесина. Вяжущие вещества воздушного и гидравлического твердения. Железобетон и строительные растворы. Полимеры, пластмассы и керамика. Виды тепло- и звукоизоляционных материалов.
Рубрика | Строительство и архитектура |
Вид | курс лекций |
Язык | русский |
Дата добавления | 14.02.2021 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Керамические санитарно-технические изделия отличаются декоративностью, универсальной химической стойкостью; благодаря твердой и гладкой поверхности они легко чистятся, длительное время сохраняя свои свойства. Недостаток таких изделий, как и керамики в целом, - хрупкость. Несмотря на это, керамика остается лучшим материалом для санитарно-технических изделий.
Канализационные трубы изготовляют из пластичных тугоплавких глин и покрывают глазурью снаружи и изнутри, что обеспечивает их полную водонепроницаемость, химическую стойкость и высокую пропускную способность. Такие трубы выдерживают гидростатическое давление, более 0,2 МПа.
Керамические трубы имеют небольшую длину 800... 1200 мм, но довольно большой диаметр 150...600 мм. Трубы соединяются друг с другом с помощью раструбов, отформованных на одном конце каждой трубы..
Дренажные трубы для мелиоративных работ изготовляют из кирпичных высокогатастичных глин. Выпускают гладкие неглазурованные трубы, фильтрующие через свою толщу, и глазурованные с раструбами и перфорацией на стенках.
Клинкерный (дорожный) кирпич изготовляют из тугоплавких глин обжигом до полного спекания. Он имеет меньшие размеры (220 х 110 х 65 мм), чем обыкновенный стеновой кирпич, низкое водопоглощение (2...6 %), высокую прочность при сжатии (40...100 МПа) и морозостойкость не менее F100. Такой кирпич используют для мощения дорог и тротуаров, устройства полов промышленных зданий, кладки канализационных коллекторов.
Огнеупорные материалы получают по керамической технологии (формование, сушка, обжиг) из различных сырьевых компонентов. Их разделяют на огнеупорные (температура размягчения 1580..1770°С), высокоогнеупорные (1770...2000°С) и высшей огнеупорности (> 2000°С). В зависимости от химико-минерального состава огнеупоры могут быть кремнеземистые, алюмосиликатные, магнезиальные (на основе MgO), хромитовые, графитовые (углеродистые). Выбор огнеупора производят по двум показателям: температуре размягчения и стойкости в той среде, где он будет работать (расплавы стекла, шлаков или металла, химически активные газы и т. п.). Наибольшее применение в строительстве имеют кремнеземистые и алюмосиликатные огнеупоры.
Кремнеземистые огнеупоры (основной компонент SiO2) по строению могут быть стеклообразные (кварцевое стекло) и кристаллические (динасовые огнеупоры).
Кварцевое стекло хорошо работает при температурах до 1000°С; при более высоких температурах оно расстекловывается (кристаллизуется) и крошится.
Динасовые огнеупоры получают обжигом при температуре около 900°С кварцевого сырья (молотый кварцевый песок с добавкой известковой или другой связки). Динасовые огнеупоры содержат не менее 93 % SiO2 в виде устойчивых к высоким температурам модификаций тридимита или кристобалита. Огнеупорность -- 1600... 1700°С. Их применяют для сводов стеклоплавильных и стекловаренных печей.
Алюмосиликатные огнеупоры делят на три группы: полукислые, шамотные и высокоглиноземистые.
Полукислые огнеупоры изготовляют обжигом кварцевых пород на глиняной связке (содержание SiO2 > 65 %; А12О3 < 28 %). Огнеупорность-1580... 1700°С.
Шамотные огнеупоры получают обжигом смеси шамота и огнеупорной глины. Они содержат 30...35 % А12О3. Отличаются термостойкостью и шлакоустойчивостью. Огнеупорность таких материалов -- до 1500°С Применяют в стекловаренной и цементной промышленности.
Высокоглиноземистые огнеупоры содержат более 45% А12О3; получают из бокситов. Их огнеупорность увеличивается с повышением содержания А12О3 и при 60 % и более глинозема составляет 2000°С. Применяют для кладки доменных и стекловаренных печей. .
Для обеспечения высокотемпературной тепловой изоляции выпускают легковесные огнеупоры с рт = 400... 1300 кг/м3 и пористостью соответственно 85...45 %. Использование легковесных огнеупоров существенно снижает расход топлива (в 2-3 раза) и продолжительность разогрева печей (в 3-4 раза).
Стекло, ситаллы и каменное литье
1. Общие сведения
Стеклами называют переохлажденные жидкости, не успевшие при остывании перейти в кристаллическое состояние. Иными словами стекла -- это жидкости, имеющие бесконечно большую вязкость. Последнее и придает им многие свойства твердого тела. В отличие от истинно твердых тел стекла при нагревании не плавятся, а размягчаются, постепенно переходя в пластичное, а затем и в жидкое состояние. При охлаждении процесс идет в обратной последовательности. Еще одна отличительная черта стекол -- изотропность -- одинаковость свойств во всех направлениях.
Способность к образованию стекол характерна для многих минеральных и органических веществ. Наиболее ярко эта способность выражена у диоксида кремния (SiO2) и соединений на его основе -- силикатов, к которым относится большинство природных минералов. В стеклообразном состоянии могут находиться и многие другие материалы, например, полимеры (всем известен термин «плексиглас» -- органическое стекло). В последние годы даже металлы удалось получить в стеклообразном состоянии.
Стекла по сравнению с кристаллическими веществами обладают повышенной внутренней энергией (скрытой энергией кристаллизации), поэтому вещество в стеклообразном состоянии метастабилъно (термодинамически не устойчиво). Из-за этого обычное стекло при некоторых условиях, а иногда и самопроизвольно начинает кристаллизоваться (этот процесс в стеклоделии называют «зарухание» или расстекловывание). Расстекловывание является браком стеклоизделий.
Этот же процесс, но проводимый направленно с целью частичной или полной кристаллизации расплава, используется для получения стеклокристаллических материалов -- ситаллов и каменного литья.
В строительстве, за малым исключением, применяют силикатное стекло, получаемое в промышленных масштабах из простейшего минерального сырья: кварцевого песка, мела, соды и других компонентов (далее вместо термина «силикатное стекло» будет использоваться термин «стекло»).
Прозрачность и возможность окраски стекла в любые цвета, высокая химическая стойкость, достаточно высокая прочность и твердость, электроизоляционные и многие другие ценные свойства делают стекло незаменимым строительным материалом. Его используют не только для сооружения светопрозрачных конструкций (окон, витражей, фонарей), но и как конструкционный и отделочный материал. В современном строительстве высотные здания часто имеют фасады, полностью выполненные из стекла с улучшенными декоративными, светоотражающими и теплозащитными свойствами. Кроме того, из стекла получают различные стехлоизделия (блоки, трубы, стеклопрофилит), эффективные теплоизоляционные материалы (пеностекло и стеклянную вату), а также стекловолокно и стеклоткани.
