Экологическое проектировагние и экспертиза

Рассмотрение специфики экологического обоснования проектов основных производств. Рассмотрение влияния инженерно-технических объектом на окружающую природную среду. Принципы и процедура проведения государственной экологической экспертизы проектов.

Рубрика Экология и охрана природы
Вид учебное пособие
Язык русский
Дата добавления 26.10.2014
Размер файла 17,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Территориальной оценочной ячейкой может быть выбрана иерархическая ландшафтная единица, соответствующая масштабу картографирования, при крупномасштабных исследованиях -- урочище, группа урочищ, при более мелком масштабе -- ландшафт, ландшафтный район. При этом могут быть использованы любые ландшафтные классификации, как традиционные морфологические, классические ландшафтно-геохимические, так и типологические (группировки ландшафтных единиц по экологическому потенциалу, ценности и значимости, по ответной реакции на воздействие, по типу хозяйственного использования, по типам антропогенных нарушений и т.д.).

При экологическом проектировании использования водных ресурсов, гидротехнических сооружений, обустройства нефтяных месторождений оценивание производится в рамках бассейновой организации территории. Географический охват ОВОС ограничивается водоразделами бассейнов определенных порядков.

Оценочные ячейки также можно выявить при наложении сетки бассейнов и административного деления на ландшафтную структуру территории, в итоге вычленяется интегральная территориальная единица оценивания, для которой можно производить различные виды оценивания, от природных до социальных, производя балансовые и прогнозные построения.

Метод потоковых диаграмм и сетевых графиков. Для определения первичных изменений и цепи их следствий применяется также метод сетей, или ступенчатая матрица, разработанная Дж. Соренсеном. Метод предполагает составление перечня разных вариантов землепользования и характерных для них типов воздействий. Далее определяются связанные с этими воздействиями первоначальные изменения состояния отдельных компонентов природной среды (в данном примере -- изменение стока воды в эстуарий) и последующие, вызванные уже нарушениями в природной среде (например, сокращение популяций рыб). В отличие от матрицы взаимодействия компонентов этот метод наглядно показывает не только направление, но и сущность связей разного порядка между компонентами природной среды. Он дает возможность проследить за динамикой воздействий, т.е. показать возможные изменения как во время сооружения, так и после завершения строительства объекта. Но при увеличении числа анализируемых показателей метод становится громоздким и сложным для анализа. Поэтому его применение возможно для проектов с ограниченным числом воздействий. Недостаток метода заключается также в учете изменений лишь элементов природной среды.

Интересны попытки использования метода сетей для количественных оценок воздействий на основе концепции потоков энергии. Был построен график сетей связей между компонентами природной среды с указанием направления и величины потоков энергии (в килокалориях, децибелах, для радиации -- в кюри). Воздействия проекта оценивались на основе изменений в энергетических потоках, влияющих на первичную продуктивность экосистемы. Для оценки воздействия на окружающую среду используются также математические модели, в том числе имитационные, отражающие количественные зависимости между воздействиями и позволяющие рассматривать социальные и природные системы как непрерывно развивающиеся и изменяющиеся. Сравнительно давно известны модели, описывающие загрязнение отдельных компонентов природной среды, например воздуха (расчеты приземных концентраций вредных примесей), модели распространения загрязнения в воде, например модели разлива нефти в океане.

Но этот вид моделирования находится в первоначальной стадии развития, что связано с недостаточной изученностью нарушенных экосистем. В существующих моделях акцент делается, как правило, на один компонент экосистемы. В более сложных моделях, разрабатываемых для целых экосистем, недостаточно полно учитываются социально-экономические показатели, поскольку введение дополнительных данных делает модели неуправляемыми. Тем не менее на будущее этот подход рассматривается как весьма перспективный.

Завершающим этапом составления ОВОС выступает собственно оценка прогнозируемых изменений в природной среде и их последствий. Выше мы говорили о пяти основных нормах состояния ландшафтов, которые определяются формами хозяйственного использования территории (см. гл. 3). Оценка всегда предполагает соотнесение установленных или прогнозируемых состояний показателей с нормами состояния отдельных компонентов ландшафта либо ландшафта в целом.

Выделяют пять последовательных видов (этапов) оценивания экологических последствий от функционирования ГТС и производственных объектов: природную оценку, специальную природную, технологическую, экономическую и социальную, к которой относится и оценка социальной совместимости.

1. Природная оценка. Ее сущность заключается в соотнесении прогнозируемых изменений в свойствах ландшафтов (процессах) с теми же процессами и свойствами зональных аналогов вне сферы антропогенного воздействия, инвариант которого описывается количественной вещественно-энергетической моделью.

Природная оценка заключается в сравнении прогнозируемых изменений конкретных параметров ландшафта с пространственной или временной изменчивостью тех же показателей -- климатических, гидрологических, ботанических, почвенных, геохимических. Например, для оценки прогнозируемых изменений метеорологических элементов в зоне влияния крупных водохранилищ можно использовать критерий DP/s, где DP -- изменение метеорологического элемента (температуры или влажности воздуха, осадков, скорости ветра и т.д.), а s-- среднее квадратическое отклонение того или иного показателя во времени. В качестве критерия для природной оценки изменений можно использовать отношение изменения индикатора (параметра) к пространственной изменчивости этого показателя, например между соседними подзонами тайги.

Главное в природной оценке -- данное явление оценивается по этому же явлению, вне сферы воздействия. Например, при обосновании и построении ранжированных шкал ландшафтно-геохимических оценок оценивание производится по отношению к природному фону, геохимическим характеристикам зональных ландшафтов и т.д. Оценка природно-экологических потенциаюв загрязнения проводится по отношению к худшим и лучшим условиям миграции загрязнений, к оптимальной самоочищающей способности почв и т.д.

2. Специальная природная оценка. Для природных процессов, которые не жестко формализованы, в ряде случаев проведение природной оценки первого вида затруднительно. В таком случае целесообразно оценивать изменение одних показателей состояния ландшафтов (скорости ветра, глубины залегания фунтовых вод, влажности почв, атмосферных осадков и т.д.) в сравнении с изменением других, тоже природных показателей (изменением биологической и сельскохозяйственной продуктивности лесов, лугов, пашни, прохождением растениями фенологических фаз и т.д.)- Преобразования в границах природно-территориальных комплексов в зонах влияния геотехнических систем и производственных объектов следует рассматривать как интегральную оценку новых факторов формирования ландшафтов. Итак, специальная природная оценка -- это оценка изменения природных характеристик по отношению к другим. Проведение природной оценки дает возможность из всего многообразия процессов и явлений, которые претерпевают преобразование в зонах влияния, отобрать для последующей технологической оценки наиболее существенные и важные.

