Элементы общей и социальной экологии

Возникновение и развитие экологии как науки. Экосистемы, взаимоотношения организма и среды. Элементы экологии человека и социальной экологии. Антропогенное воздействие на биосферу и гидросферу. Причины возникновения глобального экологического кризиса.

Рубрика Экология и охрана природы
Вид учебное пособие
Язык русский
Дата добавления 28.09.2017
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Липиды (жиры) являются для клеток, как и углеводы, хранителями запасов питательных веществ и источниками энергии. При необходимости липиды расщепляются ферментами, составляющие их жирные кислоты окисляются, выделяя большое количество энергии. Конечными продуктами окисления являются углекислый газ и вода.

В состав клеток входит небольшое количество витаминов, регулирующих работу клетки. В организм они попадают с пищей, т. к. могут синтезироваться только растениями и бактериями, живущими в организме человека. Витамины входят в состав ферментов. Известно более 20 витаминов, необходимых человеку. При их недостатке или отсутствии нарушается работа ферментов, ход биохимических реакций и нормальная жизнедеятельность клеток. Авитаминоз может вызвать даже гибель организма. Многие витамины разрушаются при кипячении. Это нужно учитывать при приготовлении пищи.

Термодинамика биологических систем

Любая живая система потребляет энергию и расходует её в виде работы и теплоты. С точки зрения термодинамики организму можно приписать свойства тепловой машины, подчиняющейся началам термодинамики. Первое начало термодинамики - закон сохранения энергии. Его применимость к живым системам надёжно доказана, но не выявляет никакого отличия их от неживых систем.

Второе начало термодинамики - закон энтропии - указывает, в каком направлении должны протекать естественные самопроизвольные процессы. В системе мерой необратимости превращений энергии и одновременно мерой структурной неупорядоченности является энтропия. Согласно второму началу термодинамики энтропия изолированных систем не может уменьшаться, она либо возрастает, достигая максимума в состоянии термодинамического равновесия системы, либо, в крайнем случае, не изменяется. Эрвин Шредингер в книге “Что такое жизнь? С точки зрения физика” писал: “Если неживую систему изолировать или поместить в однородные условия, то всякое движение обычно очень скоро прекращается в результате различного рода трения, разность электрических или химических потенциалов выравнивается, вещества, которые имеют тенденцию образовывать химические соединения образуют их, температура выравнивается вследствие теплопроводности. Затем система в целом угасает, превращается в мёртвую инертную массу материи. Достигается состояние, при котором не происходит никаких заметных событий. Физик называет это стояние термодинамическим равновесием, или состоянием максимальной энтропии” [5]. Практически это состояние достигается быстро, но теоретически окончательное установление равновесия может происходить годами и столетиями. Очевидно, что всякий приток тепла извне увеличивает интенсивность теплового движения и повышает энтропию. Если мы будем расплавлять кристалл, то нарушим устойчивое расположение атомов или молекул, кристаллическая решётка превращается в непрерывно меняющееся случайное распределение атомов. Таким образом, согласно законам физики, материя стремится приблизиться к хаотическому состоянию.

Если рассматривать биологические процессы, то “… живая материя избегает перехода к равновесию”, структурная упорядоченность возрастает, а неупорядоченность, энтропия уменьшается. Например, при самосборке субклеточных структур или при эмбриональном развитии организма. Такие явления, как возникновение жизни, образование биосферы, прогрессивная эволюция, долгое время не вписывались в общую физическую картину мира, считались термодинамически маловероятными. Шредингер считал, что “деятельность живой материи, хотя и основана на законах физики, установленных к настоящему времени, но, по-видимому, подчиняется до сих пор неизвестным другим законам физики, которые, однако, как только они будут открыты, должны составить такую же неотъемлемую часть этой науки, как и первые”. В своих лекциях, прочитанных в 1943 г., он указывал, что организм избегает перехода к равновесию благодаря тому, что он питается и дышит, т.е. благодаря метаболизму. В процессе жизнедеятельности организм непрерывно увеличивает свою энтропию, приближаясь к опасному состоянию равновесия (максимальной энтропии), представляющему собой смерть. Избежать этого состояния организм может, только постоянно извлекая из окружающей среды “отрицательную энтропию” - то чем организм питается. Иными словами, живой организм постоянно привлекает на себя поток “отрицательной энтропии”, чтобы компенсировать этим увеличение энтропии, производимое в процессе жизни, и тем самым поддерживать себя постоянно на достаточно низком уровне энтропии. В метаболизме человек освобождается от всей той энтропии, которую он вынужден производить пока жив. “Отрицательная энтропия” или энтропия, взятая с отрицательным знаком - мера упорядоченности. Таким образом, с точки зрения Шредингера, живой организм непрерывно извлекает упорядоченность из окружающей среды. Например, высшие животные питаются крайне хорошо упорядоченным состоянием материи в более или менее сложных органических соединениях, после чего животные возвращают эти вещества в очень деградированной форме в окружающую среду. Для растений источником “отрицательной энтропии” является свет.