Стекла встречаются в природе в виде бесформенных непрозрачных кусков -- например, вулканическое стекло обсидиан. Первые сведения о получении стекла человеком относятся к третьему-четвертому тысячелетию до н. э. Те стекла были непрозрачными (глухими) наподобие керамической глазури. Они варились в небольших тиглях и использовались как украшения.
Коренное изменение в производстве стекла произошло на рубеже нашей эры, когда были решены две важнейшие проблемы стеклоделия -- варка прозрачного бесцветного стекла и формование изделий с помощью стеклодувной трубки. Первые листовые стекла получали, разрезая и распрямляя стеклянные цилиндры, формуемые выдуванием (их называли «халявы»). В XVII в. началось производство листового зеркального стекла отливкой на медные плиты. Массовое производство листового стекла большого размера стало возможным в конце XIX -- начале XX в., когда появились большие ванные печи и новые методы выработки стекла.
Необходимо отметить, что на процесс стекловарения расходуется очень много энергии, и при этом в атмосферу поступает много вредных выбросов. Поэтому и экологически, и экономически целесообразно вырабатывать стеклоизделия из вторичного сырья (стеклобоя, стеклянной посуды и т. п.). Это оценили в большинстве стран Западной Европы, где до 80 % стекла получают именно таким образом.
2. Получение сгекла
Современное стекольное производство включает в себя три этапа: подготовка сырья, стекловарение и формование стеклоизделий.
Подготовка сырья. Химический состав обыкновенного оконного стекла по основным оксидам следующий: SiO2 --71...72 %; Na2O -- 15...16%; СаО - 5...7%; MgO - 3...4%; A12O3 - 2...3 %; содержание Fe2O3 не более 0,1 %, так как оксиды железа придают стеклу зеленовато-коричневый («бутылочный») цвет и снижают светопропускание. Основные оксиды вводятся в сырьевую шихту в виде следующих веществ.
Кремнезем (SiO2) вводят в виде кварцевого песка, молотых кварцитов или песчаников. Основное требование к кремнеземистому сырью -- минимальное количество примесей, особенно оксидов железа. Это основной стеклообразующий оксид, повышающий тугоплавкость и химическую стойкость стекла.
Глинозем (А12О3) поступает в сырьевую шихту в виде полевых шпатов и каолина. Его влияние на свойства стекла аналогично действию SiO2.
Оксид натрия (Na2O) вводят в стекло в виде соды и сульфата натрия. Na2O понижает температуру плавления стекла, повышает коэффициент термического расширения и уменьшает химическую стойкость.
Оксиды кальция (СаО) и магния (MgO) вводят в стекольную шихту в виде мела, мрамора, известняка, доломита и магнезита. Эти оксиды повышают химическую стойкость стекла.
В специальные стекла вводят оксиды бора, свинца, бария и др.
Вспомогательные сырьевые материалы делят по своему назначении: на следующие группы: осветлители -- вещества, способствующие удалению из стекломассы газовых пузырей; обесцвечиватели -- вещества, обецвечивающие стекольную массу; глушители -- вещества, делающие стекло непрозрачным.
Красители для стекла могут быть молекулярными, полностью растворяющимися в стекломассе, и коллоидными, равномерно распределяющимися в стекломассе в виде мельчайших (коллоидных) частиц. К первым относятся соединения кобальта (синий цвет), хрома (зеленый), марганца (фиолетовый), железа (коричневый и сине-зеленые тона), а ко вторым -- металлическое золото (рубиновый), серебро (желтый), селен (розовый).
Перед варкой стекла сырьевые материалы измельчают, тщательно смешивают в требуемых соотношениях, брикетируют и подают в стекловаренную печь.
Стекловарение. Обычное стекло получают в непрерывно действующих ванных печах с полезным объемом до 600 м3 и суточной производительностью более 300т. Для варки специальных (оптических, цветных и др.) стекол применяют периодически действующие ванные, а также горшковые печи.
Стекловарение -- главнейшая операция стекольного производства. На первой стадии этого процесса -- силикатообразовании -- щелочные компоненты образуют с частью кремнезема силикаты, плавящиеся уже при 1000... 1200° С. В этом расплаве при дальнейшем нагревании растворяются наиболее тугоплавкие компоненты SiO2 и А12О3. Образующаяся при этом масса неоднородная по составу и насыщена газовыми пузырьками.
Удаление пузырьков и полная гомогенизация расплава осуществляется на второй наиболее длительной стадии стекловарения -- стеклообразовании -- при температуре 1400... 1600°С. Третья заключительная стадия -- студка -- охлаждение стекломассы до температуры, при которой она приобретает оптимальную для данного метода формования стеклоизделий вязкость.
Формование. Метод выработки (формования) зависит от вида изделия. Для получения строительного стекла используют вытяжку, прокат, прессование.
При охлаждении стекла вследствие низкой его теплопроводности в нем возникают большие градиенты температур, вызывающие внутренние напряжения. Наиболее опасным моментом с этой точки зрения является переход стекла от вязкопластического состояния к хрупкому, поэтому для снятия внутренних напряжений после формования производят отжиг -- охлаждение по специальному режиму: быстрое до начала затвердевания стекломассы, очень медленное в опасном интервале температур (600..300° С) и вновь быстрое до нормальной температуры.
Основной вид строительного стекла -- листовое. С начала XX в. большая часть листового стекла стала производиться (а в России производится и до сих пор) методом вертикального вытягивания на машинах ВВС. Так получают стекла толщиной до 6 мм.
В 1959 г. появился новый способ получения высококачественного стекла -- флоат-метод (от англ. float -- плавать), при котором горячая стекломасса выливается на поверхность расплавленного металла (обычно олова) и формуется на нем. Производительность таких установок до 3...4 тыс. м2/ч. Размер листов: ширина до 3 м; толщина от 2 до 25 мм. Преимущества флоат-метода -- стабильная толщина листа и высокое качество поверхности, не требующее дальнейшей полировки. В Европе большая часть стекла вырабатывается именно этим методом.
3. Свойства стекла
Силикатные стекла отличаются необычным сочетанием свойств, высокой прочностью и ярко выраженной хрупкостью, свето- к радио прозрачностью, абсолютной водонепроницаемостью и универсальной химической стойкостью. Все это объясняется спецификой состава и строения стекла.
Плотность стекла зависит от химического состава и для обычных строительных стекол составляет 2400...2600 кг/м3. Плотность оконного стекла -- 2550 кг/м'. Высокой плотностью отличаются стекла, содержащие оксид свинца («богемский хрусталь») -- более 3000 кг/м3. Пористость и водопоглощение стекла практически равны 0 %.
Механические свойства. Стекло в строительных конструкциях чаще подвергается изгибу, растяжению и удару и реже сжатию, поэтому главными показателями, определяющими его механические свойства, следует считать прочность при растяжении и хрупкость.