3. Технологическая оценка. Существует многообразие технологических оценок вне и в сфере техногенного воздействия. Это специальные виды оценивания, для некоторых из них разработаны нормативы, по отношению к которым и производится оценка. Она может быть качественной по принципу хорошо-нейтрально-плохо, но чаще всего определяется превышением над нормативом. Например, экологическая оценка технологий, которая является разновидностью технологической оценки, осуществляется по отношению к нормативам сырья и материалов, нормативам землеемкости, отходности, ресурсоемкости, санитарно-гигиеническим и т.д.

Технологическая оценка предусматривает рассмотрение прогнозируемых изменений свойств и процессов в ландшафтах окружающей территории с позиций требований различных отраслей хозяйства, производственных технологий и видов деятельности человека (сельскохозяйственной, рекреационной, промышленного, гражданского и военного строительства и т.д.). Технологическая оценка в принципе чрезвычайно многопланова. Она необходима на стадии ТЭО проектов, на предпроектной стадии, когда производится сопоставление альтернативных вариантов. Отметим многообразие видов технологических оценок и их противоречивость, например: одни и те же изменения в гидрогеологических условиях и метеорологическом режиме на берегах водохранилищ благоприятны для одних отраслей промышленности и неблагоприятны для других.

4. Экономическая оценка изменения природных условий и компенсационных мероприятий по снижению или предотвращению негативного эффекта от создания хозяйственных объектов. Экономическая оценка включает в себя расчет прямого ущерба (или эффекта от улучшения) функционированию отраслей хозяйств, состоянию производственных фондов, трудовых ресурсов, затрат на компенсацию негативных последствий и т.д.

Частный пример: одним из важнейших показателей эффективности (ущерба) от создания геотехнических систем и производств выступает экономическая (стоимостная) оценка изменения сельскохозяйственной и биологической продуктивности ландшафтов. Стоимость показателей (изменением биологической и сельскохозяйственной продуктивности лесов, лугов, пашни, прохождением растениями фенологических фаз и т.д.)- Преобразования в границах природно-территориальных комплексов в зонах влияния геотехнических систем и производственных объектов следует рассматривать как интегральную оценку новых факторов формирования ландшафтов. Итак, специальная природная оценка -- это оценка изменения природных характеристик по отношению к другим. Проведение природной оценки дает возможность из всего многообразия процессов и явлений, которые претерпевают преобразование в зонах влияния, отобрать для последующей технологической оценки наиболее существенные и важные.

3. Технологическая оценка. Существует многообразие технологических оценок вне и в сфере техногенного воздействия. Это специальные виды оценивания, для некоторых из них разработаны нормативы, по отношению к которым и производится оценка. Она может быть качественной по принципу хорошо-нейтрально-плохо, но чаще всего определяется превышением над нормативом. Например, экологическая оценка технологий, которая является разновидностью технологической оценки, осуществляется по отношению к нормативам сырья и материалов, нормативам землеемкости, отходности, ресурсоемкости, санитарно-гигиеническим и т.д.

Технологическая оценка предусматривает рассмотрение прогнозируемых изменений свойств и процессов в ландшафтах окружающей территории с позиций требований различных отраслей хозяйства, производственных технологий и видов деятельности человека (сельскохозяйственной, рекреационной, промышленного, гражданского и военного строительства и т.д.). Технологическая оценка в принципе чрезвычайно многопланова. Она необходима на стадии ТЭО проектов, на предпроектной стадии, когда производится сопоставление альтернативных вариантов. Отметим многообразие видов технологических оценок и их противоречивость, например: одни и те же изменения в гидрогеологических условиях и метеорологическом режиме на берегах водохранилищ благоприятны для одних отраслей промышленности и неблагоприятны для других.

4. Экономическая оценка изменения природных условий и компенсационных мероприятий по снижению или предотвращению негативного эффекта от создания хозяйственных объектов. Экономическая оценка включает в себя расчет прямого ущерба (или эффекта от улучшения) функционированию отраслей хозяйств, состоянию производственных фондов, трудовых ресурсов, затрат на компенсацию негативных последствий и т.д.

Частный пример: одним из важнейших показателей эффективности (ущерба) от создания геотехнических систем и производств выступает экономическая (стоимостная) оценка изменения сельскохозяйственной и биологической продуктивности ландшафтов. Стоимость экологических условий и их изменений под воздействием, вызывающим негативные последствия для жизнедеятельности биоты. Антропоцентрический подход реализуется при экологической оценке изменения окружающей среды под воздействием по отношению к человеку. Важные звенья экологических оценок -- анализ цепочки: воздействие -- изменения -- последствия, построение ранжированных шкал оценок воздействий по отношению к живому; регламентация параметров среды обитания человека и, наконец, оценка качества окружающей среды и экологическая совместимость.

Экологическая несовместимость -- воздействие на природные объекты и системы, которые не адаптированы к этому типу воздействия. Например, радиоактивность разрушает генофонд, воздействие может усилить или изменить вектор природного процесса, что может вызвать экологическую катастрофу, и т.д.

При экологических оценках широко используют приемы и методы биотестирования, ландшафтной индикации загрязнения, геохимии техногенеза, экологической геохимии, геохимии окружающей среды, социально-экологических и медико-биологических исследований.

По другой точке зрения (К.Н. Дьяконов) экологический вид оценки частично может быть отнесен к природной или специальной природной, если речь идет об устойчивости природных систем как таковых; к технологической, если рассматривать генофонд как потенциальный ресурс биотехнологии, сельскохозяйственного производства; к социальной, если рассматривать изменения среды через призму экологии человека, т.е. изменения экологии социальной среды.

4.4 Зарубежная практика

ОВОС -- сложный многоуровневый и многоаспектный процесс, органично включающий в себя как "исследование воздействий", так и процедурные вопросы экологического проектирования и принятия управленческих решений по планируемой и проектируемой деятельности. Главная цель ОВОС не только оценка воздействий планируемой деятельности на окружающую среду, население и ее последствий, а также и "оценка этой оценки" для принятия приемлемого для всего общества решения по проекту.

Для реализации многоуровневого характера ОВОС принято с самого начала процедуры составлять списки конкретных участников и четко обозначать роль каждого из них в сценарии процедуры. Особое внимание при этом уделяется участию в проведении ОВОС общественности в лице природоохранных и социальных организаций разного уровня. Еще одним своеобразным участником процедуры могут стать нормативы каче-

ства окружающей среды, при несоответствии предлагаемого проекта законодательным актам и нормативам проект отклоняется в самом начале ОВОС или даже до начала процедуры "оценок воздействия". В процессе ОВОС как процедуре участвуют:

1) "источники" ОВОС: "проектировщики", т.е. специалисты, планирующие средообразующие технические действия, которые подлежат оценке, и "оценщики", т.е. специалисты разных областей науки, оценивающие последствия действий и вырабатывающие рекомендации по их оптимизации;

2) "власти" различных уровней: исполнительные власти, или "администраторы", и законодательные власти, или "юристы";

3) общественность различных групп населения: сторонники средо-преобразующих действий (их условно называют "средопотреби-телями") и противники подобных действий ("средозащитники");

4) лица, принимающие решение (ЛПР), т.е. носители власти, от которых зависит решение по проекту, а также их советники-консультанты и независимые эксперты, которые проводят окончательную экологическую экспертизу выполненных ОВОС.

В зарубежной практике ОВОС обязательным является объективный учет мнений об этих же аспектах населения, прежде всего того, которое проживает на территории предполагаемого воздействия. Взаимная корреляция и корректировка относительно объективных (научных) и относительно субъективных (общественных) оценок -- условие нахождения подлинного решения. Благодаря "двойной" многоаспектности меняется и качество научно-исследовательского процесса, научные оценки точнее ориентированы на конкретное обеспечение благополучия общества и формулируется особая форма учета воздействия проекта, которая отражает реакцию общества с учетом социальных отношений и ценностей.

Для этого соизмеряют ущерб от неблагоприятных воздействий при родного и социально-экономического характера с различными выгодами от реализации проекта. Рассматривают альтернативы проекта, способные по-разному уменьшить ущерб или усилить выгоды исходного проекта. Многоуровневое согласование целей и последствий предполагаемого проекта, подлежащего ОВОС, осуществляется не только в рамках природоохранных программ разного уровня, но и в рамках социальных и отраслевых планов экономической направленности. При анализе социальных и экономических целей предлагаемых проектов они могут быть отклонены еще до проведения оценочных процедур ОВОС в том случае, если эти цели не совпадают с целями, которые ставятся перед соответствующей отраслью хозяйства в государственном масштабе.

Рассмотрим методы, которые редко применяются в отечественной практике (социологические методы). В зарубежной практике проведения ОВОС применяют четыре важные процедуры, обеспечивающие возможность эффективного использования социологических методов и осуществления так называемого социологического профилирования.

· Во-первых, это всесторонняя обработка уже имеющихся социологических данных путем статистического и графического анализа экономических, демографических и других сведений о населении, проживающем в регионе реализации проекта.

· Во-вторых, это целенаправленная организация информирования общественности о проекте.

· В-третьих, это проведение разнообразных социологических опросов населения.

· В-четвертых, это осуществление различных социологических наблюдений за поведением населения. Кроме того, на основе собранной информации проводится прогнозирование социально-экологических и социально-экономических процессов, связанных с реализацией предполагаемого проекта.

В зарубежной практике ОВОС сложились представления о нескольких этапах и стадиях этой процедуры. Концепция этапности ОВОС состоит в том, что для каждого этапа, во-первых, процедурно определены цели и круг анализируемых проблем; во-вторых, процедурно обозначен состав участников экспертизы и характер контактов оценщиков с властями и общественностью. В-третьих, процедурно намечено достижение конкретных результатов для принятия окончательного решения относительно рассматриваемого проекта.

В зарубежном опыте ОВОС условно выделяются три основные стадии проведения ОВОС с двумя основными этапами в каждой. На первой стадии происходит разработка ограниченных ОВОС -- первичных и предварительных.

Этап первичных ОВОС предназначен для выяснения целесообразности ее проведения, а также для обсуждения возможной необходимости детализации конкретного проекта. Содержание этапа -- сканирование (анализ и оценка) ключевых параметров проекта: вид деятельности, масштаб деятельности, способ деятельности, типы воздействий, регион размещения, стадии реализации. В регионе размещения выявляются потенциально уязвимые территории и территории, представляющие ценность.

Этап предварительных ОВОС предназначен для определения широты охвата ОВОС, т.е. выявления разнообразия основных экологических последствий планируемого проекта и возможных альтернативных его вариантов. В содержательном отношении это предварительная оценка масштаба и характера последствий реализации различных вариантов проекта с целью определения объема исследований детальной ОВОС, если таковая потребуется. Этап соответствует стадии вы работки "технического задания" (ТЗ) на ОВОС в российской практике. На этом этапе к обсуждению привлекаются слои общества -- как заинтересованные в проекте, так и отвергающие его.

На второй стадии (и двух ее этапах) происходит разработка полных ОВОС -- детальных и завершающих. На этапе детальных ОВОС производится всесторонний анализ и прогноз природных и социально-экономических процессов, которые могут возникнуть в результате реализации проекта на разных стадиях, проводятся научные исследования воздействия проектируемого объекта на окружающую среду с экологической и экономической интерпретацией прогнозируемых исследований. Этап завершается публикацией "Заявления о воздействии проекта на окружающую среду", в котором дается "резюме" всех оценок и рекомендации по дальнейшему проектированию.

В российской практике соответствует этапу разработки "Предварительных материалов по оценке воздействия", которые являются основной содержательной частью ОВОС.

Этап завершающей ОВОС в большей степени процедурный, чем исследовательский, основная функция его -- окончательное решение по проекту. Это этап общественной, специализируемой и экологической экспертиз, разработанной ОВОС.

Важные процедуры этапа -- изучение и учет реакций общественности на опубликованные ОВОС, независимая экспертиза всех разработок, особенно информации для лиц принимающих решение (ЛПР), в заключении этапа -- принятие окончательного решения о приемлемости или неприемлемости проекта.

В российской практике соответствует общественным слушаниям по "Материалам ОВОС" и государственной экологической экспертизе проекта в том числе "Материалов по оценке воздействия".

На третьей стадии (и двух ее этапах) происходит выработка послепроектных ревизионных ОВОС -- проверочных и мониторинговых. Этап проверочных ОВОС для осуществления так называемого послепроектного анализа, сущность которого -- проверка фактического развития и предсказанного ОВОС изменения окружающей среды прогнозных построений, а также контроль над практическим соблюдением предположенных до начала осуществления проекта природоохранных мероприятий. Основная функция этапа-- определение соответствия прогнозных построений реальной ситуации, а также контроль и ревизия оценок и рекомендаций. На этом этапе разрабатывается программа и системы мониторинга в сферах воздействия. Финансирование послепроектного анализа проводится по принципу "платит загрязнитель", а контроль за осуществлением анализа возлагается на природоохранные организации (Вторжение, 1983). Очень важное условие эффективности контроля -- регулярное опубликование результатов проводимых послепроектных исследований, причем эти публикации и являются, по сути, формой представлений проверочных ОВОС.