Книга Шредингера привлекла внимание физиков и химиков к проблемам биологии. Многие впервые высказанные им теоретические представления были подтверждены последующими исследованиями.

Реальные биологические системы в природе существенно открыты, гетерогенны, нелинейны, нестационарны и далеки от термодинамического равновесия. Совокупность этих свойств находится за пределами применимости второго начала термодинамики, даже с его новейшими расширениями. Сложно применять понятия энтропии и информации для описания общих свойств биологических систем.

Несмотря на это, современная термодинамика позволила дать новую трактовку фундаментальным биологическим процессам. Противоречие закону энтропии исчезает, если рассматривать организм в качестве единой системы вместе с окружающей средой, поскольку сам живой организм не является системой изолированной. Благодаря развитию термодинамики необратимых процессов к настоящему времени сформировалось представление, согласно которому по законам физики в открытых системах с потоком энергии вынужденно возникают динамические структуры в виде циклов, переносящих энергию, - упорядоченные круговороты вещества. При этом наиболее устойчивыми оказываются и поэтому «отбираются» функциональные структуры, состоящие из нескольких взаимодействующих циклов, т.е. более сложные динамические структуры, которые лучше вписываются в круговорот и эффективнее преобразуют проходящую через них энергию. Источником образования динамических структур на Земле служит поток солнечной энергии, который вызывает и организует круговороты в массах вещества - от простых физических (воды и воздуха) до сложных биологических.

Во многих случаях кажется, что они возникают сами по себе, и поэтому явление называют самоорганизацией структур. Появилось даже целое направление исследования таких процессов - синергетика (особенно важны в этом плане работы школы Ильи Пригожина, посвящённые проблеме возникновения организации из хаоса). Однако приложения синергетики к проблемам биологии дают лишь поверхностные аналогии, поскольку биологическая организация не исчерпывается структурной упорядоченностью.

Строение биосферы

Границы биосферы определяются условиями, при которых возможно существование живых организмов. Она включает в себя нижнюю часть атмосферы (тропосферу), всю гидросферу, верхние слои литосферы.

Верхняя граница биосферы - защитный озоновый слой, выше которого ультрафиолетовое излучение исключает существование жизни. Расположен он на высоте около 20 000 м. Организмов, существующих всю свою жизнь только в воздухе, нет, но все виды тесно связаны с ним. Процесс фотосинтеза зависит от парциального давления углекислого газа СО2.

Фотосинтез - синтез органических соединений в листьях зелёных растений из углекислого газа и воды с использованием солнечной энергии. Обратная реакция, когда потребляется кислород, происходит окисление и распад органических веществ до углекислого газа и воды, называется дыханием. Дыхание - это источник энергии, расходуемой клеткой на все её нужды. Процесс дыхания растений протекает круглые сутки, а фотосинтез только на свету; интенсивность дыхания значительно ниже фотосинтеза.

Типичная растительная клетка содержит 50-200 хлоропластов длиной около 1 мкм. Хлоропласты состоят из бесцветной цитоплазматической основы и зелёного пигмента хлорофилла. Вода поднимается из корней по капиллярам ствола, ветвей к листьям и попадает в клетки к хлоропластам. Лист хорошо приспособлен для поглощения углекислого газа. В верхнем защитном слое листа имеются устьица, состоящие из двух клеток, способных отходить друг от друга, открывая щель для поступления СО2. Днём устьица под влиянием света открыты, ночью закрыты. Устьица регулируют поступление углекислого газа в растение и сопутствуют испарению воды. Фотосинтез начинается с улавливания и поглощения фотона солнечного света молекулой хлорофилла. Представим процесс фотосинтеза в самом общем виде:

где G - энергия солнечного света, потреблённая в процессе фотосинтеза.

H - энергия окисления органических веществ (дыхания).

G = H ? 478 кДж/моль.

Синтезируемое и распадающееся (окисляемое) органическое вещество представлено в реакции углеводом (CH2О)n. Это может быть глюкоза (n = 6, С6Н12О6), которая полимеризуясь образует крахмал или целлюлозу (n > 1800). В реальном процессе участвует множество различных органических веществ, включающих и другие химические элементы. Фотосинтез имеет большую древность. Предполагают, что он существовал 3,5•109 лет назад.

На высоте 6200 м по сравнению с уровнем Мирового океана давление воздуха уменьшается в два раза, поэтому на этих высотах располагается граница распространения зелёных растений.

Для распространения животных важным фактором является концентрация в атмосферном воздухе и парциальное давление кислорода. Для большинства животных организмов верхним пределом следует считать высоты ? 8-10 км, хотя временное пребывание некоторых животных регистрируется на высотах 10-15 км. Концентрация кислорода в атмосферном воздухе постоянна - 20,95 % (объёмных). Изменение ее на 2-3 % не оказывает заметного физического действия, но больше этого приводит к физическим нарушениям и включает механизм акклиматизации. Неадаптированный человек на высоте 3000 м над уровнем моря испытывает ухудшение состояния и снижение работоспособности, на высоте 6000 м теряет сознание. Генетически адаптированные жители встречаются на высоте до 5000 м в Гималаях и Андах, у них повышен объём крови, увеличено количество эритроцитов и гемоглобина. У обитающих в Андах лам найдено повышенное сродство гемоглобина к кислороду, большая кислородная емкость крови. Благодаря этому, несмотря на внешний дефицит кислорода, содержание его в клетках этих животных даже выше, чем у равнинных.

Нижняя граница биосферы опускается на 2-3 км от поверхности на суше и на 1-2 км ниже дна океана. Нижний предел связан с повышением температуры в земных недрах. Активность большинство многоклеточных организмов сохраняют в интервале температур от 0-30° С, предельная температура существования живых организмов 80-100° С. Микроорганизмы эбулиофилы, обитающие в горячих поверхностных и глубинных источниках, могут сохранять способность к размножению при t ? 75° С, а некоторые бактерии 85-105° С. Диапазон температуры, при котором клетки и многие организмы способны длительное время находиться в неактивном состоянии, существенно больше от 0 до 400 К. Хорошо известен криобиоз - переживание при температуре намного ниже точки замерзания жидкостей тела для семян, низших беспозвоночных, рыб. Такие температуры скорее являются температурами выживания, а не нормальной жизненной активности. Жизнь в литосфере концентрируется в основном в поверхностном слое земной коры - почве.

Воды гидросферы делятся на две зоны. Верхняя зона определяется глубиной проникновения солнечного света (в среднем до 200 м). В этой зоне протекает деятельность фотосинтезирующих организмов (растений, некоторых бактерий). В нижних слоях, куда не проникает солнечный свет, обитают организмы, потребляющие готовые органические вещества, синтезированные организмами верхней зоны. В глубоких впадинах, заполненных сероводородом, обитают особые хемосинтезирующие бактерии, утилизирующие Н2S.

Хемосинтез - синтез органических веществ с помощью энергии, генерируемой окислением неорганических соединений: аммиака, сероводорода, оксида железа. Хемосинтез был открыт в 1889-1990 гг. С. Н. Виноградским. Нитрифицирующие бактерии получают энергию за счёт окисления аммиака без участия энергии Солнца:

2NH3 +3O2 > 2HNO2 + 662 кДж;

2HNO2 + O2 > 2HNO3 + 101 кДж.

Серобактерии получают энергию, окисляя сероводород:

2Н2S + O2 > 2Н2O + 2S + Q.

Свободная сера накапливается в цитоплазме серобактерий. Если недостаёт сероводорода, то происходит окисление свободной серы в бактериальной цитоплазме с дальнейшим высвобождением энергии:

2S + 3O2 + 2Н2O > 2 Н2SO4+Q.

Эта энергия используется для синтеза органических веществ из углекислого газа. Ферробактерии окисляют соединения железа и используют выделяющуюся энергию на получение глюкозы. В.И. Вернадский считал, что образование залежей железных и марганцевых руд является результатом деятельности микроорганизмов в прошлые геологические эпохи.

Протяжённость биосферы по вертикали составляет ? 33-35 км. В пределах биосферы можно выделить “плёнку жизни” (выражение В. И. Вернадского) - своеобразную оболочку жизни, где сконцентрировано практически всё живое вещество. Она располагается на границе поверхностного слоя земной коры с атмосферой и верхней части водной оболочки Земли. Толщина “плёнки жизни” колеблется от нескольких метров в степях и пустынях до сотен метров в горах и морях.

Биосфера составляет менее 10-6 массы других оболочек Земли и обладает несравненно большим разнообразием, обновляет свой состав в миллионы раз быстрее. Биомасса живого вещества Земли оценивается в 2,4•1012 т сухого вещества. Если её распределить по всей поверхности Земли, то получился бы биологический покров всего в 1,3 см. Несмотря на малые размеры биоты, именно она определяет условия на поверхности земной коры. Её существование ответственно за появление в земной атмосфере свободного кислорода, формирование почв и круговорот элементов в природе.

Основные функции биосферы

Биота биосферы выполняет ряд важных биогеохимических функций.

1. Газовая функция. Растения и животные постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессе фотосинтеза и дыхания. Растения сыграли решающую роль в формировании состава современной атмосферы. Появление органов фотосинтеза у водорослей обусловило увеличение содержания кислорода в атмосфере, появление животных.

2. Концентрационная функция. Живые организмы, пропуская через своё тело большие объёмы воздуха и природных растворов, осуществляют биогенную миграцию и концентрирование химических элементов. Например, строительство раковин и скелетов, образование коралловых островов, известняков, месторождений серы, биосинтез органики.

3. Окислительно-восстановительная функция. Многие вещества в природе крайне устойчивы и не подвергаются окислению при обычных условиях. Однако живые клетки благодаря эффективным катализаторам - ферментам - способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем в неживой среде. Молекула азота N2 очень устойчива, поэтому соединение азота с другими элементами требует больших затрат энергии. Наиболее эффективная фиксация азота в природе осуществляется клубеньковыми бактериями бобовых растений.

4. Информационная функция. Организмы оказались способны к получению информации: генетическая информация и молекулярная информация, связанная с обменом веществ и энергии.

Перечисленные функции живого вещества биосферы образуют средообразующую функцию.

5. Средорегулирующая функция - биотическая регуляция окружающей среды. Биота способна с большой точностью и длительное время поддерживать на постоянном уровне важные параметры окружающей среды несмотря на сложность регулируемой системы.

6. Энергетическая функция. Выполняется в основном зелёными растениями. В основе этой функции лежит процесс фотосинтеза. Растения аккумулируют солнечную энергию и перераспределяют её между остальными компонентами биосферы.

Действие принципа Ле Шателье в биосфере

Принцип Ле Шателье эмпирически был выведен для химического равновесия: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия уменьшается. Рассмотрим обратимую химическую реакцию, когда прямой процесс стимулирует обратный процесс.

2H2 + O2 = 2H2O + Q

Данная реакция протекает с выделением тепла. Можно оценить влияние разных факторов на состояние динамического равновесия (когда скорости протекания прямой и обратной реакций одинаковы). Если в предложенной системе понижать температуру, то согласно принципу Ле Шателье равновесие будет сдвинуто в сторону продуктов реакции, поскольку реакция экзотермическая. Если увеличивать температуру - то в сторону исходных веществ. При увеличении давления равновесие будет сдвинуто в направлении уменьшения давления в системе, т.е. в сторону продуктов реакции.

Этот закон в обобщённом виде заимствовала экология: внешнее воздействие, выводящее систему из равновесия, стимулирует в ней процессы, стремящиеся ослабить результаты этого взаимодействия.

В биосфере этот закон реализуется в виде способности к авторегуляции и поддержанию относительного постоянства важных параметров организма или сообщества организмов (гомеостаза). Осуществление этого принципа основано на глобальной биотической регуляции окружающей среды. В течение всего времени существования биосфера подвергалась внезапным внешним возмущениям: падению метеоритов, вулканическим извержениям и прочим природным катаклизмам. Однако за счёт деятельности живого вещества после таких возмущений обеспечивался возврат к первоначальному равновесному состоянию.

Ещё В.И. Вернадский отмечал огромную роль биоты в стабилизации состояния окружающей среды, поскольку концентрация всех важных для живых организмов элементов регулируется биологическими процессами. Биота сформировала гигантские отложения горных пород, кислородную атмосферу Земли, почву. Наиболее полный контроль биота осуществляет за биогенными элементами, контролируя их круговорот. Благодаря этому регулируется состояние окружающей среды и с высочайшей точностью обеспечиваются оптимальные условия для жизни. За миллиарды лет существования жизни не происходило таких нарушений окружающей среды, которые привели бы к разрушению биосферы в целом. Биота не может повлиять на поток солнечной радиации или интенсивность приливов и отливов. Однако путём направленного изменения концентрации биогенных элементов в окружающей среде в соответствии с принципом Ле Шателье она может компенсировать последствия катастрофических процессов. Избыток углекислого газа во внешней среде, например, может быть переведён биотой в малоактивные органические формы, а недостаток - пополнен за счёт разложения органических веществ, содержащихся в гумусе и торфе.

Нарушение структуры биоты в ходе хозяйственной деятельности может нарушить скоррелированное взаимодействие биологических видов в природе по поддержанию круговоротов веществ и привести к разрушению биосферы.

Лекция 3

Экосистемы

Состав и функциональная структура экосистем. Пищевые цепи и сети. Трофические уровни. Основные принципы функционирования экосистем. Развитие экосистем и проблема устойчивости.

Экосистема - пространственно определенная совокупность живых организмов и среды их обитания, объединенных вещественно-энергетическими и информационными взаимодействиями. Наземная экосистема называется биогеоценоз.

Каждая экосистема имеет определенную функциональную структуру. В неё входят группы организмов разных видов, различаемые по способу питания: автотрофы и гетеротрофы.

Автотрофы (самопитающиеся) - организмы, образующие органическое вещество своего тела из неорганических веществ углекислого газа и воды посредством процессов фотосинтеза или хемосинтеза. Фотосинтез осуществляют фотоавтотрофы - все зеленые растения и микроорганизмы. Хемосинтез - хемоавтотрофные бактерии. Хемоавтотрофы в природных экосистемах играют относительно небольшую роль, за исключением чрезвычайно важных нитрифицирующих бактерий. Автотрофы составляют основную массу всех живых существ и полностью отвечают за образование нового органического вещества в любой экосистеме, т. е. являются производителями продукции - продуцентами экосистем.

Гетеротрофы (питающиеся другими) - организмы, потребляющие готовое органическое вещество других организмов и продуктов их жизнедеятельности. Это все животные, грибы и большая часть бактерий. У некоторых групп бактерий, как и у большинства растений-паразитов и насекомоядных растений (росянка поедает насекомых), совмещаются автотрофные и гетеротрофные функции. Гетеротрофы выступают как потребители и деструкторы (разрушители) органических веществ. В зависимости от источников питания и участия в деструкции они также подразделяются на несколько категорий: консументы, детритофаги и редуценты.

Консументы - потребители органического вещества живых организмов. К их числу относят:

- растительноядные животные (фитофаги), питающиеся живыми растениями (тля, кузнечик, овца, олень и т. д.);

- плотоядные животные (зоофаги), поедающие других животных - различные хищники (хищные насекомые, насекомоядные и хищные птицы, хищные рептилии, звери), нападающие не только на зоофагов, но и на других хищников (хищники второго и третьего порядка);

- паразиты, живущие за счет веществ организма хозяина; это уже не только животные (черви, насекомые, клещи), но и различные микроорганизмы (бактерии, простейшие), а также некоторые грибы и растения;

- симбиотрофы - бактерии, грибы, простейшие, которые, питаясь соками или выделениями организма-хозяина, выполняют вместе с этим и жизненно важные для него трофические функции. Это мицелиальные грибы, участвующие в корневом питании многих растений; клубеньковые бактерии бобовых, связывающие молекулы азота; микробиальное население сложных желудков жвачных животных, повышающие перевариваемость и усвоение поедаемой растительной пищи.

Существует немало животных со смешанным питанием, потребляющих и растительную, и животную пищу.

Детритофаги - организмы, питающиеся мертвым органическим веществом - остатками растений и животных. Это различные гнилостные бактерии, грибы, черви, личинки насекомых и другие животные. Детритофаги участвуют в образовании почвы, торфа, донных отложений водоемов.

Редуценты - бактерии и низшие грибы - завершают деструкционную работу консументов и детритофагов, доводя разложения органики до ее полной минерализации и возвращая в среду экосистемы последние порции CO2, H2O и минеральных веществ.

Все названные группы организмов в любой экосистеме тесно взаимодействуют между собой, согласуя потоки вещества и энергии. Их совместное функционирование не только поддерживает структуру и целостность биоценоза, но и оказывает существенное влияние на абиотические компоненты биотопа, обуславливая самоочищение экосистемы, ее среды.

Важной характеристикой экосистем является разнообразие видового состава. При этом выявляется ряд закономерностей:

- чем разнообразнее условия биотопов в пределах экосистемы, тем больше видов содержит соответствующий биоценоз;

- чем больше видов содержит экосистема, тем меньше особей насчитывают соответствующие видовые популяции. В биоценозах тропических лесов при большом видовом разнообразии популяции относительно малочисленны. В системах с малым видовым разнообразием (биоценозы пустынь, сухих степей, тундры) некоторые популяции достигают большей численности;

- чем больше разнообразие биоценоза, тем больше экологическая устойчивость экосистемы, биоценозы с малым разнообразием подвержены большим колебаниям численности доминирующих видов;

- эксплуатируемые человеком системы, представленные одним или очень малым числом видов (агроценозы с земледельческими монокультурами), неустойчивы по своей природе и не могут самоподдерживаться. В агроценозах искусственный отбор ведется так, чтобы максимально увеличить продуктивность тех частей растения, которые нужны человеку, но достигается это за счет уменьшения вспомогательных частей, обеспечивающих растению устойчивость к неблагоприятным внешним воздействиям (к засухе, вредителям, болезням). Например, увеличение колоса в ущерб стеблю, листьям и корням. Такие агроценозы не способны к саморегулированию, поэтому эти функции вынужден взять на себя человек: вспашка земли, полив, борьба с вредителями и болезнями. Если этого не сделать, то результат будет меньшим, чем если бы использовали менее урожайные, но более “самостоятельные” сорта растений;

- никакая часть экосистемы не может существовать без другой. Если по какой-то либо причине происходит нарушение структуры экосистемы, исчезает группа организмов, вид, то по закону цепных реакций может сильно измениться или даже разрушиться все сообщество. Бывает часто, что через какое-то время после исчезновения одного вида на его месте оказываются другие организмы, другой вид, но выполняющий сходную функцию в экосистеме. Эта закономерность называется правилом замещения или дублирования, у каждого вида в экосистеме есть “дублер”. Такую роль обычно выполняют виды менее специализированные и в тоже время экологически более гибкие, адаптивные. Например, копытных в степи замещают грызуны, на мелководных озерах и болотах аистов и цапель замещают кулики. Решающую роль при дублировании играет близость экологических функций групп организмов.

Пищевые цепи и сети

Виды в биоценозе связаны между собой процессами обмена веществом и энергии, т. е. пищевыми взаимоотношениями. Прослеживая пищевые взаимоотношения между членами биоценоза (“кто кого и сколько поедает”), можно построить пищевые цепи и сети.

Трофические цепи (от греч. trophe - пища) - пищевые цепи - это последовательный перенос вещества и энергии. Например, пищевая цепь животных арктического моря: микроводоросли (фитопланктон) > мелкие растительноядные ракообразные (зоопланктон) > плотоядные планктоно-фаги (черви, моллюски, ракообразные) > рыбы (возможны 2-4 звена последовательности хищных рыб) > тюлени > белые медведи. Эта пищевая цепь длинная, пищевые цепи наземных экосистем более короткие, так как на суше больше потери энергии. Различают несколько типов наземных пищевых цепей [2].

1. Пастбищные пищевые цепи (цепи эксплуататоров) начинаются с продуцентов. При переходе с одного трофического уровня на другой происходит увеличение размеров особей при одновременном уменьшении плотности популяций, скорости размножения и продуктивности по массе.

Трава > полёвки > лисица

Трава > насекомые > лягушка > цапля > коршун

2. Цепи паразитов. Для них характерно уменьшение размеров особей, увеличение численности, увеличение скорости размножения, увеличение плотности популяций.

Яблоня > щитовка > наездник

Корова > слепень > бактерии > фаги

3. Детритные цепи. Включают только редуцентов.

Опавшие листья > плесневые грибы > бактерии

Любой член какой-либо пищевой цепи одновременно является звеном и другой пищевой цепи: он потребляет и его потребляют несколько видов других организмов. Так образуются пищевые сети. Например, в пище лугового волка-койота насчитывают до 14 тысяч видов животных и растений. В последовательности переноса веществ и энергии от одной группы организмов к другой различают трофические уровни. Обычно цепи не превышают 5-7 уровней. Первый трофический уровень составляют продуценты, т. к. питаться солнечной энергией могут только они. На всех остальных уровнях - травоядные (фитофаги), первичные хищники, вторичные хищники и т. д. - идёт расход первоначально накопленной энергии на поддержание обменных процессов.

Пищевые отношения удобно представлять в виде трофических пирамид (численности, биомасс, энергий). Пирамида численности - отображение числа особей на каждом трофическом уровне в единицах (штуках).

Размещено на http://www.allbest.ru/

Она имеет очень широкое основание и резкое сужение к конечным консументам. Это обычный вид пирамиды для травяных сообществ - луговых и степных биоценозов. Если рассмотреть лесное сообщество, то картина может быть искажена: на одном дереве могут кормиться тысячи фитофагов или на одном трофическом уровне окажутся тля и слон (разные фитофаги). Тогда численность консументов может быть больше численности продуцентов. Чтобы преодолеть возможные искажения используют пирамиду биомасс. Выражается она в единицах тоннажа сухой или сырой массы: кг, т и т. д.

Размещено на http://www.allbest.ru/

В наземных экосистемах биомасса растений всегда больше биомассы животных. Иначе пирамида биомассы выглядит для водных, особенно морских экосистем. Биомасса животных намного больше биомассы растений. Эта неправильность связана с тем, что пирамиды биомасс не учитывают продолжительность существования поколений особей на разных трофических уровнях и скорости образования и выедания биомассы. Главный продуцент морских экосистем - фитопланктон. За год в океане может смениться до 50 поколений фитопланктона. За то время, пока хищные рыбы (а тем более киты) накопят свою биомассу, сменится множество поколений фитопланктона и его суммарная биомасса будет намного больше. Поэтому универсальным способом выражения трофической структуры экосистем являются пирамиды продуктивности, обычно их называют пирамидами энергий, имея в виду энергетическое выражение продукции.

Размещено на http://www.allbest.ru/

Поглощенная солнечная энергия преобразуется в энергию химических связей углеводов и других органических веществ. Часть веществ окисляется в процессе дыхания растений и освобождает энергию. Эта энергия рассеивается в конечном итоге в виде тепла. Оставшаяся энергия обуславливает прирост биомассы. Суммарная биомасса стабильной экосистемы относительно постоянна. Таким образом, при переходе от одного трофического уровня к другому часть доступной энергии не воспринимается, часть отдается в виде тепла, часть расходуется на дыхание. В среднем при переходе с одного трофического уровня на другой общая энергия уменьшается примерно в 10 раз. Эта закономерность называется правилом пирамиды энергий Линдемана (1942 г.) или правилом 10 %. Чем длиннее пищевая цепь, тем меньше к ее концу остается доступной энергии, поэтому число трофических уровней никогда не бывает слишком большим.

Если энергия и основная масса органического вещества при переходе на следующую ступень экологической пирамиды уменьшается, то накопление попадающих в организм веществ, не участвующих в нормальном обмене веществ (синтетических ядов), примерно в той же пропорции увеличивается. Это явление называется правилом биологического усиления.

Основные принципы функционирования экологических систем

1. Постоянный приток солнечной энергии - необходимое условие существования экосистемы.

2. Круговорот биогенов. Движущими силами круговорота веществ служат потоки энергии солнца и деятельность живого вещества. Благодаря круговороту биогенных элементов создается устойчивая организованность всех экосистем и биосферы в целом, осуществляется их нормальное функционирование.

3. Снижение биомассы на высших трофических уровнях: уменьшение количества доступной энергии обычно сопровождается уменьшением биомассы и численности особей на каждом трофическом уровне (вспомним пирамиды энергии, численности и биомассы).

Подробно эти принципы мы уже осветили в ходе лекции.

Развитие экосистем и проблема устойчивости

В природных экосистемах происходят постоянные изменения. Они вызываются различными причинами: погодными условиями (сезонными изменениями температуры) или биотическими воздействиями, различными случайными сочетаниями год от года различных абиотических и биотических факторов. Эти колебания как правило более или менее регулярны и не выходят за границы устойчивости экосистемы - ее обычного размера, видового состава, биомассы, продуктивности. Такое состояние окончательного равновесия системы (гомеостаза сообщества) называют климаксным. Гомеостаз является важнейшим условием существования экосистемы и характеризуется устойчивым динамическим равновесием между биотическими потенциалами входящих в сообщество популяций и сопротивлением среды. Климаксные экосистемы обладают способностями к саморегулированию в течение длительного времени. Устойчивость экосистемы как правило тем больше, чем больше она по размеру и чем богаче и разнообразнее видовой и популяционный состав. При этом условии экологические возможности разных видов так будут дополнять друг друга, что различные воздействия как внешние (изменения абиотических факторов, к которым невозможно приспособиться), так и внутренние (чрезмерные скорости размножения некоторых организмов) будут сглаживаться.

Стремясь к поддерживанию гомеостаза, экосистемы способны к изменениям и развитию. Изменение условий, появление новых живых существ и взаимосвязей между ними, действие абиотических и антропогенных факторов может приводить к отмиранию климаксов. На смену им приходят, возможно, совсем иные по составу сообщества. В природе менее устойчивые экосистемы сменяются на более устойчивые. Их смена определяется тремя факторами:

1. Нарушением стабильных взаимоотношений между видами.

2. Изменением климатических условий.

3. Изменением физической среды под влиянием жизнедеятельности организмов, составляющих экосистему. К сукцессиям может приводить также изменение географической обстановки под влиянием природной катастрофы или действий человека.

Последовательная смена во времени одних экосистем другими, замена одних сообществ растений и животных другими сообществами растений и животных называется экологической сукцессией (от лат. succession - последовательность, преемственность). Процесс экологической сукцессии весьма длителен во времени, он заключается не в быстрой и внезапной смене одних сообществ другими, а в медленной замене одних видов другими после того, как начался процесс изменения абиотических факторов. Различают первичную и вторичную сукцессию. Первичная сукцессия развивается на месте, лишенном жизни, и представляет собой постепенное заселение организмами появившейся девственной суши, оголенной материнской породы (отступившее море или ледник, высохшее озеро, дюны, голые скалы и т. п.). Революционную роль при первичной сукцессии играет процесс почвообразования, затем появляются растения-пионеры (злаки), кустарники (ива, ольха), затем сосна, а после этого лиственные породы. Постепенно появляются насекомые, птицы, животные. Система доходит до климаксного состояния.

Вторичные сукцессии имеют характер постепенного восстановления свойственного данной местности сообщества после нанесенных повреждений (бури, пожара, вырубки, наводнений, выпаса скота). Возникшая в результате вторичной сукцессии климаксная система может существенно отличаться от первоначальной, если изменились некоторые характеристики ландшафта или климатические условия. Сукцессию можно наблюдать и на городских улицах. Мхи и лишайники заселяют трещины на тротуарах, песчаная дюна зарастает около 1000 лет, для возобновления леса на месте вырубленного необходимо от 100 до 200 лет. Вторичная сукцессия развивается скорее, чем первичная.

Сукцессии направлены на обеспечение дальнейшего существования, достижение гомеостаза. Устойчивость экосистем (постоянство внутренних характеристик на фоне нестабильной или изменяющейся внешней среды), а также способность к переходу из одного состояния в другое (путем сукцессии) обеспечиваются механизмами саморегуляции. Гомеостатическое состояние является автоколебательным - значения показателей колеблются во времени с постоянной амплитудой около положения равновесия.

Устойчивость экосистем является результатом длительной адаптации живых организмов друг к другу и к косной среде. Скорость изменений в природных экосистемах мала по сравнению с жизнью человека. Она увеличивается только под влиянием деятельности человека. Развитие человеческой цивилизации идет быстрее, чем происходят изменения в экосистемах, живые существа вынуждены приспосабливаться к быстро меняющимся условиям. Человек угрожает стабильности существования экосистем и биосферы в целом.

Лекция 4

Взаимоотношения организма и среды

Классификация экологических факторов среды. Общие закономерности действия экологических факторов на живые организмы: абиотических факторов (диаграмма выживания, выносливость, устойчивость); биотических факторов (нейтрализм, аменсализм, комменсализм, конкуренция, мутуализм). Обобщенный закон Либиха и закон толерантности Шелфорда. Экологическая ниша.

Каждый организм находится в прямых или косвенных отношениях с различными природными явлениями. Окружающая среда слагается из множества элементов неорганической и органической природы и элементов, вносимых деятельностью человека. Одни элементы могут быть необходимы организму, другие полностью или почти безразличны, а третьи оказывать вредное воздействие. Для описания взаимодействия живого со своим окружением необходимо ввести понятие об экологическом факторе.

Экологические факторы - это такие элементы или условия среды, способные оказывать прямое или косвенное влияние на живые организмы хотя бы на протяжении одной из фаз их развития. Живые организмы реагируют на них приспособительными реакциями. Один и тот же фактор у различных организмов может вызывать различные реакции. Классификаций экологических факторов существует много в зависимости от критерия. В большинстве случаев классификации факторов построены на принципе антиномий. Обычно выделяют следующие факторы: биотические- абиотические, внутренние - внешние, прямо действующие - косвенно действующие, космические - земные, элементарные - комплексные, природные - антропогенные и т. д. Например, внешние факторы: солнечная радиация, атмосферное давление, температура и т. д.; внутренние факторы (связанные со свойствами самой экосистемы): плотность и структура популяций, численность, пища и её доступность. Можно оценить значимость факторов и выделить главные и второстепенные. Главные (или условия существования) - те факторы, без которых жизнь и развитие организма невозможно - воздух, вода, пища, свет. Другие, действие которых необязательно постоянно, но влияющие на различные проявления жизнедеятельности организмов, называют второстепенными или факторами воздействия. Наиболее часто факторы разделяют по природе и характеру действия.

1) На абиотические факторы - факторы неорганической (неживой) природы. К ним относят:

- климатические (температура, давление, влажность, освещённость, скорость ветра);

- химические (состав воды, воздуха, почвы);

- эдафические или почвенные (механический состав, плотность, воздухопроницаемость);

- орографические (рельеф местности, высота над уровнем моря).

2) Биотические факторы - прямые или опосредованные воздействия других организмов, населяющих среду обитания данного организма. Живые существа являются по отношению к другим организмам хищниками или сами служат источником пищи. Они также могут быть средой обитания, оказывать химическое или механическое воздействие. Факторы живой природы в свою очередь подразделяют:

- на фитогенные (воздействия со стороны растений);

- зоогенные (воздействия со стороны животных);

- микробиогенные (со стороны вирусов, бактерий и простейших).

Взаимоотношения между живыми организмами сложнее абиотических воздействий и труднее поддаются прямому измерению.

Особую группу составляют антропогенные факторы, порождённые деятельностью человека, обусловленные расширением и наступлением техносферы. Антропогенное воздействие можно свести:

- к хозяйственному изъятию природных ресурсов и нарушению естественных ландшафтов (вырубка лесов, осушение болот, промысел растений, рыб, зверей и птиц и т. п.);

- загрязнению природной среды отходами производства и потребления.

Приведённая классификация является достаточно условной, поскольку границы между абиотическими, биотическими и антропогенными факторами не всегда чётки. Некоторые абиотические факторы имеют биогенное или техногенное происхождение (например, состав воздуха или воды, радиоволны), а антропогенные факторы могут иметь биотический и абиотический характер.

Общие закономерности действия экологических факторов на живые организмы. Действие абиотических факторов

Каждый живой организм может нормально существовать и продолжать свой род только в определенных условиях. Существуют верхние и нижние пределы температуры, освещённости, атмосферного давления для нормального существования растений, животного и человека, а также их оптимальные значения. Можно построить график зависимости биологической активности (для отдельного организма это может быть скорость роста и развития, активность; для популяции - выживаемость, численность) от количественных значений какого-либо фактора. Такой график имеет куполообразный вид и называется диаграммой выживания или существования.

Размещено на http://www.allbest.ru/

Рис. 2. