Строительные материалы
Связь состава и строения материалов с их свойствами. Каменные материалы и древесина. Вяжущие вещества воздушного и гидравлического твердения. Железобетон и строительные растворы. Полимеры, пластмассы и керамика. Виды тепло- и звукоизоляционных материалов.
Рубрика | Строительство и архитектура |
Вид | курс лекций |
Язык | русский |
Дата добавления | 14.02.2021 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Технические свойства гипса. Истинная плотность полуводного гипса -- 2,65...2,75 г/см3 (двуводного -- 2,32 г/см5); насыпная плотность полуводного гипса -- 800... 1100 кг/м3.
По срокам схватывания, определяемым на приборе Вика гипс делят на три группы (А, Б, В):
Таблица 4.1
Вид гипса |
Начало схватывания |
Конец схватывания |
|
Быстротвердеющий (А) |
Не ранее 2 мин |
Не позднее 15 мин |
|
Нормальнотвердеющий (Б) |
Не ранее 6 мин |
Не позднее 30 мин |
|
Медленнотвердеющий (В) |
Не ранее 20 мин |
Не нормируется |
Замедляют схватывание гипса добавкой столярного клея, сульфит-носпиртовой барды (ССБ), технических лигносульфонатов (ЛСТ), кератинового замедлителя, а также борной кислоты, буры и полимерных дисперсий (например, ПВА).
Марку гипса определяют испытанием на сжатие и изгиб стандартных образцов-балочек 4 х 4 х 16 см спустя 2 ч после их формования. За это время гидратация и кристаллизация гипса заканчивается.
Установлено 12 марок гипса по прочности от Г-2 до Г-25 (цифра показывает нижний предел прочности при сжатии данной марки гипса в МПа):
В строительстве используется в основном гипс марок от Г-4 до Г-7.
По тонкости помола, определяемой максимальным остатком пробы гипса при просеивании на сите с отверстиями 0,2 мм, гипсовые вяжущие делят на три группы: грубый, средний, тонкий.
Плотность затвердевшего гипсового камня низкая (1200... 1500 кг/м3) из-за значительной пористости (60...30 % соответственно).
Гипсовое вяжущее -- одно из немногих вяжущих, расширяющихся при твердении: увеличение в объеме достигает 0,2 %. Эта особенность гипсовых вяжущих позволяет применять их без заполнителей, не боясь растрескивания от усадки.
При увлажнении затвердевший гипс не только существенно (в 2...3 раза) снижает прочность, но и проявляет нежелательное свойство -- ползучесть -- медленное необратимое изменение размеров и формы под нагрузкой. Характер водной среды во влажном гипсе -- нейтральный (рН = 6,5...7,5), и она содержит ионы Са+2 и SO-24, поэтому стальная арматура в гипсе корродирует. Увлажнению гипса способствует его гигроскопичность -- способность поглощать влагу из воздуха.
Гипс хорошо сцепляется с древесиной и поэтому его целесообразно армировать деревянными рейками, картоном или целлюлозными волокнами и наполнять древесными стружками и опилками.
Гипсовые материалы не только являются негорючими материалами, но в силу своей пористости замедляют передачу теплоты, а при действии высоких температур в результате термической диссоциации выделяют воду, тем самым тормозя распространение огня.
В сухих условиях эксплуатации или при предохранении от действия воды (гидрофобизирующие покрытия, пропитки и т. п.) гипс очень перспективное с технической и экологической точек зрения вяжущее.
Области применения. Главнейшая область применения гипса -- устройство перегородок. Они могут быть заводского изготовления в виде панелей «на комнату», из гипсовых камней или из гипсокартонных листов. Последние также широко применяют для отделки стен и потолков. Гипсоволокнистые материалы используют как выравнивающий слой под чистые полы. Из гипса делают акустические плиты. В различных вариантах его применяют для огнезащитных покрытий металлических конструкций. Небольшое по объему, но важное направление использования гипса: декоративные архитектурные детали (лепнина) и скульптура.
Гипс используют для изготовления форм (например, для керамики)
- формовочный гипс и в медицине для фиксации при переломах -медицинский гипс. Два последних вида гипса отличаются от строительного несколько повышенными требованиями к тонкости помола ихимическому составу.
Местные вяжущие материалы из гипсосодержащих пород. В районах Средней Азии и Закавказья применяют местные вяжущие -- ганч и гажу. Их получают из пород, содержащих гипс (20...60 %) и глину (80...40 %). Ганч и гажа по свойствам напоминают обычный гипс, отличаясь от него более медленным схватыванием. Эти вяжущие используют для штукатурных и художественных работ.
Ангидритовое вяжущее и высокообжиговый гипс -- медленносхва-тывающиеся и медленнотвердеющие вяжущие, состоящие из безводного сульфата кальция CaSO4 и активизаторов твердения.
Безводный сульфат кальция существует в природе в виде минерала -ангидрита, однако даже в тонкоразмолотом состоянии он не обнаруживает вяжущих свойств.
Высокообжиговый гипс (эстрих-гипс) получают обжигом природного гипсового камня CaSO4 * 2Н2О до высоких температур (800...950° С). При этом происходит его частичная диссоциация с образованием СаО. Последний служит активизатором твердения ангидрита. Окончательным продуктом твердения такого вяжущего является двуводный гипс, определяющий эксплуатационные свойства материала.
Технологические свойства эстрих-гипса существенно отличаются от свойств обычного гипса. Сроки схватывания эстрих-гипса: начало не ранее 2 ч, конец - не нормируется. Благодаря пониженной водопотребности (у эстрих-гипса она составляет 30...35 % против 50...60 % у обычного гипса) эстрих-гипс после затвердевания образует более плотный и прочный материал. Прочность образцов-кубов из раствора жесткой консистенции состава вяжущее: песок =1:3 через 28 суток твердения во влажных условиях -- 10...20 МПа. По этому показателю устанавливают марку эстрих-гипса: 100; 150 или 200 (кгс/см2).
Эстрих-гипс применяли в конце XIX -- начале XX вв. для кладочных и штукатурных растворов (в том числе и для получения искусственного мрамора), устройства бесшовных полов, оснований под чистые полы и т. п. В настоящее время это вяжущее применяют ограниченно. Весьма вероятно появление интереса к этому вяжущему в недалеком будущем.
Магнезиальные вяжущие
Магнезиальные вяжущие вещества (каустический магнезит MgO и каустический доломит MgO + СаСО3) -- тонкодисперсные порошки, активной частью которых является оксид магния.
Получают магнезиальные вяжущие умеренным (до 700...800° С) обжигом магнезита (реже доломита). При этом карбонат магния диссоциирует с образованием оксида магния MgCO3 > MgO + СО2, а карбонат кальция СаСО3 (в доломите) остается без изменения и является балластной частью вяжущего. Обожженный продукт размалывают.
При затворении водой оксид магния гидратируется очень медленно, проявляя слабые вяжущие свойства. Магнезиальные вяжущие принято затворять раствором хлорида или сульфата магния. В этом случае гидратация протекает значительно быстрее с образованием гидрата оксихлорида магния (3MgO * MgCl2 * 6Н2О), уплотняющего образующийся материал.