Теоретическая прочность стекла при растяжении -- (10...12)*103 МПа. Практически же эта величина ниже в 200...300 раз и составляет от 30 до 60 МПа. Это объясняется тем, что в стекле имеются ослабленные участки (микронеоднородности, дефекты поверхности, внутренние напряжения). Чем больше размер стеклоизделий, тем вероятнее наличие таких участков. Примером зависимости прочности стекла от размера испытуемого изделия служит стеклянное волокно. У стекловолокна диаметром 1...10 мкм прочность при растяжении 300...500 МПа, т. е. почти в 10 раз выше, чем у листового стекла. Сильно снижают прочность стекла на растяжение царапины; на этом основана резка стекла алмазом.
Прочность стекла при сжатии высока -- 900... 1000 МПа, т. е. почти как у стали и чугуна. В диапазоне температур от -- 50 до + 70° С прочность стекла практически не изменяется.
Стекло при нормальных температурах отличается тем, что у него отсутствуют пластические деформации. При нагружении оно подчиняется закону Гука вплоть до хрупкого разрушения. Модуль упругости стекла Е= (7...7,5) * 104 МПа.
Хрупкость -- главный недостаток стекла. Основной показатель хрупкости -- отношение модуля упругости к прочности при растяжении E/Rp. У стекла оно составляет 1300...1500 (у стали 400...460, каучука 0,4...0,6). Кроме того, однородность строения (гомогенность) стекла способствует беспрепятственному развитию трещин, что является необходимым условием для проявления хрупкости.
Твердость стекла, представляющего собой по химическому составу вещество, близкое к полевым шпатам, такая же, как у этих минералов, и в зависимости от химического состава находится в пределах 5...7 по шкале Мооса.
Оптические свойства стекла характеризуются светопропусканием прозрачностью), светопреломлением, отражением, рассеиванием и др. Обычные силикатные стекла, кроме специальных (см. ниже), пропускают всю видимую часть спектра (до 88...92 %) и практически не пропускает ультрафиолетовые и инфракрасные лучи. Показатель преломления строительного стекла (п = 1,50...1,52) определяет силу отраженного света и светопропускание стекла при разных углах падения света. При изменении угла падения света с 0 до 75° светопропускание стекла уменьшается с 90 до 50 %.
Теплопроводность различных видов стекла мало зависит от их состава и составляет 0,6...0,8 Вт/(м*К), что почти в 10 раз ниже, чем у аналогичных кристаллических минералов. Например, теплопроводность кристалла кварца -- 7,2 Вт/(м*К).
Коэффициент линейного температурного расширения (КЛТР) стекла относительно невелик (для обычного стекла 9*10-6 К-1). Но из-за низкой теплопроводности и высокого модуля упругости напряжения, развивающиеся в стекле при резком одностороннем нагреве (или охлаждении), могут достигать значений, приводящих к разрушению стекла. Это объясняет относительно малую термостойкость (способность выдерживать резкие перепады температур) обычного стекла. Она составляет 70...90° С.
Звукоизолирующая способность стекла довольно высока. Стекло толщиной 1 см по звукоизоляции приблизительно соответствует кирпичной стене в полкирпича -- 12 см.
Химическая стойкость силикатного стекла -- одно из самых уникальных его свойств. Стекло хорошо противостоит действию воды, щелочей и кислот (за исключением плавиковой и фосфорной). Объясняется это тем, что при действии воды и водных растворов из наружного слоя стекла вымываются ионы Na+ и Са++ и образуется химически стойкая пленка, обогащенная SiO2. Эта пленка защищает стекло от дальнейшего разрушения.
4. Листовое стекло
Основной вид стекла, применяемый в строительстве, -- листовое стекло, используемое для остекления оконных и дверных проемов, витрин и т. п. Наряду с этим все шире развивается выпуск листового стекла со специальными свойствами, например, теплопоглощающего, светоотражающего, увиолевого, защитного, декоративного и др.
Листовое оконное стекло вырабатывается шести марок толщиной 2,5; 3; 4; 5 и 6 мм. Ширина листов -- 250... 1600 мм, длина -- до 2200 мм. Масса 1 м2 -- 2...5 кг. Светопропускание -- не менее 87%. К дефектам оконного стекла относятся газовые включения (пузырьки), свиль и «полосность» (неровность поверхности).
Витринное стекло -- листовое стекло толщиной 6... 10 мм и размером до 3500 х 6000 мм. Витринное стекло, как правило, делают полированным.
Светорассеивающее стекло пропускает свет, но не дает сквозной видимости. Оно может быть матовое или узорчатое. Матовое получают пескоструйной обработкой или обработкой в парах плавиковой кислоты (HF). Узорчатое получают методом горизонтального проката на фигурных вальцах. Оригинальный метод используется для получения стекла под названием «мороз»: узор получается при помощи столярного клея, наносимого на поверхность стекла.
Увиолевое стекло -- стекло, пропускающее большую долю ультрафиолетовых лучей (45...75 %), получают из сырья с минимальными примесями оксидов железа, хрома и титана. Такие стекла применяют в лечебных учреждениях, для остекления оранжерей и т. п.
Специальное листовое стекло или функциональное стекло не только пропускает свет, но и выполняет другие важные функции:
теплоизоляция зимой и теплозащита летом;
звукоизоляция и защита от утечки информации;
защита от механического разрушения;
создание декоративного эффекта.
Теплоизоляционные стекла отличаются от обычных тем, что благодаря специальному тонкому покрытию на внутренней стороне стекла они снижают долю теряемого через стекло тепла путем отражения инфракрасной части спектра («тепловых лучей») обратно вовнутрь помещения. Светопропускание таких стекол немного ниже, чем у обычных,-- 72...79 %.
Теплозащитные (солнцезащитные) стекла выполняют обратную функцию: они отражают часть, падающей на них лучистой энергии, не пропуская ее в помещение. Это достигается двумя методами:
* на поверхность стекла наносится тончайший металлический слой, работающий, как зеркало;
* на поверхности стекла создается слой из оксидов металла, задерживающий часть солнечных лучей и придающий стеклу серый, зеленоватый или бронзовый оттенок.
Защитные стекла -- стекла с повышенными прочностными свойствами, не раскалывающиеся на опасные остроугольные осколки. Для получения стекол, более прочных и безопасных по сравнению с обычным листовым стеклом, существует несколько способов.
Закаленное стекло получают специальной термической обработкой стекла. При этом в нем создаются сжимающие напряжения, за счет чего повышается прочность на изгиб в 5...8 раз и прочность на удар в 4...6 раз. При разрушении такое стекло распадается на мелкие (5... 10 мм) кусочки кубической формы, безопасные для человека. В строительстве такие стекла применяют для устройства прозрачных дверей, перегородок и т. п.
Армированное стекло получают путем запрессовки в расплавленную стекломассу во время ее проката чистой сетки из хромированной стальной проволоки. Эта сетка удерживает осколки стекла при его повреждении.
Ламинированное стекло (от лат. lamina -- слой) реализует парадоксальную идею упрочнения стекла с помощью эластичной полимерной пленки, запрессованной между слоями стекла. При ударе по стеклу в нем возникает трещина, идущая в глубь стекла. Когда трещина встречает на своем пути полимерную пленку, последняя, деформируясь, поглощает энергию развития трещины и останавливает ее. При этом внутренняя часть стекла остается целой. Такие стекла получили название «триплекс».
Подобный композиционный листовой материал из трех слоев стекла и двух слоев полимерной пленки делает стекло пуленепробиваемым.
Самые современные варианты специальных стекол изготовляют таким образом, что функциональные слои (светоотражающие, теплозащитные и т. п.) наносятся на полимерную пленку, и они оказываются внутри слоистой конструкции, защищающей их от повреждения. Такой метод и более технологичен, так как напыление слоев металла или оксидов проще производить на полимерную пленку, чем на лист стекла.
5. Отделочное стекло
Стекло обладает исключительно высокой стойкостью к действию химически агрессивных сред, высокой твердостью, нулевым водопоглощением (т. е. абсолютной морозостойкостью) и при этом способно окрашиваться в различные цвета красками, не теряющими яркости от атмосферных воздействий. Благодаря гладкости поверхности загрязнения практически не задерживаются на стекле и легко смываются водой. Такая совокупность свойств позволяет получать из стекла высококачественные отделочные материалы.
Листовое декоративное стекло в последние годы широко применяйся при возведении общественных зданий. Особенной популярностью пользуются металлизированные зеркальные стекла различных оттенков (золотистые, голубые, серые и т. п.). Они позволяют решить одновременно и архитектурно-декоративную задачу и обеспечить освещение помещений здания (светопропускание таких стекол 0,15...0,2). Здания, облицованные такими стеклами, благодаря их высокой отражающей способности, зрительно становятся «легче»; при этом пространство как бы расширяется. Этот прием многократно использован при постройке небоскребов в США, Канаде и других странах. В Москве комплекс подобных зданий построен у станции метро «Юго-Западная».
6. Изделия из стекла
Из стекла изготовляют широкую номенклатуру изделий: стеклопакеты, стеклоблоки, стеклопрофилит, кровельные волнистые листы, дверные полотна и др.
Стеклопакеты -- наиболее распространенный вид изделий из стекла. Получают стеклопакеты из двух (одинарный стеклопакет) или трех (двойной стеклопакет) листов стекла, герметично соединенных между собой по контуру. Между листами стекла находится прослойка из сухого воздуха или инертного газа. Соединение листов в стеклопакет может осуществляться склейкой, пайкой или сваркой.
Стеклопакеты применяют для остекления окон и других световых проемов. Использование стеклопакетов имеет существенные преимущества перед обычным остеклением листовым стеклом, так как они не запотевают, не замерзают и не нуждаются в протирке внутренних поверхностей. Стеклопакеты имеют низкую теплопроводность, а звукопроницаемость окон со стекопакетом в 2...3 раза ниже обычных.
Стеклянные блоки целесообразно использовать в тех случаях, когда необходимо получить светопрозрачную ограждающую конструкцию с хорошими тепло- и звукоизоляционными харакгеристиками.
Стеклоблоки вырабатываются из горячей стекломассы на пресс-автоматах, формующих половинки блоков, а затем сваривающие их. При остывании в блоках образуется разряжение, обеспечивающее хорошие изоляционные свойства. Внутренняя поверхность блоков имеет рифление, сообщающее блоку светорассеивающие свойства.
Размеры стеклоблоков от 200 х 200 до 400 х 400 мм при толщине до 100 мм. Блоки могут быть бесцветными и цветными. Светопропускание блоков -- 50...60 %. Коэффициент теплопроводности -- 0,4...0,45 Вт/(м * К), т.е. почти в 2 раза ниже, чем у кирпича. Кроме обычных блоков изготовляют двухкамерные (с перегородкой, уменьшающей теплопроводность блока почти в 1,5 раза) и светонаправленные (со специальным рифлением, дающим направленный поток света).
Стеклопрофилит -- длинноразмерные (до 5 м) профилированные элементы из стекла, изготовляемые методом горизонтального проката. Стеклопрофилит может быть коробчатого и таврового (П-образного) профиля. Его применяют так же, как и стеклянные блоки для устройства светопрозрачных ограждений (наружных стен и перегородок) в промышленных зданиях, выставочных и спортивных залах и т. п. Устанавливают стеклопрофилит в металлических обоймах с пластиковыми или резиновыми уплотнителями.
Стеклянные трубы благодаря высокой химической стойкости, гладкости поверхности и прозрачности с успехом соперничают с металлическими. В ряде областей (например, химическая и пищевая промышленность) их применение предпочтительнее. Пропускная способность стеклянных труб на 5... 10 % выше, чем стальных при одинаковом диаметре. Основной недостаток стеклянных труб -- хрупкость и низкая термостойкость (допустимый перепад температур 50° С). Стеклянные трубы используют как в вакуумных, так и в напорных (до 0,7 МПа) сетях.
Стекловолокно получают путем продавливания стекольного расплава через тончайшие фильеры (отверстия в твердых материалах) с последующей вытяжкой и намоткой на бобины. Диаметр волокна -- 3...100 мкм, длина -- до 20 км (для непрерывного волокна). Более короткие (1...50 см) штапельные волокна получают раздувом расплава паром. Из стекловолокна получают стеклянные ткани и стекловойлок, которые используют как армирующий компонент при производстве стеклопластиков или в качестве основы в рулонных кровельных и гидроизоляционных материалах (например, стеклоизол, стеклорубероид).
Пеностекло -- блоки из вспученного в момент нахождения в расплавленном состоянии стекла. По структуре и свойствам пеностекло напоминает вулканическую пемзу и используется как теплоизоляционный материал.
7. Ситаллы и шлакоситаллы
Ситаллы -- стеклокристаллические материалы, получаемые путем направленной частичной кристаллизации стекол. Структура ситаллов напоминает микробетон, где наполнителем являются кристаллы, а вяжущим -- прослойки стекла. Доля стеклофазы в ситаллах обычно 20...40 %. Кристаллическая фаза состоит из микрокристаллов размером около 1 мкм. Благодаря такому строению ситаллы сохраняют в себе многие положительные свойства стекла, в том числе и его технологичность, но лишены его недостатков: хрупкости, низкой термостойкости. Сырье для производства ситаллов такое же, как и для стекла, но в расплав вводятся вещества-модификаторы, обеспечивающие направленную кристаллизацию.
Для строительных целей весьма перспективны шлакоситалаы, получаемые на основе металлургических шлаков и модификаторов -- CaF2, TiO2 и др. У шлакоситаллов очень высокая прочность (Rсж = 300...600 МПа; Rиж = 90...120 МПа), износостойкость и химическая стойкость. По долговечности шлакоситалл может конкурировать с природными каменными материалами (гранит, габбро и т. п.).
Применение шлакоситаллов перспективно для химической промышленно-сти (трубы, плитки, детали насосов), в гидротехнике (для облицовки турбинных камер, водосливов), в дорожном строительстве и т. п.
8. Каменное и шлаковое литье
Из горных пород и металлургических ишаков методом литья из расплавов можно получить разнообразные строительные материалы с высокими эксплуатационными свойствами.
Сырье. В качестве исходного сырья для производства каменного литья применяют магматические (базальт, диабаз) и осадочные (доломит, известняк, песок) горные породы. Первые дают темноокрашенные изделия, а вторые -- светлоокрашенные. Для получения каменного литья возможно использование металлургических шлаков; особенно эффективно их использование в огненно-жидком состоянии.
Производство литых каменных изделий начинается с подготовки и плавления (1400... 1500° С) сырьевой шихты. Полученный расплав выливается в формы и подвергается медленному охлаждению для прохождения кристаллизации. С целью ускорения кристаллизации вводят добавки-минерализаторы, служащие центрами кристаллизации. Последняя операция -- отжиг -- второй этап медленного охлаждения, проводимый для снятия внутренних напряжений.
Свойства каменного литья. Изделия из каменного литья по своей однородности и техническим свойствам превосходят природные каменные материалы.
Плотность каменного литья 2700...3000 кг/м3; пористость -- не более 1...2%; поры замкнутые, что обеспечивает нулевое водопоглощение и высочайшую морозостойкость.
Прочность при сжатии составляет 200...250 МПа, при изгибе -- 30...50 МПа, твердость 6...7 (по шкале Мооса), износостойкость очень высокая. Для каменного литья характерна очень высокая и универсальная химическая стойкость.
Применение. Литые каменные изделия используют для облицовки конструкций, подвергающихся серьезным агрессивным воздействиям: многократному замораживанию-оттаиванию, интенсивному истиранию, воздействию химически агрессивных веществ и т. п. Поэтому основными видами литых каменных изделий являются облицовочные плитки, брусчатка для мощения дорог, мелющие тела и облицовка для мельниц, труб. Диэлектрические свойства каменного литья используются в производстве электроизоляционных изделий.
Каменное литье светлых тонов применяют как материал для облицовки уникальных зданий и сооружений, а также для изготовления архитектурных деталей и скульптуры.
Тема №9. Металлы и сплавы в строительстве
Промышленный потенциал любой державы в значительной мере определяется объемом производства металлов. Исключительно важное значение металлов в современной технике и строительстве объясняется их ценными свойствами: высокой прочностью, пластичностью, высокой тепло- и электропроводностью, хорошими литейными свойствами, способностью работать при низких и высоких температурах, свариваемостью. Однако большинство из них имеют высокую плотность и сильно корродируют под действием различных газов и влаги.
Классификация металлов
ЧЕРНЫЕ МЕТАЛЛЫ - это сплавы железа с углеродом. К ним относятся: сталь, содержащая углерода до 2 %, и чугун, содержащий углерода от 2% до 6,67%.
ЦВЕТНЫЕ МЕТАЛЛЫ:
- легкие ( Al, Mg, Be );
- тяжелые ( Cu, Ni, Zn, Cr, Pb, Sn );
- редкие ( Ti, W, Mo, Zr );
- благородные ( Au, Pt, Ag );
Строение металлов
Все металлы имеют кристаллическое строение. Наиболее распространенные кристаллические решетки металлов: объемно-центрированный и гранецентрированный куб,гексогональная.
Физико-механические свойства чистых металлов определяются природой атомов, образующих их кристаллическую решетку, и структурой самого металла.
На микро- и макроструктуру металлов существенное влияние оказывают условия их затвердевания и дальнейшего охлаждения.При охлаждении расплава металла до температуры несколько ниже температуры плавления в жидкости возникают отдельные высокодисперсные кристаллические образования, так называемые центры кристаллизации или зародыши. При дальнейшем охлаждении происходит рост кристаллов путем отложения новых кристаллических групп вокруг возникших зародышей.
В условиях несвободной кристаллизации кристаллы получаются неправильной формы и называются кристаллитами или зернами. Чем мельче зерна, тем прочнее и пластичнее металл. Величина зерна зависит от числа зародышей и от линейной скорости кристаллизации: чем больше число зародышей и меньше линейная скорость кристаллизации, тем мельче кристаллы.
Оба эти параметра зависят от скорости охлаждения и степени переохлаждения расплава чистого металла. Чем выше скорость охлаждения, тем глубже и степень переохлаждения, что вызывает возрастание числа зародышей и, как следствие, образование более мелких кристаллов.
Температура перехода металла из жидкого состояния в твердое называется первичной температурой кристаллизации t Температура перехода в твердом состоянии из одной кристаллической модификации в другую (явление аллотропии) называется вторичной температурой кристаллизации или критической t .
Рис. 9.1. Кривая охлаждения расплава.
На кривых охлаждения (рис. 1) эти температуры отмечены горизонтальными участками, так как процесс кристаллизации идет с выделением тепла, поэтому в момент аллотропных превращений и первичной кристаллизации понижение температуры в системе не происходит.
Свойства металлов
ФИЗИЧЕСКИЕ СВОЙСТВА: цвет, плотность, температура плавления, электро- и теплопроводность, коэффициент температурного расширения.
Цвет большинство металлов имеют серебристо-белый, серебристо-серый с характерным металлическим блеском.
Плотность большинства тяжелых металлов превышает 7000кг/м, а плотность легких составляет не более 3000кг/м .
Температура плавления металлов строго определенная, однако меняется при добавке к нему других металлов. Большинство сплавов на основе железа имеют температуру плавления ниже, чем составляющие его компоненты.
Все металлы хорошо проводят тепло и электричество.
При нагревании металлы увеличиваются в размерах, что характеризуется коэффициентами объемного и линейного расширения.
Это необходимо учитывать при их эксплуатации.
МЕХАНИЧЕСКИЕ СВОЙСТВА: прочность, твердость, ударная вязкость, ползучесть.
ПРОЧНОСТЬ - способность металла сопротивляться возникающим внутренним напряжениям под действием внешних сил, вызывающих растяжение, сжатие, изгиб, кручение.
Для большинства металлов универсальным испытанием на прочность является растяжение, но для серого чугуна - на сжатие и изгиб.
При испытании металлов на растяжение различают предел упругости, предел текучести, предел прочности. Основным расчетным показателем для металлических конструкций является предел текучести.
Рис. 9.2. Диаграмма растяжения металлов.
ур = Nр /Fо - предел пропорциональности, то наибольшее напряжение, при котором деформация растет пропорционально нагрузке.
уs = Ns /Fs - предел текучести, то наименьшее напряжение, при котором деформация растет без заметного увеличения нагрузки.
ув = Nв /Fо - предел прочности, то напряжение, которое соответствует максимальной нагрузке, предшествующей разрушению образца.
ук = Nк /Fо - истинный предел прочности, то напряжение, при котором произошло разрушение образца при концентрации напряжения в одной точке.
Fо - первоначальное сечение образца,мм2 .
у - напряжение, кгс/мм2 (Н/м2 ), 1кгс/мм2 = 10 МПа.
lо - длина образца первоначальная, мм.
lr - длина образца после разрушения, мм.
? - абсолютное удлинение образца, равное ? = lк - lо , мм.
Е - относительное удлинение образца, равное Е = ? /lо .
Испытание на изгиб проводится для листового металла толщиной не более 30 мм на прессе для определения его способности принимать заданный по размерам и форме изгиб. При этом на поверхности изгибаемого образца не должны появляться трещины, надрывы, расслоение или излом.
Испытанием на удар определяют хрупкость металла или его способность работать в условиях динамических нагрузок. Чем пластичнее металл, тем лучше он переносит ударные нагрузки. Испытание на удар производят на специальных маятниковых копрах, применяя стандартные образцы с надрезом. Удельная ударная вязкость
ау = Ар /F,
где А - работа, затраченная на разрушение образца, Дж/м2;
F - площадь поперечного сечения образца в месте надреза,м2.
УСТАЛОСТЬ определяется у металлов, работающих в условиях повторно-переменных растягивающих, изгибающих, крутящих, ударных и других нагрузок.
ПОЛЗУЧЕСТЬ металлов - это процесс увеличения деформации во времени при постоянном напряжении. Он начинается сразу после возникновения мгновенной деформации. Под действием длительно приложенной нагрузки может развиться значительная деформация металлической конструкции, а иногда и ее разрушение. Таким образом, ползучесть лимитирует длительность эксплуатации конструкций, работающих под постоянной нагрузкой, особенно в условиях повышенных температур.
ТВЕРДОСТЬ металла определяется противодействием вдавливанию в его поверхность твердого стального шарика ( метод Бринелля, НВ ), алмазного конуса ( метод Роквелла, HR ), алмазной призмы ( метод Виккерса, HV ). Чем выше твердость, тем меньше будет величина отпечатка на поверхности металла.
Числа твердости ( НВ, НR, HV ) вычисляются по эмпирическим формулам, которые приводятся в справочной литературе.
ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА - это пластичность, определяющая ковку, прокатку, волочение; резанье и сварка, определяющие способность металла подвергаться сварке и резанью; способность подвергаться термической и химико-термической обработке с целью улучшения механических свойств металлических изделий.
ЧУГУНЫ.
Производство чугуна - первичный процесс получения черных металлов из природного сырья. Сырье для производства чугуна: железные руды, флюсы и кокс. Наиболее часто используемые железные руды:
магнитный железняк ( Fе3О4 ),
красный железняк ( Fе2О3 ),
бурый железняк ( 2Fе2О3*3Н2О ),
шпатовый железняк ( FеСО3 ),
которые содержат 30...70 % железа, пустую породу из различных природных химических соединений ( SiO2, Al2O3 и др.), и вредные
примеси ( сера, фосфор).
Флюсы - известняк СаСО3 или доломит СаСО3*МgСО3, если в пустой породе содержится большое количество кислотных оксидов, кварц, кварцит, песчаник, если в пустой породе имеется повышенное содержание основных оксидов. Флюсы вводятся для понижения температуры плавления пустой породы, для ошлаковывания золы топлива и удаления вредных примесей.
Кокс в доменном процессе выполняет роль топлива и восстановителя железа. При его горении выделяется большое количество тепла
С + О2 = СО2 + 402 192 Дж.
При последующем продвижении в домне снизу вверх СО встречается с кусками раскаленного кокса и восстанавливается его углеродом по реакции
С + СО2 = 2СО - 157 920 Дж.
Максимальная температура доменного процесса составляет 1900 С.
Восстановление железа в домне идет по схеме
Fe2O3>Fe3O4>FeO>Fe
с образованием губчатого железа. В поры губчатого железа проникает углерод, и железо науглероживается (до 3,5...4 %) по реакции
3Fе + 2СО = Fе3С + СО2 .
Далее науглероженный металл расплавляется и стекает в горн доменной печи, при этом происходит его дальнейшее насыщение углеродом за счет соприкосновения с раскаленным коксом.
При доменной плавке восстанавливаются также и другие элементы, находящиеся в руде, по следующим реакциям:
SiO2 + 2C = Si + 2CO;
MnO + C = Mn + CO;
Р2О5 + 5С = 2Р + 5СО.
Эти элементы, а также часть серы в виде FеS, переходят в чугун.
Продукты доменного производства: чугун, накапливающийся в нижней части горна, огненно-жидкие шлаки, как более легкие, собирающиеся поверх чугуна, и доменный газ, выходящий из верхней части домны.
ДОМЕННЫЙ ГАЗ - топливо длянужд металлургической промышленности.
ДОМЕННЫЕ ШЛАКИ - ценное сырье в промышленности стройматериалов; их используют для производства шлаковой ваты, шлаковой пемзы, шлакопортландцемента, заполнителей для легких бетонов, шлакоситаллов и т.п.
ЧУГУН - литейный, передельный и ферросплавы.
Передельный чугун составляет 80...90 % всей выплавки, цвет его белый, так как весь углерод связан с железом в Fе С, идет на переделку в сталь. Из белого чугуна, кроме того, получают ковкий чугун путем длительного отжига при высоких температурах, что вызывает частичный распад карбида железа. Ковкий
чугун более прочен и пластичен, легче обрабатывается.
Литейный чугун серый (СЧ) за счет свободного углерода, который в виде графитовых пластин перерезает металлическую основу чугуна; применяется для конструкций, работающих на сжатие, для санитарно-технических и архитектурно-художественных изделий, плит для пола и др.
Модифицированный серый чугун (МСЧ) имеет более высокие механические свойства за счет шаровидной раздробленной формы графита; применяется для отливок ответственных деталей.
Механические свойства чугунов
Вид чугуна Предел прочности Предел прочности на растяжение. ПМа на сжатие, МПа
СЧ 120...280 280.. .480
МСЧ 280...480 380... 600
Ферросплавы - специальные чугуны,в которых содержание углерода может достигать 5 % и более. Кроме того они содержат повышенное количество кремния и марганца:
ферросилиций - Si - 9...13 %,
ферромарганец - Mn - 10...25 % или 70...75 %.
Применяют их для раскисления и легирования стали.
СТАЛЬ.
Сталь получают из передельного чугуна, содержащего до 4 % углерода, 1% марганца, до 1,3 % кремния, десятые доли процента серы и фосфора.
Сущность процесса сталеварения заключается в окислении излишнего содержания углерода и примесей, содержащихся в чугуне , кислородом воздуха и кислородом руды. Этому процессу способствует образующаяся в начале плавки закись железа
2Fe + O2 = 2FeO и далее
FeO + C = CO + Fe.
Так как излишнее содержание закиси железа вызывает хрупкость стали, производят раскисление жидкого металла путем ввода ферросплавов по следующей схеме
FeO + Mn > MnO + Fe ;
2FeO + Si > SiO2 + Fe ;
3FeO + 2Al > Al2O3 + 3Fe.
Образовавшиеся оксиды удаляются вместе со шлаком.
В зависимости от степени раскисления различают спокойную, полуспокойную и кипящую сталь. Спокойная сталь (сп),в которой нет закиси железа, наиболее качественная и дорогая. Кипящая сталь (кп), в которой процесс раскисления прошел не до конца, и в ней имеются пузырьки газа СО, при разливке в изложницы " кипит". Она дешевле спокойной стали, но качество ее ниже, хотя она сваривается и удовлетворительно обрабатывается, но при температуре -10 С она становится хрупкой. Полуспокойная сталь (пс) по своим свойствам занимает промежуточное положение между двумя первыми.
Современные способы производства стали: конверторный, мартеновский и электроплавильный.
При конверторном Бессемеровском способе жидкий чугун заливают в конвертор и продувают горячим воздухом, при этом выгорают и удаляются со шлаком С, Мn, Si, а S и Р остаются в стали. При Томасовском конверторном процессе перед заливкой чугуна в конвертор подают свежеобожженную известь. При этом образующиеся основные шлаки удерживают вредные примеси (S и Р).
Процесс конверторной варки стали очень экономичен, так как не требует дополнительного подвода тепла (необходимая для нагрева стали теплота выделяется в результате химических реакций окисления углерода и примесей чугуна),а время варки составляет 20...30 мин, однако невозможно получить сталь точного химического состава.
Кислородно-конверторный способ производства стали - наиболее перспективный. В нем дополнительно используется продувка кислородом, что позволяет довести качество конверторных сталей до уровня сталей, выплавляемых в мартенах и электропечах.
При мартеновском способе варки стали различают:
скрап-процесс, при котором сырьем служит смесь чушкового чугуна и скрапа (стального лома);
рудный процесс, при котором используют в качестве шихты смесь жидкого чугуна, железной руды и отходов металлургической промышленности;
скрапно-рудный процесс, при котором шихта состоит из руды, жидкого чугуна и скрапа в равных соотношениях.
Варка в мартеновских печах продолжается 4...8 часов при использовании топлива с систематическим отбором проб стали на химический анализ. Мартеновские стали получают точного химического состава, качество их выше конверторных.
Наиболее совершенным способом производства стали является электроплавильный способ. В электрических печах получают высококачественные и легированные стали. Однако производство это достаточно дорогое.
Влияние нормальных примесей на механические свойства стали
В состав сталей в силу условий их получения всегда входят так называемые нормальные примеси - Si, Mn, S, P, O2.
Содержание кремния до 0,35 % и марганца до 0,9 % на прочность стали не влияет.
Фосфор - вредная примесь, допустимое содержание его не более 0,055 %, так как он способствует росту зерен, что уменьшает пластичность и увеличивает хрупкость металла.
Сера - вредная примесь, допустимое содержание ее не более 0,055 %. В стали сера находится в виде сернистого железа FeS, которое образует на зернах металла хрупкие оболочки. При нагревании стали до красного каления оболочки частично расплавляются, вызывая красноломкость стали. Такая сталь непригодна для прокатки, ковки, сварки.
Кислород - вредная примесь, в металле находится в виде закиси железа FеО, которая образует легкоплавкие оболочки вокруг зерен стали. Кислород обуславливает красноломкость и хладноломкость (резкое повышение хрупкости стали при отрицательных температурах),понижение пластичности и ухудшение свариваемости стали. При содержании О2 > 0,03 % происходит хладноломкость стали, при содержании О2 > 0,1 % - красноломкость.
Классификация сталей
По химическому составу стали делятся на
углеродистые и
легированные.
Углеродистые стали классифицируют:
- по степени раскисления на кп, пс и сп ;
- по применению на
конструкционные, содержащие углерода С < 0,65%,
инструментальные, содержащие углерода С = 0,65...1,5%;
- по качеству на
обыкновенного качества,
качественные,
высококачественные;
- в зависимости от гарантируемых характеристик на
группу А, поставляемую по механическим свойствам,
группу Б, поставляемую по химическому составу,
подгруппу В, поставляемую по механическим свойствам и химическому составу.
Стали каждой группы делятся на марки.
Марка стали - это класс стали по прочности, устанавливаемый по пределу текучести, пределу прочности и величине относительной деформации.
Сталь группы А имеет марки Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6, Ст7.
Сталь группы Б имеет те же марки, что и сталь группы А, но перед маркой ставится буква Б (БСт0, БСт1 и т.д.).
Сталь группы В имеет марки ВСт2, ВСт3, ВСт4 и ВСт5.
По мере увеличения номера стали повышается содержание углерода, а также прочность, твердость и износоустойчивость, но понижаются пластичность и ударная вязкость, ухудшается свариваемость.
Маркировка углеродистых сталей
Углеродистая сталь обыкновенного качества. В ее маркировке указаны способ выплавки, марка стали и степень раскисления.
Например: КСт3кп - конверторная сталь марки 3, кипящая,
МСт2пс - мартеновская сталь марки 2, спокойная.
2) Углеродистая конструкционная качественная сталь. В ее маркировке указано среднее содержание углерода в сотых долях процента от 08 до 80 и степень раскисления. Например:
08КП - кипящая сталь с содержанием углерода 0,08%,
10ПС - полуспокойная сталь с содержанием углерода 0,1%.
Поставляется она по химическому составу и механическим свойствам и выплавляется в кислородных конверторах и мартенах.
3) Углеродистая инструментальная качественная сталь. В ее маркировке цифры обозначают среднее содержание углерода в десятых долях процента от 7 до 13. Например У7 - инструментальная качественная сталь с содержанием углерода 0,7 %.
4) Углеродистая инструментальная высококачественная сталь маркируются так же, только добавляется буква А. Например: У7А, У8А и т.д.
В строительстве инструментальная сталь применяется с обязательной термической обработкой.
Состав и свойства железоуглеродистых сплавов
1) Аллотропные превращения чистого железа. Железо имеет четыре аллотропные формы: б -Fe, в -Fe, г -Fe и д -Fe. Практическое значение имеют только б -Fe и г -Fe, так как в -Fe и д -Fe отличаются от б -Fe только величиной межатомного расстояния в кристаллической решетке объемно-центрированного куба, а для в -Fe характерно еще отсутствие магнитных свойств.
Аллотропные превращения железа видны на его кривой охлаждения (рис. 3). Свойства г -Fe и б -Fe значительно отличаются. г -Fe не магнитно, хорошо растворяет углерод и образует с ним твердый раствор переменного состава - аустенит.
б -Fe обладает магнитными свойствами, в 100 раз хуже растворяет углерод, образуя с ним твердый раствор - феррит.
Рис. 9.3. Кривая охлаждения железа.
2) Структурные составляющие железоуглеродистых сплавов.
АУСТЕНИТ - твердый раствор углерода в г -Fe. Атомы углерода внедряются в кристаллическую решетку г -Fe, причем насыщение может быть различным в зависимости от температуры, максимальное содержание углерода 2,14 %. Область сущесвования аустенита 1392...723 С, твердость его НВ = 170...200, магнитными свойствами не обладает.
ФЕРРИТ - твердый раствор углерода в б -Fe переменного состава, максимальное содержание углерода 0,02 %, область существования с 910?С. Феррит мягкий, пластичный, сильно магнитный, хорошо проводит тепло и электричество, при отсутствии примесей не корродирует. Твердость феррита НВ = 60...80.
ЦЕМЕНТИТ - карбид железа (Fe3C), химическое соединение, содержащее 6,67 % углерода. Имеет металлический блеск, слабо магнитен, плохо проводит электрический ток и тепло, очень твердый (НВ = 800) и хрупкий, неустойчив, распадается при термической обработке.
ПЕРЛИТ - механическая смесь феррита и цементита, эвтектоид, образующаяся при 723?С и содержании углерода 0,83 % в результате распада аустенита. Твердость перлита НВ = 160...260.
Упрочение стали
Упрочение стали достигается термической обработкой, которая заключается в нагреве стали до определенной температуры, выдержке при этой температуре и охлаждении по определенному режиму.
1) Структура стали в зависимости от режима охлаждения.
Сталь при разных режимах охлаждения может приобрести структуру мартенсита, троостита, сорбита или перлита.
МАРТЕНСИТ образуется при резком охлаждении стали и представляет собой пересыщенный раствор углерода в б - Fe с искаженной кристаллической решеткой. Это объясняется тем, что при резком охлаждении происходит только частичный распад аустенита, заключающийся в перестройке кристаллической решетки из гране-
центрированной в объемно- центрированную, однако углерод выделиться не успевает. Мартенсит наиболее неустойчивая и, в то же время, наиболее твердая и хрупкая структура стали
...Подобные документы
Строительные материалы по назначению. Методы оценки состава стройматериалов. Свойства и применение гипсовяжущих материалов. Цементы: виды, применение. Коррозия цементного камня. Состав керамических материалов. Теплоизоляционные материалы, их виды.
шпаргалка [304,0 K], добавлен 04.12.2007Общие сведения о строительных материалах, их основные свойства и классификация. Классификация и основные виды природных каменных материалов. Минеральные вяжущие вещества. Стекло и стеклянные изделия. Технологическая схема производства керамической плитки.
реферат [20,3 K], добавлен 07.09.2011Виды санитарно-технической керамики. Сырьё, технология ее изготовления. История возникновения и производства стекла. Свойства акустических материалов и применение их в строительстве. Основные свойства строительных растворов. Физические свойства древесины.
контрольная работа [41,7 K], добавлен 12.09.2012Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.
презентация [2,4 M], добавлен 14.01.2016Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.
курсовая работа [8,9 M], добавлен 16.12.2010Свойства дорожно-строительных материалов. Способы формования керамических изделий. Природные каменные материалы. Сырье, свойства и применение низкообжигового строительного гипса. Основные процессы, необходимые для получения портландцементного клинкера.
контрольная работа [302,3 K], добавлен 18.05.2010Свойства строительных материалов, области их применения. Искусство изготовления изделий из глины. Классификация керамических материалов и изделий. Цокольные глазурованные плитки. Керамические изделия для наружной и внутренней облицовки зданий.
презентация [242,9 K], добавлен 30.05.2013Роль качественной звукоизоляции помещений в жизни человека. Основные виды шума: воздушный и структурный. Защита от производственного шума. Группы звукоизоляционных материалов, строительные нормы и правила. Эффективные решения проблемы звукоизоляции.
реферат [5,4 M], добавлен 16.04.2011Прочность материалов и методы ее определения. Разновидности облицовочной керамики в строительстве. Глиноземистый цемент, его свойства и применения. Полимерные материалы, применяемые в отделке внутренних стен. Гидроизоляционные материалы, их применение.
контрольная работа [33,1 K], добавлен 26.03.2012Принципы, определяющие внешний вид офиса. Требования, предъявляемые к отделочным материалам и ремонту офисов. Классификация потолков по конструктивному решению. Типы напольных покрытий. Строительные материалы для отделки стен. Виды оконных конструкций.
реферат [31,3 K], добавлен 20.12.2011Специальные виды цементов, их особые свойства и сферы применения. Физические, механические и технологические свойства древесины. Виды бетонов и их составляющие. Бетон и железобетон: их качества, технологические схемы производства и область применения.
контрольная работа [50,0 K], добавлен 22.02.2012Характеристика свойств строительных материалов. Минеральный состав магматических горных пород. Гипсовые вяжущие вещества, их свойства. Гниение и антисептирование древесины. Рулонные кровельные материалы. Технология получения цемента по "мокрому" способу.
контрольная работа [87,0 K], добавлен 25.07.2010Свойства кровельных и гидроизоляционных материалов на основе органических вяжущих. Виды и применение теплоизоляционных материалов. Требования к зданиям; принципы проектирования генерального плана. Системы отопления и водопровода; канализационные сети.
контрольная работа [100,3 K], добавлен 08.01.2015Классификация строительных материалов. Требования к составляющим бетона, факторы, влияющие на его прочность и удобоукладываемость. Ячеистые и пористые бетоны, их применение в строительстве. Лакокрасочные материалы и металлы, их применение в строительстве.
контрольная работа [31,0 K], добавлен 05.05.2014Характеристика предварительно напряженного железобетона и его преимущества по сравнению с обычным бетоном. Опеределение и строение древесины. Процесс изготовления минеральной ваты. Основные звукоизоляционные материалы. Назначение строительных растворов.
контрольная работа [24,9 K], добавлен 12.05.2009Сущность акустических материалов, их разновидности и свойства. Обзор мягких, полужестких и твердых звукопоглощающих материалов. Звукопоглощающие свойства акмиграна, способы его изготовления. Классификация звукоизоляционных прокладочных материалов.
презентация [561,5 K], добавлен 02.03.2016Битумы, дегти и материалы на их основе. Термопластичные и термореактивные полимеры. Технология производства асфальтобетона. Схема коллоидно-дисперсного строения битума. Классификация органических вяжущих веществ. Основные недостатки битумов и дегтей.
лекция [76,6 K], добавлен 16.04.2010Строительный раствор - затвердевшая смесь, состоящая из вяжущего вещества, мелкого заполнителя (песка) и воды. Классификация строительных растворов по назначению и по составу. Специальные виды растворов и сырьевые материалы, технология их производства.
курсовая работа [153,8 K], добавлен 13.02.2012Характеристика основных пород древесины: хвойные, лиственные кольцесосудистые и рассеяннососудистые. Особенности строения и макросруктуры древесных материалов, их физико-механических свойств: плотность, влажность, тепло- и звукопроводность, разбухание.
реферат [71,4 K], добавлен 17.05.2010Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.
реферат [202,9 K], добавлен 01.05.2017