Этап мониторинговой ОВОС предназначен для постоянного слежения за реальным ходом природных и социально-экономических изменений, обусловленных реализацией того или иного осуществленного проекта. Задачи постпроектного мониторинга разнятся в зависимости от стадии жизненного цикла проекта, они должны быть определены для стадии строительства, эксплуатации объекта и т.д. Отслеживаются изменения параметров качества окружающей среды, различные преобразования, перестройки среды.

Таким образом, в зарубежном опыте проведения ОВОС четко выделяется целенаправленное и последовательное культивирование многоэтапности и многостадийности этой процедуры. На каждой стадии и на каждом этапе оценщик должен четко ограничить круг оцениваемых аспектов, рассматриваемых вариантов, учитываемых уровней, используемых методов, чтобы итоговая информация для принятия решений была наглядной, убедительной и компактной, облегчая принятие оптимального решения.

Глава 5. Использование ГИС при проведении ОВОС

5.1 Общие положения

Географические информационные системы (ГИС) получили широкое распространение с развитием компьютерных технологий. В целом ГИС -- это информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно координированных данных. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными). Среди них инвентаризация ресурсов, анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.

Таким образом, оценку воздействия на окружающую среду можно считать одной из областей проблемной ориентации ГИС. Возможности, которые представляют ГИС технологии при проведении ОВОС, дают основу для более оперативного, обоснованного и рационального планирования размещения объектов ОВОС. При использовании ГИС значительно возрастают возможности обработки больших массивов информации, что необходимо при комплексном системном подходе к реализации ОВОС. Важной составляющей ГИС является возможность статистического анализа и моделирования различных процессов, что необходимо при проведении ОВОС.

Однако применение ГИС при проведении ОВОС часто ограничивается электронной картографией, т.е. цифрованием готовых бумажных авторских оригиналов. Зачастую отсутствует интеграция (оверлей) с помощью ГИС различных источников пространственной информации для создания новых карт. Слабо используются инструменты моделирования. В большинстве организаций, занятых экологическим сопровождением проектов, даже при использовании ГИС их возможности реализуются на 30--40%. Это во многом связано с отсутствием в этих организациях специалистов-природоведов (ландшафтоведов, почвоведов, геологов, лесоведов, ботаников) и работой с ГИС специалистов физико-математических наук или геодезистов. Наряду с этим современные программные средства ГИС развиваются по пути упрощения пользовательского интерфейса и ориентированы в основном на специалистов природоведов, не требуя глубоких знаний программирования. Поэтому необходимо более широкое и полное использование ГИС для решения экологических задач.

В настоящее время существует большое количество ГИС. Критериями выбора конкретной ГИС могут служить многофункциональность, удобство интерфейса, интегрируемость, доступность стоимости. Рассмотрим некоторые аспекты использования ГИС при проведении ОВОС.

По территориальному охвату ГИС, используемые при проведении ОВОС, можно отнести к региональным и локальным, или местным. Обычно они охватывают территорию площадью от 50 до 2000 км2 и создаются в масштабе от 1:25 000 и крупнее до 1:200 000.

Для построения любой ГИС можно выделить следующие этапы получения и обработки данных: сбор первичных данных, ввод и хранение данных, анализ данных, анализ сценариев и принятие решений*.

Сбор первичных данных заключается в подборе из имеющейся информации по территории, необходимой для целей ОВОС. Исходя из структуры и функционирования проектируемого хозяйственного объекта и общих физико-географических и социально-экономических характеристик территории, выделяются основные факторы их взаимного влияния. На основе выделения этих общих факторов проводится подбор необходимой информации для создания ГИС поддержки ОВОС. На этом этапе оценивается полнота имеющейся информации, ее актуальность, возможность применения в рамках ГИС.

Ввод и хранение данных в целом сводится к преобразованию бумажных картографических носителей в цифровой формат (векторизация), преобразованию аэро- и космических снимков на бумажных носителях в цифровой формат (сканирование), структуризацией и приведением к единому стандарту данных полевых обследований и литературной, фондовой и архивной информации в единую базу данных с пространственной привязкой. Вся пространственная информация приводится к единой картографической проекции. В случае создания ГИС для целей ОВОС предпочтительными являются проекции Гаусса--Крюгера или UTM в узкой зоне.

Анализ данных включает поиск и выборку данных, статистический анализ, моделирование, автоматизированное создание карт, экспертное оценивание.

Анализ сценариев и принятие решений включает рассмотрение различных вариантов размещения хозяйственных объектов с учетом экономической и экологической составляющих, рассмотрение возможных сценариев аварийных ситуаций.

5.2 Источники информации

Основные источники информации для ГИС при проведении ОВОС:

· картографическая информация на основе имеющихся топографических и тематических карт;

· дистанционная аэро- и космическая информация (ДЦЗ);

· информация полевых обследований с инструментальной пространственной привязкой;

· литературная, фондовая и архивная информация;

· информация по проектной документации.

Исходная картографическая информация должна отражать современное состояние окружающей среды и включать топографические карты, карты природных компонентов, ландшафтов и хозяйственного использования. Топографические карты являются наиболее доступными для использования. Из них может быть получена информация о рельефе, гидрографии, населенных пунктах, транспортной сети и других хозяйственных объектах территории. Однако при этом следует учитывать, что топокарты отражают информацию 20-летней и более давности и требуют уточнения.

Информация о рельефе территории (горизонтали, высотные отметки, урезы воды) используется для построения цифровых моделей рельефа (ЦМР). ЦМР -- основа для построения различных производных карт (углов наклона, горизонтальных и вертикальных кривизн, экспозиций, бассейнов и др.) и используется при имитационном моделировании процессов и создании ландшафтной карты (при ее отсутствии). Построение ЦМР производится по оцифрованным с топокарты данным о рельефе территории в векторном формате с образованием регулярной матрицы высот (растра) и/или нерегулярной треугольной сети (ТШ) в векторном формате. На основе растра высот и производных характеристик возможно осуществление автоматической классификации рельефа на типологические поверхности со сходными параметрами высот, углов наклона, кривизн и др.

При классификации рельефа могут использоваться различные алгоритмы. Выбор оптимальной классификации проводится статистическими методами. При этом предпочтительней выбор классификации с отсутствием искажений рельефа, возникающих при построении его растра. Результаты классификации используются для составления ландшафтной карты. На основе анализа растра рельефа и ДДЗ возможно выделение линиментных структур как зон потенциального риска для хозяйственного использования, а также экологических коридоров и узлов как территорий, требующих повышенной охраны и имеющих повышенный природоохранный статус. Также на основе информации о рельефе возможен расчет различных индексов (разнообразия, фрагментации и др.), позволяющих оценить ценность территорий с экологической точки зрения. Для составления карт эрозионной опасности, геохимических миграций, трехмерных моделей рельефа и других моделей используется векторное представление рельефа в виде треугольной сети.

Таким образом, рельеф территории является одним из основных источников информации, используемой в ГИС для ОВОС. При использовании информации о рельефе территории следует учитывать, что для равнинных территорий с малыми уклонами масштаб исходной топокарты должен быть примерно в два раза крупнее, чем получаемое карты в процессе построения растра рельефа и его производных.. Это связано с недостаточным количеством информации о рельефе территории для поверхностей с малыми уклонами и возникающими в результате ошибками аппроксимации.

С топографических карт помимо информации о рельефе извлекаются сведения о населенных пунктах и транспортной сети. Информация о населенных пунктах необходима для учета риска воздействия на них планируемого объекта и оценки степени риска для населения при возникновении аварийных ситуаций. Информация о транспортной сети используется при оценке доступности проектируемого объекта и оценке необходимости создания новых транспортных путей. Информация о населенных пунктах и особенно транспортной сети перед использованием требует уточнения с использованием дистанционной информации и полевых обследований.

Тематические карты, используемые при создании ГИС для ОВОС, обычно включают геологическую карту, почвенную карту, карту растительности (карты лесной инвентаризации). Наряду с ними, в зависимости от характера территории и проектируемого объекта, могут привлекаться геокриологические карты, мезоклиматические карты, карты земельных ресурсов, геоморфологические карты и др. Для использования информации этих карт при анализе в среде ГИС необходим перевод их в векторный формат представления данных.

Легенды тематических карт формализуются для введения их в общую базу данных. Однако применение большинства тематических карт при проведении ОВОС ограничено их масштабом, который редко бывает крупнее 1:200 000. В результате содержащаяся в них информация используется более на качественном уровне при составлении ландшафтной карты для выделения ПТК ранга сложных урочищ и местностей. Карты лесной инвентаризации обычно имеют масштаб 1:25000-- 1:50 000, но их применение ограничено зачастую низким качеством составления. Карта земельных ресурсов (земельный кадастр) используется для представления существующего на момент проектирования землепользования и учета при проектировании площадей с особым статусом охраны.

Очень важным источником информации для ГИС являются данные дистанционного зондирования (ДДЗ): аэроснимки и космические снимки высокого разрешения. ДДЗ используются при состаааении карт растительности, наземного покрова, ландшафтных карт, а также при уточнении и обновлении информации, содержащейся на топографических и тематических картах. На основе многоканальных ДДЗ проводится расчет индексов, отражающих различные характеристики структуры наземного покрова (EVI, NDVI, Fragmentation Index, индекс разнообразия и др.). По ДДЗ дешифрируются и линиментные структуры, учет которых как зон потенциального риска хозяйственного использования важен при проведении ОВОС.

Данные многомаршрутной аэрофотосъемки содержат материалы масштабов 1:10 000-1:15 000. Таким образом, это один из самых крупномасштабных источников информации. Однако их применение ограничено панхроматическим характером изображения, большим количеством снимков, каждый из которых требует географической привязки, геометрической и оптической коррекции. Поэтому использование АФС обычно ограничивается небольшими участками, на которых прогнозируется максимальное воздействие проектируемого объекта и для которых необходима наиболее крупномасштабная информация.

Космические снимки высокого разрешения, в отличие от АФС, имеют большой пространственный охват (от 100 х 100 км2 и более), геометрическую и оптическую коррекцию, географическую привязку, наличие нескольких каналов съемки. Все это делает использование космических снимков предпочтительным перед использованием АФС. В настоящее время космическая съемка высокого разрешения проводится несколькими съемочными системами.

При выборе снимков между различными съемочными системами следует учитывать не только их разрешение и количество каналов, но и число снимков на одну и ту же территорию. Большое число снимков позволяет провести их выбор с наименьшей облачностью для нужного сезона года, а при необходимости и за разные сезоны. Также возможно проводить исследование динамики наземного покрова при сравнении снимков за разные годы. В целом для большинства территорий наиболее информативными являются весенние (апрель-май) и осенние (сентябрь--октябрь) снимки. Наибольшее число снимков в свободном доступе с большим количеством спектральных каналов съемки предоставляют спутники Landsat и SРОТ.

Основное применение ДДЗ в рамках ОВОС -- составление на их основе среднемасштабных (1:50 000-1:200 000) карт наземного покрова, растительности, ландшафтов и др., которые отражают современное состояние территории и используются для составления производных оценочных карт.

Для составления этих карт ДДЗ классифицируются. Алгоритмы классификаций реализованы во многих статистических (Statistica, SPSS, SYSTAT и др.) и ГИС программных пакетах (ArcInfo, ErdasImagine, Idrisi и др.). Использование различных алгоритмов класcификации дает значительно различающиеся результаты. Поэтому выбор оптимальной классификации должен осуществляется как на он 1С количественных статистических, так и экспертных качественных показателей. В результате процедуры классификации выделяются тми изображения со сходной яркостью и структурой. При исходном разрешении космических снимков 20-30 м могут быть получены типы и изображения, соответствующие рангу урочищ (1:50 000-1:100 000). Далее полученные типы изображения сопоставляются с данными, полученными с тематических карт (геологической, геоморфологической, почвенной, лесной инвентаризации, землепользования) и в процессе полевых обследований. Сопоставление данных с типами и изображения проводится средствами статистического анализа, реализованного во многих ГИС пакетах, или с помощью специализированных статистических программных пакетов.

Таким образом, на основе яркостных и структурных характеристик и с привлечением информации об отдельных природных компонентах и полевых данных проводится насыщение полученных при классификации типов изображения смысловым (семантическим) содержанием. Эта информация используется как при составлении ландшафтной карты, так и для составления ряда компонентных карт. В результате могут быть получены карты растительности (на уровне формаций), карты типов наземного покрова (land cover map), карты антропогенной трансформации наземного покрова и др.

При проведении ОВОС ландшафтная карта может рассматривать - как основа для составления оценочных карт (карт устойчивости ландшафтов, карты районирования по степени экологической опасности природопользования и др.), так как содержит комплексную информацию о природных компонентах и заменяет ряд карт компонентов. На ее основе проводится увязка данных, получаемых из различных источников информации. При отсутствии бумажной ландшафтной карты необходимого масштаба в ГИС возможно составление электронной ландшафтной карты.

Составление ландшафтной карты в среде ГИС проводится на основе объединения информации, полученной при классификации рельефа и ДДЗ. Это объединение может проводиться как на основе наложения (overlay) классификаций рельефа и ДДЗ, так и при помощи совместной классификации этих источников информации. В результате создается карта, содержащая типологические контуры, имеющие характеристики рельефа и природных компонентов, однородные для каждого из выделяемых типов. Привлечение информации о генезисе территории, которая может быть получена с геоморфологических карт, из материалов полевых обследований и литературных источников позволяет как конечный продукт получить типолого-генетическую ландшафтную карту. На основе полученной ландшафтной карты с привлечением других материалов проводится построение оценочных карт, используемых при проектировании размещения конкретных объектов. В итоге создается карта проектируемых объектов, карта прогнозируемого ущерба природным ресурсам, проектируется сеть мониторинга. На рис. 6 представлен один из вариантов схемы организации данных в рамках ГИС для проведения ОВОС.

5.3 Примеры ГИС при проведении ОВОС

Наиболее динамично ГИС технологии в настоящее время внедряются он при создании проектов в нефтяной и газовой промышленности. Поэтому приведем два примера ГИС, реализованных в этой области.

Первый пример -- ГИС экологического сопровождения инвестиционно-строительных проектов в нефтегазовой отрасли, предложена

В.В. Хромых (2002). По типологии экологические ГИС можно отнести к классу научно-производственных систем локального уровня. Как правило, они охватывают территорию площадью 50--500 км2 и создаются в масштабе 1:25 000 и крупнее. Можно выделить пять основных этапов применения ГИС при экологическом сопровождении инвестиционно-строительных проектов:

· создание электронной ландшафтной карты, база данных которой должна объединять сведения о всех компонентах геосистем, включая информацию о наличии и стоимости промысловых видов природных ресурсов (экономическая составляющая БД);

· оценка устойчивости геосистем (и их отдельных компонентов) к различным видам антропогенного воздействия на основе интегральных балльных оценок по факторам устойчивости и добавление этих оценок в базу данных электронной ландшафтной карты (экологическая составляющая БД);

· интеграция карт устойчивости ландшафтов к техногенной нагрузке с картами объектов обустройства и выделение потенциально опасных для хозяйственного освоения участков территории (опенка экологического риска);

· выбор оптимальной стратегии при проектировании с учетом как экономической, так и экологической составляющих базы данных (поддержка принятия управленческих решений);

· организация на базе ГИС системы экологического мониторинга с использованием материалов наземных (полевых) наблюдений и ДДЗ, включая космические снимки сверхвысокого разрешения.

Основной объем пространственной информации, хранящейся в системе, составляют данные, полученные в результате пространственного анализа в ГИС. Таким образом, информационный КПД подобной системы достигает 300-400%. В роли информационных полюсов выступают ландшафтная карта и цифровая модель рельефа. От этих полюсов "меридианами" расходятся информационные связи с другими, в основном производными тематическими картами. Пересечения информационных потоков от "природных" и "хозяйственных" элементов системы порождают "эколого-экономический" информационный банк данных, служащий основой при обосновании выбора различных вариантов хозяйственного использования территории. Поддержка принятия управленческих решений в экологической ГИС реализуется за счет интеграции пространственных данных естественного (природного) и антропогенного (хозяйственного) характера и создания единого "эколого-экономического" пространства, где экономические и экологические показатели находятся в тесной взаимосвязи. Это позволяет менеджеру довольно быстро и легко получить ответ на запросы, возникающие в процессе управления окружающей средой.

В качестве программного обеспечения используются продукты ESRI Inc.: полнофункциональный программный комплекс ArcInfo и настольная Arc View GIS с модулями Spatial Analyst и 3D Analyst. Для работы с ДДЗ лучше всего подходит ERDAS IMAGINE (ERDAS Inc.). Такой выбор обусловлен отличной сочетаемостью этих программ друг с другом, потрясающей функциональностью и скоростью при работе с большими объемами пространственных данных.

На начальном этапе доступны, как правило, следующие исходные данные:

· топографические карты масштаба 1:25 000;

· карты лесной инвентаризации (кадастровые данные лесотаксационной съемки) масштаба 1:50 000;

· почвенные карты масштаба 1:100 000 и мельче;

· геологические карты масштаба 1:200 000;

· проектная документация (карты транспортных коридоров и хозяйственных объектов масштаба 1:10 000 и крупнее);

· материалы полевых исследований (ландшафтные профили, геоботанические площадки, точки отбора проб и их координаты на основе СРЗ-съемки).

Важным источником информации служат ДДЗ: материалы много-маршрутной аэрофотосъемки масштаба 1:10 000 или 1:15 000, а также космические снимки высокого и сверхвысокого разрешения (Ресурс-О, 5РОТ, 1К5, Ресурс-Ф, Комета, 1копо5 и т.п.). Геологические, почвенные карты и космические снимки со спутников "Ресурс-О" в силу большой невязки масштаба с остальными источниками использовать напрямую для цифрования и пространственных операций в ГИС затруднительно, однако их необходимо активно применять при составлении ландшафтной карты на начальном этапе для определения границ геосистем более высокого иерархического уровня (типов местности).

Построение цифровой модели рельефа (ЦМР) осуществляется при помоши команды Createtin в ArcInfo. Источником данных служат оцифрованные с топоосновы высотные отметки (mass points), горизонтали, гидросеть и урезы воды (breaklines). Для корректировки используются материалы полевых исследований (нивелирные трассы ландшафтных профилей и материалы проектировщиков). Полученная триангуляционная сеть служит основой для последующих карт углов наклона поверхности, экспозиций склонов (команда Tinarc), геохимических миграций па основе поверхностного стока, а также трехмерных моделей. При создании ландшафтной карты сначала определяются границы типов местности. Ведущая роль при дифференциации отводится геоморфологическим факторам. Большое значение при этом имеет ЦМР. Так к склонам междуречий можно отнести все смежные территории рсугольники сети) с углами наклона, превышающими 2,5-3° (команда Eliminate). Следующим шагом является определение границ геосистем уровня урочищ. На этом уровне районирования усиливается роль границ растительного и почвенного покрова. Для определения границ типов растительности используются ДДЗ. Аэрофото- и космические снимки дешифрируются в пакете ERDAS IMAGINE. Для этого они сначала отнизываются к растру топокарты, затем выделяются полигоны со сходной яркостью и структурой изображения и сопоставляются с данными топокарты, лесной инвентаризации и полевых наблюдений.

Полученный слой полигонов конвертируется в систему ArcInfo. При оверлейных операциях особенно осторожно следует подходить к млению "паразитных" полигонов (команда Eliminate), так как, например, большинство ландшафтов в центральной пойме имеет вытянутую структуру. Для наполнения атрибутивной базы данных по типам урочищ можно создать простой файл (ТХТ) в таблице INFO, а затем с помощью команды Joinitem осуществить слияние атрибутивной БД (ТХТ) с пространственной (РАТ). В результате получается гигантская база данных, где по каждому полигону ландшафтной карты имеются сведения (атрибуты) о каждом компоненте ландшафта.

Для определения устойчивости ландшафтов к различным видам антропогенного воздействия можно использовать интегральные балльные оценки по следующим факторам устойчивости:

· мощность геосистемы (общая биомасса);

· увлажненность (соответствие накопленной в системе влаги величине испаряемости);

· возможность развития эрозионных процессов;

· динамическое состояние.

Так, для оценки эрозионной опасности земель необходимо определить средний уклон каждой геосистемы. Для этого в ArcInfo проводится наложение (команда Intersect) ландшафтной карты и карты рельефа на основе TIN (команда Tinarc), а затем статистический анализ средствами ArcView GIS полученного векторного покрытия, в котором каждому полигону соответствует только один тип ландшафтной системы и только один участок (треугольник) триангуляционной сети (TIN) с полным набором атрибутивной информации в базе данных (площадь, тип урочища, угол наклона, экспозиция склона и т.п.). Полученная балльная оценка должна быть усилена дополнительными коэффициентами К.Р (наличие растительности) и КП (характер почвенного покрова).

Применение ГИС выводит процесс принятия управленческих решений в экологическом менеджменте на совершенно новый качественный уровень. Возникает возможность детальной оценки каждого варианта проекта по степени воздействия на каждый из компонентов природного комплекса и на геосистему в целом. При этом можно оценить также экономическую эффективность каждого варианта. Например, при прокладке коридоров коммуникаций необходимо рассчитать прямой экономический ущерб промысловым видам природных ресурсов из-за изъятия земель. Для этого в ArcInfo (команда Intersect) происходит сложение ландшафтной карты с картой транспортных коридоров и отбрасывается вся остальная территория, не попадающая в зону отвода земель. Вычисляется площадь каждого ландшафта в полосе отвода и ущерб из-за изъятия промысловых видов природных ресурсов (так как каждый ландшафт в базе данных будет содержать сведения о наличии и урожайности этих ресурсов). Выделение "буферных зон" для границ некоторых ландшафтов позволяет уточнить оценку (скажем, клюква имеет наибольшую урожайность по окраинам болот). Используя карту геохимических миграций на основе поверхностного стока, построенную с помощью ЦМР, можно с высокой степенью достоверности предсказать участки возможного подтопления автодорог.

По завершении строительства на базе ГИС организуется система экологического мониторинга территории с использованием ДДЗ.

Второй пример. Применение геоинформационных технологий для проектирования объектов добычи и транспортировки ямальского газа.

При проектировании освоения газоконденсатных месторождений полуострова Ямал требуется "прозрачный" доступ ко всей имеющейся информации о природной среде и характеристиках планируемых или уже существующих промышленных объектов. По этим причинам возрастает внимание к вопросам управления данными по природному комплексу (гидрометеорология, гидрология-гидрохимия, экология, ледовые условия, загрязнение и т.п.) как к взаимосвязанному и интегрированному процессу их обработки, отражаемому схемой "данные об объекте -- требуемая информация об объекте".

В связи с этим в Программе РАО Газпром по освоению месторождений полуострова Ямал поставлена задача разработки специализированной информационной системы (СИС-Ямал). Назначение системы состоит в реализации интегрированной информационной технологии накопления, обработки и преобразования данных в достоверную и комплексную информацию, которая необходима для анализа и интерпретации происходящих процессов и явлений в природной и социальной сфере, принятия обоснованных проектных и управленческих решений по объектам ГКМ. экологический производство государственный экспертиза

· См.: Одишария Г.Э., Шершнева Л.В. и др. О применении геоинформационных технологий для проектирования объектов добычи и транспорта ямальского газа // 1998. №4.

I. Архитектура системы СИС-Ямал представляет собой сложную информационную систему. Рассмотрим ее структуру в общем виде, достаточном для понимания принципиальных моментов построения и использования. Базовый уровень системы представляют так называемые компоненты (инструментальные программные системы, стандарты представления и обмена данными, коды и кодификаторы и др.), образующие среду для разработки функциональных подсистем СИС-Ямал (рис. 7).

Первый (входной) блок системы -- подсистема архивного банка (ЛБД) -- накапливает данные о промышленных объектах и окружающей среде, систематизирует и преобразует их во внутренние информационные стандарты СИС-Ямал. Результатом работы АБД являются не-кшисимые и документированные файлы данных по различным сферам (гидрометеорология, геокриология, геоморфология, биота и др.) и регионам (Байдарацкая губа, Бованенковское ГКМ и др.). Модель информационного фонда АБД строится в контексте модели предметной области.

Сформированные в АБД массивы данных поступают в следующий блок системы -- интегрированный банк данных (ИБД). Основное назначение ИБД состоит в поддержании данных в связанном состоянии па основе более сложной модели, учитывающей как предметную область системы, так и функциональные требования, возникающие в различных ситуациях использования данных для проектирования характеристик промышленных объектов и решения других задач. Результатом работы ИБД является комплексная база данных (результаты наблюдений и расчетов, литературные данные, топографические и тематические карты и др.), поддерживаемая в актуальном состоянии для "питания" следующего блока -- подсистемы проблемно-ориентированных приложений (ПРОП). В широком смысле ПРОП можно представить в виде совокупности специально подобранных (под конкретную задачу) тематических данных, ранее полученных знаний и прикладных программ, реализующих методы и модели расчетов характеристик природной среды, которые интегрированы в виде информационно-технологического комплекса для получения новой информации, необходимой при выборе экологически оправданных и экономически выгодных проектных решений по освоению ГКМ полуострова Ямал. Одной из наиболее важных задач информационного обеспечения, которую выполняет подсистема, является оценка возможных воздействий проектируемых промышленных объектов на окружающую среду (так называемая задача ОВОС). Подсистемы СИС-Ямал взаимосвязаны, так как они разработаны с применением единых компонент. В качестве основной компоненты в СИС-Ямал используется геоинформационная технология в виде серии программных продуктов фирмы ESRI для персональных компьютеров -- ArcVies GIS 3.0a., Spatial Analyst 1.0a, Dialog Designer. Эти программные средства широко применяются в наиболее приближенном к пользователю блоке СИС-Ямал -- в подсистеме ПРОП.

...

Подобные документы

  • Проведение экологической экспертизы с целью предупреждения возможных неблагоприятных воздействий хозяйственной и иной деятельности на окружающую природную среду. Характеристика видов экологического контроля, совершенствование его правового регулирования.

    контрольная работа [21,0 K], добавлен 13.12.2011

  • Порядок и регламент проведения государственной экологической экспертизы. Формирование экспертной комиссии. Вред, причиненный нарушением экологического законодательства. Презумпции экологической опасности. Оценка воздействия на окружающую среду.

    контрольная работа [30,0 K], добавлен 29.01.2011

  • Понятие экологической экспертизы, ее цели, задачи, принципы, виды, организационно-правовые основы, ответственность, порядок организации и проведения. Порядок работы экспертной комиссии. Оформление заключения государственной экологической экспертизы.

    курсовая работа [44,9 K], добавлен 28.10.2009

  • Правовые основы проведения экологической экспертизы проектов. Основные проблемы реализации права. Предлагаемая процедура участия общественности в принятии решений при планировании хозяйственной деятельности. Правовые аспекты реализации.

    дипломная работа [83,3 K], добавлен 23.05.2003

  • Понятие, цель, содержание, объекты и функции инженерно-экологической экспертизы. Положении о порядке проведения государственной экспертизы. Влияния на принятие экологически значимых решений и требования к экспертам. Расчёт экономического ущерба.

    реферат [24,2 K], добавлен 03.02.2009

  • Изучение кодексов и законов природоохранного законодательства. Порядок проведения государственной экологической экспертизы. Природно-климатическая характеристика района строительства систем энергообеспечения, оценка воздействия на окружающую среду.

    курсовая работа [72,0 K], добавлен 11.06.2015

  • Принципы экологической экспертизы, ее субъекты и объекты. Порядок проведения государственной экологической экспертизы, права и обязанности экспертов, правовой статус заключения. Виды экологической экспертизы по времени, организатору, результатам.

    курсовая работа [20,9 K], добавлен 15.07.2008

  • Понятие и предмет, виды, объекты экологической экспертизы. Порядок проведения государственной экологической экспертизы. Права и обязанности экспертов. Обзор изменений в законодательстве с 2007 г. по 2013 г. по вопросам воздействия на окружающую среду.

    курсовая работа [631,2 K], добавлен 26.05.2015

  • Организационно-правовые основы оценки воздействия на окружающую среду. Изучение состояния и тенденций развития системы экологической экспертизы в России. Порядок организации, стадии и основные этапы проведения оценки воздействия на окружающую среду.

    курсовая работа [34,8 K], добавлен 08.02.2016

  • Понятие, правовая основа, принципы и методы, этапы проведения, процедура подготовки оценки воздействия на окружающую среду. Нормативы качества окружающей среды и продуктов питания, концентрации вредного вещества в единице объема, массы или поверхности.

    контрольная работа [29,6 K], добавлен 31.03.2012

  • Понятие, цели и принципы проведения государственной и общественной экологической экспертизы. Компетенция Правительства Республики Казахстан в области экологической экспертизы. Права и обязанности эксперта, виды нарушений природоохранного законодательства.

    курсовая работа [23,1 K], добавлен 11.11.2011

  • Понятие и цели экологической экспертизы. Государственная и общественная экологическая экспертиза: сущность, порядок и условия проведения. Положительное заключение экспертизы. Задачи экологического контроля за соблюдением правил экологопользования.

    реферат [22,8 K], добавлен 30.11.2010

  • Экологическая обстановка в России как обоснование необходимости охраны окружающей среды. Экологическая политика и экологическое законодательство России. Экологическая экспертиза, оценка воздействия на окружающую среду и экологическое аудирование.

    курсовая работа [42,4 K], добавлен 07.08.2008

  • Понятие, принципы и цели экологической экспертизы, ее субъекты, объекты и порядок финансирования. Организация и проведение государственной и общественной экологической экспертизы, характеристика других ее видов, особенности федерального законодательства.

    реферат [34,8 K], добавлен 05.05.2009

  • Оценка воздействия на окружающую среду винного завода. Комплексные мероприятия по обеспечению нормативного состояния окружающей среды. Заявление об экологических последствиях деятельности. Проведение общественных слушаний и экологической экспертизы.

    дипломная работа [941,6 K], добавлен 23.12.2014

  • Выброс загрязняющих веществ в атмосферный воздух без соответствующего разрешения. Проведение реконструкции без ущерба окружающей среде. Невыполнение требований законодательства об обязательности проведения государственной экологической экспертизы.

    контрольная работа [20,7 K], добавлен 08.04.2009

  • Источники экологического права. Государственный экологический контроль в строительстве. Оценка воздействия на окружающую среду и экологическая экспертиза. Экологический менеджмент и аудит. Учет влияния экологических факторов при оценке недвижимости.

    презентация [371,6 K], добавлен 22.10.2013

  • Рассмотрение содержания проекта "Экологическое обоснование проектов добычи полезных ископаемых". Примеры оценки воздействия и расчет приземных концентраций вредных веществ при выборе рекультивационных мероприятий по охране окружающей природной среды.

    реферат [35,0 K], добавлен 19.05.2011

  • Объекты, субъекты принципы экологической экспертизы, порядок ее проведения и заключения. Права и обязанности эксперта и экспертной комиссии. Проекты нормативно-технических и инструктивно-методических документов в области охраны окружающей среды.

    реферат [25,6 K], добавлен 09.06.2011

  • Анализ влияния загрязняющих веществ при производстве кормовых дрожжей на окружающую природную среду. Расчет годовых выбросов вредных примесей; определение границ санитарно-защитной зоны для предприятия. Методы очистки сточных вод и газообразных выбросов.

    курсовая работа [906,2 K], добавлен 25.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.