Сроки схватывания каустического магнезита зависят от температуры обжига и тонкости помола и обычно находятся в пределах: начало - не ранее 20 мин; конец - не позднее 6 ч.
Твердение начинается интенсивно, и через сутки вяжущее достигает прочности 10... 15 МПа; через 28 суток воздушного твердения прочность составляет 30...50 МПа. В жестких смесях прочность может достигать 100 МПа.
Магнезиальные вяжущие в XIX -- начале XX в. применялись для устройства бесшовных монолитных, так называемых ксилолитовых полов. Ксилолит (от гр. xelon -- древесина) -- бетон на магнезиальном вяжущем с наполнителем из древесных опилок. Серьезных перспектив у магнезиальных вяжущих из-за дефицитности сырья (магнезиты необходимы для получения огнеупоров) нет, но в последнее время они вновь начали применяться в отечественном строительстве.
Растворимое стекло и кислотоупорный цемент
Растворимое стекло -- силикаты натрия (Na2O*mSiO2) или калия (К2О*mSiO2), где m -- модуль стекла, находящийся в пределах для натриевого стекла 2,0...3,5, а для калиевого 3,5...4,5. Растворимое стекло получают сплавлением смеси кварцевого песка соответственно с содой Na2CO3 (или сульфатом натрия Na2SO4) и поташем К2СО3 в стекловаренных печах при 1300...1400°С. Образовавшийся расплав быстро охлаждают. При этом он распадается на полупрозрачные желто-зеленые куски, называемые силикат-глыбой.
В строительстве обычно используют раствор силикат-глыбы в воде - жидкое стекло (в быту такой раствор называют силикатный клей).Растворение производится в автоклаве насыщенным паром. Плотность раствора 1,5...1,3 г/см3, что соответствует концентрации раствора 70...50 %.
При растворении в воде силикаты натрия и калия гидролизуются с образованием коллоидного раствора кремневой кислоты Si(OH)4 и соответствующих щелочных гидроксидов. В этих условиях (рН = 12...13) раствор кремневой кислоты относительно стабилен. Жидкое стекло имеет повышенную вязкость из-за того, что кремнекислота в нем находится в полимеризованном виде. При обезвоживании (испарении или отсасывании воды) или при нейтрализации щелочей (например, углекислым газом воздуха) раствор теряет стабильность и переходит в гель, уплотняющийся со временем и приобретающий значительную прочность. Так, растворимое стекло проявляет вяжущие свойства. В обычных условиях этот процесс может идти очень долго, поэтому используют добавки -- ускорители твердения.
Жидкое стекло применяют для изготовления кислотоупорных и жаростойких замазок и бетонов, а также как связующее в силикатных красках (только калиевое стекло).
Кислотоупорный цемент изготовляют из тонко измельченной смеси кислотоупорного наполнителя (кварца, диабаза, андезита и т. п.) и ускорителя твердения -- кремнефтористого натрия Na2SiF6. Название «цемент» для такого порошка имеет условный характер, так как сам он вяжущими свойствами не обладает и при смешивании с водой не твердеет. Вяжущим веществом в таких цементах является жидкое стекло, которым этот «цемент» и затворяют.
Ориентировочное количество Na2SiF6 от массы растворимого стекла (т. е. сухого вещества в составе жидкого стекла) в кислотоупорных растворах и бетонах составляет 10...15 %.
Сроки схватывания кислотоупорного цемента: начало -- не ранее 20 мин., конец -- не позднее 8 ч. У этого цемента нормируется предел прочности при растяжении после 28 суток твердения -- не менее 2,0 МПа. Прочность при сжатии бетонов на кислотоупорном цементе составляет 20...60 МПа.
Основным достоинством и отличием кислотоупорного цемента от других неорганических вяжущих является способность работать в условиях действия большинства кислот (за исключением плавиковой и фосфорной).
Кислотостойкость -- сохранение массы при испытании в кислоте -- не менее 93 %.
Однако при длительном воздействии воды, пара и растворов щелочей бетоны и растворы на жидком стекле теряют прочность.
Воздушная известь
Известь известна человечеству не одно тысячелетие и все это время активно используется им в строительстве и многих других отраслях. Это объясняется доступностью сырья, простотой технологии и достаточно хорошими свойствами извести.
Сырьем для получения извести служат широко распространенные осадочные горные породы: известняки, мел, доломиты, состоящие преимущественно из карбоната кальция (СаСО3). Если куски таких пород прокалить на огне, то карбонат кальция перейдет в оксид кальция:
СаСО3 > СаО + СО2^
После прокаливания куски, теряя с углекислым газом 44 % своей массы, становятся легкими и пористыми. При смачивании водой они бурно реагируют с ней, превращаясь в тонкий порошок, а при избытке воды в пластичное тесто. Этот процесс, сопровождающийся сильным выделением теплоты и разогревом воды вплоть до кипения, называют гашением извести. Образующееся при избытке взятой воды пластичное тесто используют в качестве вяжущего. При испарении воды тесто загустевает и переходит в камневидное состояние. Недостаток извести -- медленное твердение: процесс набора прочности твердеющей известью растягивается на годы и десятилетия. В реальные сроки строительства прочность затвердевшей извести, как правило, не превышает 0,5...2 МПа.
Производство. Сырье -- карбонатные породы (известняки, мел, доломиты), содержащие не более 6...8 % глинистых примесей, обжигают в шахтных или вращающихся печах при температуре 1000... 1200° С. В процессе обжига СаСО3 и MgCO3, содержащиеся в исходной породе, разлагаются на оксиды кальция СаО и магния MgO и углекислый газ. Неравномерность обжига может привести к образованию в извести недожога и пережога.
Недожог (неразложившийся СаСО3), получающийся при слишком низкой температуре обжига, снижает качество извести, так как не гасится и не обладает вяжущими свойствами.
Пережог образуется при слишком высокой температуре обжига в результате сплавления СаО с примесями кремнезема и глинозема. Зерна пережога медленно гасятся и могут вызвать растрескивание и разрушение уже затвердевшего материала.
Куски обожженной извести -- комовая известь -- обычно подвергают гашению водой:
СаО + Н2О > Са(ОН)2 + 1160 кДж/кг
Выделяющаяся при гашении теплота резко повышает температуру извести и воды, которая может даже закипеть (поэтому негашеную известь называют кипелкой).
При гашении куски комовой извести увеличиваются в объеме и распадаются на мельчайшие (до 1 мкм) частицы.
В зависимости от количества взятой для гашения воды получают: гидратную известь - пушонку (35…40 % воды от массы извести, т. е. в количестве, необходимом для протекания реакции гидратации -- процесса гашения); известковое тесто (воды в 3...4 раза больше, чем извести), известковое молоко (количество воды превышает теоретически необходимое в 8... 10 раз).
Виды воздушной извести. По содержанию оксидов кальция и магния воздушная известь бывает:
кальциевая -- MgO не более 5 %;
магнезиальная -- MgO > 5...20 %;
доломитовая -- MgO > 20...40 %.
По виду поставляемого на строительство продукта воздушную известь подразделяют на негашеную комовую (кипелку), негашеную порошкообразную (молотую кипелку) и гидратную (гашеную, или пушонку).
Негашеная комовая известь предстаатяет собой мелкопористые куски размером 5...10см, получаемые обжигом известняка. В зависимости от содержания, активных СаО + MgO и количества негасящихся зерен комовую известь разделяют на три сорта.
По скорости гашения комовая известь бывает:
Таблица 4.2
Вид извести |
Время достижения максимальной температуры, мин |
|
Быстрогасящаяся |
<8 |
|
Среднегасящаяся |
8...25 |
|
Медленногасящаяся |
>25 |
Негашеную порошкообразную известь получают помолом комовой в шаровых мельницах в тонкий порошок. Часто в известь во время помола вводят активные добавки (гранулированные доменные шлаки, золы ТЭС и т. п.) в количестве 10...20 % от массы извести. Порошкообразная известь, как и комовая, делится на три сорта.
Преимущество порошкообразной извести перед комовой состоит в том, что при затворении водой она ведет себя подобно гипсовым вяжущим: сначала образует пластичное тесто, а через 20...40 мин схватывается. Это объясняется тем, что вода затворения, образующая тесто, частично расходуется на гашение извести.
При использовании порошкообразной извести воды берут 100...150 % от массы извести в зависимости от качества извести и количества активных добавок в ней. Определяют количество воды опытным путем.
Гидратная известь (пушонка) -- тончайший белый порошок, получаемый гашением извести, обычно в заводских условиях, небольшим количеством воды (несколько выше теоретически необходимого). При гашении в пушонку известь увеличивается в объеме в 2...2,5 раза. Насыпная плотность пушонки -- 400...450 кг/м3; влажность -- не более 5 %.
Гашение извести можно производить как на строительстве объекта, так и централизованно. В последнем случае гашение совмещается с мокрым помолом непогасившихся частиц, что увеличивает выход извести и улучшает ее качество.
На строительстве известь гасят в гасильных ящиках (творилах). В ящик загружают комовую известь не более чем на 1/3 его высоты (толщина слоя обычно около 100 мм), поскольку при гашении известь увеличивается в объеме в 2,5...3,5 раза. Быстрогасящуюся известь заливают сразу большим количеством воды, чтобы не допустить перегрева и кипения воды, медленногасящуюся -- небольшими порциями, следя за тем, чтобы известь не охладилась. Из 1 кг извести в зависимости ох ее качества получается 2...2,5 л известкового теста. Этот показатель называют «выход теста».
Воздушная известь -- единственное вяжущее, которое превращается в тонкий порошок не только размолом, но и путем гашения водой.
Колоссальная удельная поверхность частиц Са(ОН)2 и их гидрофильность обусловливает большую водоудерживающую способность и пластичность известкового теста. После отстаивания известковое тесто содержит около 50% твердых частиц и 50% воды. Каждая частица окружена тонким слоем адсорбированной воды, играющей роль своеобразной смазки, что обеспечивает высокую пластичность известкового теста и смесей с использованием извести.
По окончании гашения жидкое известковое тесто через сетку сливают в известехранилище, где его выдерживают до тех пор, пока полностью не завершится процесс гашения (обычно не менее двух недель). Известковое тесто с размером непогасившихся зерен менее 0,6 мм можно применять сразу. Крупные непогасившиеся зерна опасны тем, что среди них могут быть пережженные зерна (пережог).
Содержание воды в известковом тесте не нормируется. Обычно в хорошо выдержанном тесте соотношение воды и извести около 1:1.
Твердение. Известковое тесто состоит из насыщенного водного раствора Са(ОН)2 и мельчайших нерастворившихся частиц извести; По мере испарения из него воды образуется пересыщенный раствор Са(ОН)2, из которого выпадают кристаллы, увеличивающие содержание твердой фазы. При этом происходит усадка твердеющей системы, которая в определенных условиях (например, при твердении известковой смеси на жестком основании -- штукатурный слой) может вызвать растрескивание материала. Поэтому известь всегда применяют с заполнителями (например, известково-песчаные растворы) или в смеси с другими вяжущими для придания материалу пластичности.
Известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у такой извести «отсутствует» процесс схватывания. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние (известь -- неводостойкий материал).
Однако при длительном твердении (десятилетия) известь приобретает довольно высокую прочность и относительную водостойкость (например, в кладке старых зданий). Это объясняется тем, что на воздухе известь реагирует с углекислым газом, образуя нерастворимый в воде и довольно прочный карбонат кальция, т. е. как бы обратно переходит в известняк:
Са(ОН)2 + СО2 > СаСО3 + Н2О
Процесс этот очень длительный, и полной карбонизации извести практически не происходит.
Существует мнение, что при длительном контакте извести с кварцевым песком в присутствии влаги между этими компонентами происходит взаимодействие с образованием контактного слоя из гидросиликатов. Это так же повышает прочность и водостойкость бетонов и кирпичной кладки на извести, имеющих возраст более 200...300 лет.
Применение, транспортирование, хранение. Воздушную известь применяют для приготовления кладочных и штукатурных растворов как самостоятельное вяжущее, так и в смеси с цементом; при производстве силикатного кирпича и силикатобетонных изделий; для получения смешанных вяжущих (известково-шлаковых, известково-зольных и др.) и для красок.
Негашеную известь, особенно порошкообразную, при транспортировании и хранении предохраняют от увлажнения. Порошкообразная известь - кипелка гасится даже влагой, содержащейся в воздухе. Максимальный срок хранения молотой извести в бумажных мешках 25 сут, в герметичной таре (металлические барабаны) -- не ограничен.
Комовую известь транспортируют навалом в закрытых вагонах и автомашинах, порошкообразную -- в бумажных мешках, а также в специальных автоцистернах. В таких же цистернах перевозят пушонку и известковое тесто.
Хранят комовую известь в сараях с деревянным полом, поднятым над землей на 30 см. Недопустимо попадание на известь воды, так как это может вызвать ее разогрев и пожар. На складах извести тушение пожара водой запрещается.
Гидравлические известьсодержащие вяжущие
Низкая водостойкость извести всегда побуждала людей искать пути ликвидации этого недостатка. Еще в Древнем Риме был найден способ получения водостойкого вяжущего на основе извести. Помогло римлянам в этом наличие вулкана Везувия. Они обнаружили, что при добавлении вулканического пепла к извести образующаяся смесь после твердения на воздухе в течение 7...14 дн. далее могла твердеть в воде (более того, именно влажные условия были обязательны для набора прочности!). Это было первое гидравлическое вяжущее. Добавки из вулканических пород (пепла, туфа и т. п.) впоследствии получили название гидравлические или пуццолановые (по названию местечка у подножия Везувия, где они добывались). Римские постройки (мосты, акведуки, бани-термы и т. п.) на таких смешанных вяжущих сохранились до сих пор.
В Древней Руси проблема придания извести водостойкости была решена несколько иным путем. Там в роли гидравлической добавки использовали молотый бой кирпича; такую смесь на Руси называли цемянкой.
Механизм твердения этих вяжущих заключается в образовании из смеси извести, активных кремнезема и глинозема (пепла, молотого кирпича и т. п.) и воды водонерастворимых гидросиликатов и гидроалюминатов:
nСа(ОН)2 + SiO2 + mH2O > nСаО * SiO2 * mH2O
Другой путь получения водостойких вяжущих на основе извести также был найден очень давно. Он базировался на обжиге известняков, имеющих примесь глины от 6 до 20%. В этом случае в обожженном продукте помимо СаО появлялись низкоосновные силикаты и алюминаты (например, 2СаО * SiO2), способные к твердению в воде. Естественно, механизм твердения этих вяжущих был расшифрован только в XX в. Все эти вяжущие в несколько измененном виде применяют до сих пор.
Современные известьсодержащие вяжущие гидравлического твердения -- группа низкомарочных (малопрочных) так называемых местных вяжущих. В эту группу входят смешанные вяжущие (известково-пуццолановые и известково-шлаковые), а также гидравлическая известь.
Смешанные вяжущие получают совместным измельчением негашеной извести (10...30%), гидравлической добавки (85...70%) и гипса (до 5%). В качестве добавки используют горные породы, содержащие активный кремнезем: вулканический пепел, пемзу, туф, диатомит, трепел и др. Такие вяжущие называют известково-пуццолановыми. Если в качестве добавки взят доменный гранулированный шлак, такие вяжущие называют известково-шлаковыми.
Известьсодержащие гидравлические вяжущие на начальной стадии (около 7 дн) должны твердеть в сухих условиях, а затем во влажных. По пределу прочности при сжатии стандартных образцов через 28 суток твердения известьсодержащие вяжущие делятся на марки 50; 100; 150 и 200 (кг/см2).
Известьсодержащие гидравлические вяжущие применяют для приготовления растворов для кладки подземных частей зданий и бетонов. Срок хранения таких вяжущих из-за наличия в них негашеной извести не должен превышать 30 суток, причем во время хранения их тщательно предохраняют от увлажнения.
Строительная гидравлическая известь -- продукт умеренного обжига при температуре 900... 1100° С мергелистых известняков (содержание глины 8..20 %). В состав гидравлической извести входят свободные оксиды кальция и магния (50...65 %) и низкоосновные силикаты и алюминаты кальция, которые и придают извести гидравлические свойства.
Гидравлическая известь, смоченная водой, полностью гасится, образуя пластичное тесто. В отличие от воздушной она быстрее твердеет, приобретая со временем водостойкость. Однако первые 1...2 недели гидравлическая известь должна твердеть в воздушно-влажных условиях, и только после этого ее можно помещать в воду.
Предел прочности при сжатии затвердевшей гидравлической извести 2...5 МПа. Применяют ее для низкомарочных растворов и бетонов, используемых в том числе и во влажных условиях.
Портландцемент
Гидравлическая известь обладает рядом недостатков. Главные из них: необходимость твердения на воздухе первые 7... 14 сут, низкие прочность, морозо- и воздухостойкость. Поэтому велись поиски более совершенного вяжущего вещества. Практически одновременно (1824-- 1825) независимо друг от друга Егор Челиев в России и Джозеф Аспдин в Англии путем высокотемпературного обжига до спекания смеси известняков и глины получили вяжущее, обладающее большей водостойкостью и прочностью. Производство нового вяжущего, названного впоследствии портландцементом, совершенствовалось и быстро расширялось. Уже в начале XX в. портландцемент стал одним из основных строительных материалов.
Портландцемент -- гидравлическое вяжущее, получаемое тонким измельчением портландцементного клинкера и небольшого количества гипса (1,5...3 %). Клинкер получают обжигом до спекания сырьевой смеси, обеспечивающей в портландцементе преобладание силикатов кальция. К клинкеру для замедления схватывания цемента добавляют гипс. Для улучшения некоторых свойств и снижения стоимости портландцемента допускается введение минеральных добавок.
Кроме портландцемента на основе портландцементного клинкера выпускают много других видов цементов.
Производство. Основные операции при получении портландцемента: приготовление сырьевой смеси, обжиг ее до получения цементного клинкера и помол клинкера совместно с добавками.
Соотношение компонентов сырьевой смеси выбирают с таким расчетом, чтобы полученный при обжиге клинкер имел следующий химический состав (%): СаО -- 62...68, SiO2 -- 18..26, А12О3 -- 4...9, Fe2O3 -- 2...6. В природе есть горная порода, обеспечивающая получение клинкера такого состава,-- мергель, который представляет собой тесную смесь известняка с глиной. Но чаще используют известняк и глину (добываемые отдельно) в соотношении 3 : 1 (по массе). Кроме основных компонентов в сырьевую смесь вводят корректирующие добавки и промышленные отходы, обеспечивающие требуемый состав клинкера.
Тщательно подготовленную сырьевую смесь подают на обжиг во вращающуюся печь, которая представляет собой стальную трубу диаметром до 7 м и длиной до 185 м. Изнутри труба выложена огнеупорным кирпичом. Печь установлена под небольшим (3...4о) углом к горизонту и вращается (0,8... 1,3 мин-1), благодаря чему сырьевая смесь перемещается в ней от верхнего конца к нижнему, куда подается топливо. Максимальная температура обжига 1450°С. При таких высоких температурах оксид кальция СаО, образовавшийся в результате разложения известняка, взаимодействует с кислотными оксидами SiO2, А12О3 и Fe2O3, образующимися при разложении глины.
Таблица 4.3 Минеральный состав портлацщементного клинкера
Минерал |
Формула |
Количество, % |
|
Трехкальциевый силикат (алит) |
ЗСаО* SiO2(C3S) |
42...65 |
|
Двухкальциевый силикат (белит) |
2СаО* SiO2(C2S) |
12...35 |
|
Трехкальциевый алюминат |
ЗСаО* А12О3(С3А) |
4...14 |
|
Четырехкальциевый алюмоферрит |
4СаО*А12О3*Fe2O3 (C4AF) |
10...18 |
В скобках сокращенное обозначение клинкерных минералов.
Продукты взаимодействия, частично плавясь и спекаясь друг с другом, образуют так называемый портландцементный клинкер -- плотные твердые куски серого цвета. В состав портландцементного клинкера входят четыре основных минерала (табл. 8.1) и небольшое количество стеклообразного вещества.
Как видно из таблицы, портландцементный клинкер в основном (на 60...80%) состоит из силикатов кальция, из-за чего портландцемент также называют силикатным цементом.
Для получения портландцемента клинкер размалывают в трубных или шаровых мельницах с гипсом и другими добавками. Свойства портландцемента зависят от его минерального состава и тонкости помола клинкера.
При взаимодействии с влагой воздуха активность портландцемента падает, поэтому его предохраняют от действия влаги. Портландцемент хранят в силосах (высоких цилиндрических емкостях из бетона или металла). На строительство его доставляют в специальных вагонах, автомобилях-цементовозах или упакованным в многослойные бумажные или полиэтиленовые мешки.
Твердение. При смешивании с водой частицы портландцемента начинают растворяться, причем одновременно может происходить гидролиз (разложение водой) и гидратация (присоединение воды) продуктов растворения с образованием гидратных соединений.
По этой схеме (гидролиз и гидратация) взаимодействуют с водой главные компоненты клинкера алит C3S и белит C2S:
2(3СаО * SiO2) + 6Н2О > 3СаО * SiO2 * 3Н2О + 3Са(ОН)2
2(2СаО* SiO2) + 4Н2О> 3СаО * SiO2 * ЗН2О + Са(ОН)2
Необходимо подчеркнуть особенности этих реакций:
*C3S взаимодействует с водой намного активнее, чем C2S;
*при взаимодействии силикатов кальция с водой выделяетсярастворимый в воде компонент Са(ОН)2 -- воздушная известь, создающая щелочную реакцию в твердеющем цементе;
*C3S выделяет Са(ОН)2 в 3 раза больше, чем C2S; общее количество Са(ОН)2 достигает 15 % от массы цементного камня.
Алюминат кальция С3А подвергается только гидратации, причем этот процесс идет очень быстро с образованием крупных кристаллов
ЗСаО * А12О3 + 6Н2О > ЗСаО * А12О3 * 6Н2О
Добавка гипса, вводимая при помоле клинкера, изменяет характер начального периода твердения С3А и замедляет схватывание цемента на несколько часов из-за образования эттрингита ЗСаО * А12О3 * 3CaSO4 * (31 - 33)Н2О.
Четырехкальциевый алюмоферрит C4AF взаимодействует с водой медленнее, чем С3А, образуя гидроалюминат и гидроферрит кальция.
Основной продукт твердения портландцемента -- гидросиликаты кальция -- практически нерастворимы в воде. Они выпадают из раствора сначала в виде геля (жесткого студня). Этот гель пронизывают, укрепляя его, кристаллы Са(ОН)2. Гель гидросиликатов кальция со временем кристаллизуется. Остальные продукты взаимодействия клинкера с водой также участвуют в формировании структуры цементного камня и, естественно, влияют на его свойства.
Процесс гидратации зерен портландцемента из-за малой их растворимости растягивается на длительное время (месяцы и годы). Чтобы этот процесс мог протекать, необходимо постоянное присутствие воды в твердеющем материале. Однако нарастание прочности со временем замедляется. Поэтому качество цемента принято оценивать по прочности, набираемой им в первые 28 суток твердения.
Технические характеристики портландцемента. К основным характеристикам портландцемента относятся истинная и насыпная плотность, тонкость помола, сроки схватывания, равномерность изменения объема при твердении и прочность затвердевшего цементного камня.
Плотность портландцемента в зависимости от вида и количества добавок составляет 2900...3200 кг/м3, насыпная плотность в рыхлом состоянии 1000... 1100 кг/м3, в уплотненном -- до 1700 кг/м3.
Тонкость помола характеризуется количеством цемента, проходящим через сито с сеткой № 008 (размер отверстий 0,08 мм) и его удельной поверхностью. Согласно ГОСТу через сито с сеткой № 008 должно проходить не менее 95 % цемента, при этом удельная поверхность у обычного портландцемента должна быть в пределах 2900...3000 см2/г и у быстротвердеющего портландцемента 3500...5000 см2/г.
Сроки схватывания портландцемента, рассчитываемые от момента затворения, должны быть: начало -- не ранее 45 мин; конец -- не позднее 10 ч. Эти показатели определяют при температуре 20°С. Если цемент затворяют горячей водой (более 40°С), может произойти очень быстрое схватывание.
Прочность портландцемента характеризуется его маркой. Марку портландцемента определяют по пределу прочности при сжатии и изгибе образцов-балочек 40х40х160 мм, изготовленных из цементно-песчаного раствора (состава 1 : 3) стандартной консистенции и твердевших 28 суток (первые сутки в формах на влажном воздухе и 27 сут. в воде при 20°С).
Таблица 4.4
Класс прочности цемента |
Прочность на сжатие, МПа, в возрасте |
Начало схватывания, мин, не ранее |
Равномерность изменения объема (расширение), мм, не более |
||||
2 сут, не менее |
7 сут, не менее |
28 сут |
|||||
не менее |
не более |
||||||
22,5Н |
- |
11 |
22,5 |
42,5 |
75 |
10 |
|
32,5Н |
- |
16 |
32,5 |
52,5 |
|||
32,5Б |
10 |
- |
|||||
42,5Н |
10 |
- |
42,5 |
62,5 |
60 |
||
42,5Б |
20 |
- |
|||||
52,5Н |
20 |
- |
52,5 |
45 |
|||
52,5Б |
30 |
- |
Тепловыделение при твердении. Твердение портландцемента сопровождается выделением большого количества теплоты. Так как эта теплота выделяется в течение длительного времени (дни, недели), заметного разогрева цементного бетона или раствора не происходит. Однако если объем бетона велик (например, при бетонировании плотин, массивных фундаментов), то потери теплоты в окружающее пространство будут незначительны по сравнению с общим количеством выделяющейся теплоты и возможен разогрев бетона до температуры 70...80° С, что приведет к его растрескиванию.
Равномерность изменения объема. При твердении цементное тесто уменьшается в объеме. Усадка на воздухе составляет около 0,5... 1 мм/м. При твердении в воде цемент немного набухает (до 0,5 мм/м). Однако изменение объема при твердении должно быть равномерным. Это свойство проверяют на лепешках из цементного теста, которые не должны растрескиваться после пропаривания в течение 3 ч (до пропаривания лепешки 24 ч твердеют на воздухе). Неравномерность изменения объема возникает из-за присутствия в цементе свободных СаО и MgO, находящихся в виде пережога.
По вещественному составу, приведенному в таблице 1, цементы подразделяют на пять типов:
- ЦЕМ I - портландцемент;
- ЦЕМ II - портландцемент с минеральными добавками;
- ЦЕМ III - шлакопортландцемент;
- ЦЕМ IV - пуццолановый цемент;
- ЦЕМ V - композиционный цемент.
Примечание - Цемент типа ЦЕМ I не содержит минеральных добавок в качестве основного компонента.
Условное обозначение цементов должно состоять из:
- наименования цемента;
- сокращенного обозначения цемента, включающего обозначение типа и подтипа цемента и вида добавки;
- класса прочности;
- обозначения подкласса;
- обозначения настоящего стандарта.
Примеры условных обозначений:
1 Портландцемент класса 42,5 быстротвердеющий:
Портландцемент ЦЕМ I 42,5Б ГОСТ 31108-2003.
2 Портландцемент со шлаком (Ш) от 21 % до 35 %, класса прочности 32,5, нормальнотвердеющий:
Портландцемент со шлаком ЦЕМ II/В-Ш 32,5Н ГОСТ 31108-2003.
3 Портландцемент с известняком (И) от 6 % до 20 %, класса прочности 32,5, нормальнотвердеющий:
Портландцемент с известняком ЦЕМ II/А-И 32,5Н ГОСТ 31108-2003.
4 Композиционный портландцемент с суммарным содержанием доменного гранулированного шлака (Ш), золы-уноса (З) и известняка (И) от 6 % до 20 %, класса прочности 32,5, быстротвердеющий:
Композиционный портландцемент ЦЕМ II/А-К(Ш-З-И) 32,5Б ГОСТ 31108-2003.
5 Шлакопортландцемент с содержанием доменного гранулированного шлака от 36 % до 65 %, класса прочности 32,5, нормально-твердеющий:
Шлакопортландцемент ЦЕМ III/A 32,5H ГОСТ 31108-2003.
6 Пуццолановый цемент с суммарным содержанием пуццоланы (П), золы-уноса (З) и микрокремнезема (МК) от 21 % до 35 %, класса прочности 32,5, нормальнотвердеющий:
Пуццолановый цемент ЦЕМ IV/A (П-З-МК) 32,5Н ГОСТ 31108-2003.
7 Композиционный цемент с содержанием доменного гранулированного шлака (Ш) от 11 % до 30 % и золы-уноса (З) от 11 % до 30 %, класса прочности 32,5, нормальнотвердеющий:
Композиционный цемент ЦЕМ V/A(Ш-З) 32,5П ГОСТ 31108-2003.
Разновидности портландцемента
Для удовлетворения требований современного строительства к цементам промышленность на основе портландцементного клинкера выпускает различные виды портландцемента.
Быстротвердеющий портландцемент (БТЦ) отличается быстрым ростом прочности в первые дни твердения. Выпускают БТЦ двух марок: 400 и 500, которые в трехсуточном возрасте должны иметь предел прочности при сжатии соответственно не ниже 25 и 28 МПа.
В составе БТЦ преобладают активные минералы: трехкальциевый силикат C3S -- 50...55 % и трехкальциевый алюминат С3А-- 5... 10 %. Тонкость помола у БТЦ выше, чем у обычного портландцемента (удельная поверхность до 5000 см2/г), поэтому при хранении он, впитывая пары воды из воздуха, комкуется и быстро теряет активность. БТЦ применяют для бетонов сборных конструкций с повышенной отпускной прочностью и монолитных конструкций. Коррозионная стойкость у БТЦ пониженная.
Пластифицированный портландцемент получают, добавляя к клинкеру при помоле гидрофильные поверхностно-активные вещества (например, сульфитно-спиртовую барду ССБ) в количестве 0,15...0,25 %. Такой цемент повышает пластичность бетонных и растворных смесей по сравнению с обычным портландцементом при одинаковом расходе воды. Это позволяет уменьшить расход портландцемента, повысить прочность и морозостойкость бетонов и растворов.
Гидрофобный портландцемент получают, добавляя к клинкеру при помоле гидрофобные поверхностно-активные вещества ПАВ (0,05...0,5 % от массы цемента), образующие на зернах цемента водоотталкивающие пленки. В качестве таких добавок используют главным образом отходы переработки нефти (мылонафт, асидол).
Гидрофобный портландцемент благодаря наличию защитных пленок при хранении и транспортировании даже во влажных условиях не намокает, не комкуется и почти не теряет своей активности.
При перемешивании гидрофобного цемента с водой и заполнителями ПАВ сдирается с цементных зерен и переходит в состав бетона или раствора. Поэтому бетонные и растворные смеси на гидрофобном цементе отличаются повышенной пластичностью, а после затвердевания -- повышенной морозостойкостью и водонепроницаемостью.
Применяется гидрофобный цемент в тех случаях, когда трудно обеспечить необходимые условия хранения обычного цемента.
Сульфатостойкий портландцемент изготовляют из клинкера с пониженным содержанием трехкальциевого силиката C3S (не более 50 %) и трехкальциевого алюмината С3А (не более 5%). При таком составе цемента уменьшается возможность образования в цементном камне гидросульфоалюмината кальция («цементной бациллы») и тем самым повышается стойкость бетона к сульфатной коррозии. Кроме того, сульфатостойкий цемент характеризуется пониженным тепловыделением при твердении. Сульфатостойкий цемент выпускают марок 300, 400, 500.
Белый портландцемент получают из белых каолиновых глин и чистых известняков или мела с минимальным содержанием окислов железа, марганца и хрома. В таком цементе практически нет алюмоферрита кальция С4АF, имеющего серо-зеленый цвет. На основе белого цемента и щелочестойких пигментов (сурика, ультрамарина и др.) получают цветные цементы. Марки таких цементов 300, 400 и 500. Применяют белый и цветные цементы для отделочных работ.
Портлавдцементы с минеральными добавками
Цементный клинкер -- энергоемкий в производстве и дорогостоящий продукт. Поэтому во всех случаях, когда это допустимо, его заменяют более дешевыми природными продуктами или промышленными отходами. К таким смешанным цементам относятся шлакопортландцемент, пуццолоновый цемент и кладочные цементы.
Шлакопортландцемент получают путем совместного помола доменного гранулированного шлака (21...80 %), портландцементного клинкера (79...20 %) и гипса (не более 5 %).
Доменный шлак -- отход производства чугуна (на 1 т чугуна приходится около 0,6 т шлака), поэтому шлакопортландцемент экономически выгоднее, чем портландцемент. Выпуск шлакопортландцемента в России составляет около 1/3 от общего выпуска цемента. Химический состав доменного гранулированного шлака близок к составу клинкера. К самостоятельному твердению шлак не способен, но в присутствии портландцемента и гипса он проявляет вяжущие свойства.
Шлакопортландцемент выпускают трех марок: 300, 400 и 500. По коррозионной стойкости и водостойкости он превосходит обычный портландцемент, но твердеет несколько медленнее и при этом выделяет меньше теплоты. Недостаток шлакопортландцемента -- пониженная по сравнению с обычным портландцементом морозостойкость.
Пуццолановый портландцемент получают либо путем совместного помола портландцементного клинкера (79...60 %), активной минеральной добавки (21...40 %) и небольшого количества гипса, либо тщательным смешиванием этих же компонентов, но предварительно каждый из них измельчают. К активным минеральным добавкам относятся: вулканические туфы, пеплы и пемзы, диатомит, трепел, опока, золы ТЭС и другие вещества. Активные добавки связывают выделяющийся при твердении цемента Са(ОН)2 в нерастворимые гидросиликаты, благодаря чему повышаются водостойкость и коррозионная стойкость цементного камня. Пуццолановые цементы отличаются низким тепловыделением при твердении и пониженной скоростью твердения. Морозо- и воздухостойкость пуццолановых цементов ниже, чем портландцемента. Пуццолановый портландцемент выпускают марок: 300 и 400. Пуццолановый портландцемент применяют для гидротехнического строительства, а также для подземных и подводных сооружений.
Пуццолановый портландцемент и шлакопортландцемент, требуют увлажнения во время твердения.
Цементы для строительных, растворов (кладочные цементы) - это как бы разбавленный портландцемент. Содержание клинкера в таких цементах 20...30 %, а остальная часть цемента состоит из молотых активных и инертных (известняк, песок) добавок. Марка кладочных цементов 200. Такие цементы применяют для кладочных и штукатурных растворов и неармированных бетонов классов В12,5 и ниже. Использование кладочных цементов дает экономию цементного клинкера -- наиболее дорогой части цементов.
Глиноземистый цемент
Глиноземистый цемент -- быстротвердеющее гидравлическое вяжущее, состоящее преимущественно из моноалюмината кальция (СаО*А12О3). Свое название этот цемент получил от технического названия оксида алюминия А12О3 -- «глинозем».
Промышленное производство глиноземистого цемента началось во Франции в 1912 г. под названием «цемент Фондю» (в Европе этот цемент до сих пор носит это название).
Получение. Сырьем для глиноземистого цемента служат бокситы и чистые известняки. Бокситы -- горная порода, состоящая из гидратов глинозема (А12О3 * nН2О) и примесей (в основном Fe2O3, SiO2, СаО и др.). Бокситы широко используются в различных отраслях промышленности: для получения алюминия, абразивов, огнеупоров, адсорбентов и т.п., а месторождений с высоким содержанием А12О3 очень немного.
Производство глиноземистого цемента более энергоемко, чем производство портландцемента. Клинкер глиноземистого цемента получают либо плавлением в электрических или доменных печах (при 1500...1600° С), либо спеканием (при 1200...1300° С). Размол клинкера затруднен из-за его высокой твердости. В целом из-за того, что производство глиноземистого цемента очень энергоемко, а сырье (бокситы) -- дефицитно, его стоимость в несколько раз выше, чем стоимость портландцемента.
Состав. Химический состав глиноземистого цемента, получаемого разными методами, находится в следующих пределах: СаО - 35...45 %; А12О3 - 30...50 %; Fe2O3 - 0...15 %; SiO2 - 5...15 %. В минеральном составе клинкера глиноземистых цементов преобладает однокальциевый алюминат СаО * А12О3 (СА), определяющий основные свойства этого вяжущего. Кроме того, в нем присутствуют алюминаты -- СА2, С12А7; двухкальциевый силикат C2S, отличающийся, как известно, медленным твердением, и в качестве неизбежной балластной примеси -- геленит - 2СаО * А12О3 * 2SiO2.
Твердение. Процесс твердения глиноземистого цемента и прочность образующегося цементного камня существенно зависят от температуры твердения. При нормальной температуре (до + 25° С) основной минерал цемента -- СА взаимодействует с водой с образованием кристаллического гидроалюмината кальция и гидроксида алюминия в виде гелевидной массы:
2(СаО * А12О3) + 11Н2О = 2СаО * А12О3 * 8Н2О + 2А1(ОН)3 + Q
Суммарное тепловыделение (Q) у глиноземистого цемента немного ниже, чем у портландцемента (около 300...400 кДж/кг), но протекает оно в очень короткие сроки (в первые сутки выделяется 70...80 % от общего количества теплоты). Поэтому возможен перегрев бетонов на глиноземистом цементе в случае больших объемов бетонирования.
Свойства. У глиноземистого цемента удивительное сочетание свойств.
Сроки схватывания почти такие же, как у портландцемента: начало -- не ранее 30 мин, конец -- не позднее 12 ч (реально 4...5 ч).
После окончания схватывания прочность нарастает очень быстро (лавинообразно). Уже через сутки глиноземистый цемент набирает до 90 % от марочной прочности, которая у него определяется в 3-суточном возрасте. Марки у глиноземистого цемента такие же, как у портландцемента: 400; 500 и 600
Усадка глиноземистого цемента при твердении на воздухе ниже, чем у портландцемента, в 3...5 раз. Пористость цементного камня также ниже (приблизительно в 1,5 раза). Это связано с тем, что при одинаковой с портландцементом водопотребности глиноземистый цемент при твердении химически связывает 30...45 % воды от массы цемента (портландцемент -- около 20 %).
Области применения. Глиноземистый цемент целесообразно использовать при аварийных и срочных работах, при зимних работах и в тех случаях, когда от бетона требуется высокая водостойкость и водонепроницаемость. Кроме того, глиноземистый цемент является компонентом многих расширяющихся цементов.
Специальная область использования глиноземистых цементов -- жаростойкие бетоны. Объясняется это тем, что, во-первых, в продуктах твердения этого цемента нет Са(ОН)2, и, во-вторых, при температуре 700...800°С между продуктами твердения цемента и заполнителями бетона начинаются реакции в твердой фазе, по мере протекания которых прочность бетона не падает, а повышается, так как бетон превращается в керамический материал (опасность присутствия Са(ОН)2 заключается в том, что при нагреве он переходит в СаО, который при любом контакте с водой гасится, разрушая при этом бетон).
Расширяющиеся цементы
Портландцемент и материалы на его основе при твердении на воздухе обнаруживают усадку. Так, тесто на портландцементе при В/Ц = 0,45 имеет усадку на воздухе около 2,5 мм/м, а раствор на том же цементе ~1 мм/м. Из-за этого при бетонировании протяженных конструкций, например, покрытий полов, на них появляются трещины. В то же время растрескивание бетона абсолютно недопустимо, например, для конструкций, работающих под давлением воды, таких, как трубы, резервуары и т. п. Для этих целей применяют специальные расширяющиеся и безусадочные цементы.
Расширяющиеся цементы даже при твердении на воздухе имеют небольшое увеличение в объеме при твердении. Безусадочные цементы это расширяющиеся цементы, у которых расширение только компенсирует усадку. Поэтому такие цементы как бы сами уплотняют себя, делая бетон водонепроницаемым. В случае, если расширяющиеся цементы используются в железобетонных конструкциях, эффект расширения вяжущего может вызывать натяжение арматуры и сжатие самого бетона, что дополнительно защитит бетон от образования трещин. Такие цементы называют напрягающими.
Для строительных целей в основном используют цементы, в которых расширение достигается с помощью образования эттрингита -- гидросульфоалюмината кальция ЗСаО * А12О3 * 3CaSO4 * (31 - 32) Н2О. Образование эттрингита возможно при взаимодействии алюминатов и сульфатов кальция в водной среде. Как видно из формулы, в состав эттрингита входит большое количество воды. Именно это обстоятельство обеспечивает эффект расширения: исходные твердые продукты, взаимодействуя друг с другом и гидратируясь (т. е. присоединяя воду), увеличиваются в объеме в 2...2,5раза.
В твердеющем материале на расширяющемся цементе протекают два процесса -- расширение, обусловленное процессом кристаллизации эттрингита с увеличением объема новообразований и ростом внутренних растягивающих напряжений, и препятствующий расширению процесс -- рост прочности самого цементного камня.
Если образование эттрингита будет протекать раньше, чем у цементного камня появится хотя бы небольшая прочность, то эттрингит будет сжимать податливую гелеобразную массу и заметного расширения не произойдет.
Если эттрингит будет образовываться в то время, когда цементный камень набрал достаточно высокую прочность, то напряжения, обусдовленные ростом кристаллов эттрингита в ограниченном объеме, могут вызвать падение прочности и даже разрушение цементного камня, как это имеет место при сульфатной коррозии.
Таким образом, главная задача при разработке составов расширяющихся и безусадочных вяжущих - правильный выбор не только количества образующегося эттрингита, но и момента его образования относительно процесса формирования структуры цементного камня. Для различных видов расширяющихся цементов период наиболее интенсивного и безопасного расширения цементного камня составляет от 12 ч до 3…7 суток в зависимости от свойств основного структурообразующего вяжущего.
При изготовлении железобетонной конструкции на напрягающем цементе энергия расширения вяжущего частично идет на создание растягивающих напряжений в арматуре. Реакция арматуры вызывает в бетоне сжимающие напряжения. Таким образом, получаются самонапряженные железобетонные конструкции высокой плотности и трещиностойкости. Такой метод самонапряжения используется при бетонировании емкостей для хранения газов и жидкостей, устройстве гидроизоляционных слоев. Например, при бетонировании чаши стадиона в Лужниках, которая одновременно является и крышей для помещений внизу, и полом, на котором находятся скамьи для зрителей, для обеспечения водонепроницаемости использовалась смесь на основе напрягающего цемента.
Перспективная область применения бетонов и растворов на расширяю-щихся и безусадочных вяжущих -- бесшовные тонкослойные стяжки или лицевые покрытия полов большой площади. С помощью полимерных модификаторов таким смесям придают свойство самовыравнивания, а эффект безусадочности гарантирует трещиностойкость. Быстрое твердение и защитные полимерные добавки обеспечивают необходимое количество воды для протекания полной гидратации без какого-либо специального ухода.
...Подобные документы
Строительные материалы по назначению. Методы оценки состава стройматериалов. Свойства и применение гипсовяжущих материалов. Цементы: виды, применение. Коррозия цементного камня. Состав керамических материалов. Теплоизоляционные материалы, их виды.
шпаргалка [304,0 K], добавлен 04.12.2007Общие сведения о строительных материалах, их основные свойства и классификация. Классификация и основные виды природных каменных материалов. Минеральные вяжущие вещества. Стекло и стеклянные изделия. Технологическая схема производства керамической плитки.
реферат [20,3 K], добавлен 07.09.2011Виды санитарно-технической керамики. Сырьё, технология ее изготовления. История возникновения и производства стекла. Свойства акустических материалов и применение их в строительстве. Основные свойства строительных растворов. Физические свойства древесины.
контрольная работа [41,7 K], добавлен 12.09.2012Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.
презентация [2,4 M], добавлен 14.01.2016Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.
курсовая работа [8,9 M], добавлен 16.12.2010Свойства дорожно-строительных материалов. Способы формования керамических изделий. Природные каменные материалы. Сырье, свойства и применение низкообжигового строительного гипса. Основные процессы, необходимые для получения портландцементного клинкера.
контрольная работа [302,3 K], добавлен 18.05.2010Свойства строительных материалов, области их применения. Искусство изготовления изделий из глины. Классификация керамических материалов и изделий. Цокольные глазурованные плитки. Керамические изделия для наружной и внутренней облицовки зданий.
презентация [242,9 K], добавлен 30.05.2013Роль качественной звукоизоляции помещений в жизни человека. Основные виды шума: воздушный и структурный. Защита от производственного шума. Группы звукоизоляционных материалов, строительные нормы и правила. Эффективные решения проблемы звукоизоляции.
реферат [5,4 M], добавлен 16.04.2011Прочность материалов и методы ее определения. Разновидности облицовочной керамики в строительстве. Глиноземистый цемент, его свойства и применения. Полимерные материалы, применяемые в отделке внутренних стен. Гидроизоляционные материалы, их применение.
контрольная работа [33,1 K], добавлен 26.03.2012Принципы, определяющие внешний вид офиса. Требования, предъявляемые к отделочным материалам и ремонту офисов. Классификация потолков по конструктивному решению. Типы напольных покрытий. Строительные материалы для отделки стен. Виды оконных конструкций.
реферат [31,3 K], добавлен 20.12.2011Специальные виды цементов, их особые свойства и сферы применения. Физические, механические и технологические свойства древесины. Виды бетонов и их составляющие. Бетон и железобетон: их качества, технологические схемы производства и область применения.
контрольная работа [50,0 K], добавлен 22.02.2012Характеристика свойств строительных материалов. Минеральный состав магматических горных пород. Гипсовые вяжущие вещества, их свойства. Гниение и антисептирование древесины. Рулонные кровельные материалы. Технология получения цемента по "мокрому" способу.
контрольная работа [87,0 K], добавлен 25.07.2010Свойства кровельных и гидроизоляционных материалов на основе органических вяжущих. Виды и применение теплоизоляционных материалов. Требования к зданиям; принципы проектирования генерального плана. Системы отопления и водопровода; канализационные сети.
контрольная работа [100,3 K], добавлен 08.01.2015Классификация строительных материалов. Требования к составляющим бетона, факторы, влияющие на его прочность и удобоукладываемость. Ячеистые и пористые бетоны, их применение в строительстве. Лакокрасочные материалы и металлы, их применение в строительстве.
контрольная работа [31,0 K], добавлен 05.05.2014Характеристика предварительно напряженного железобетона и его преимущества по сравнению с обычным бетоном. Опеределение и строение древесины. Процесс изготовления минеральной ваты. Основные звукоизоляционные материалы. Назначение строительных растворов.
контрольная работа [24,9 K], добавлен 12.05.2009Сущность акустических материалов, их разновидности и свойства. Обзор мягких, полужестких и твердых звукопоглощающих материалов. Звукопоглощающие свойства акмиграна, способы его изготовления. Классификация звукоизоляционных прокладочных материалов.
презентация [561,5 K], добавлен 02.03.2016Битумы, дегти и материалы на их основе. Термопластичные и термореактивные полимеры. Технология производства асфальтобетона. Схема коллоидно-дисперсного строения битума. Классификация органических вяжущих веществ. Основные недостатки битумов и дегтей.
лекция [76,6 K], добавлен 16.04.2010Строительный раствор - затвердевшая смесь, состоящая из вяжущего вещества, мелкого заполнителя (песка) и воды. Классификация строительных растворов по назначению и по составу. Специальные виды растворов и сырьевые материалы, технология их производства.
курсовая работа [153,8 K], добавлен 13.02.2012Характеристика основных пород древесины: хвойные, лиственные кольцесосудистые и рассеяннососудистые. Особенности строения и макросруктуры древесных материалов, их физико-механических свойств: плотность, влажность, тепло- и звукопроводность, разбухание.
реферат [71,4 K], добавлен 17.05.2010Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.
реферат [202,9 K], добавлен 01.05.2017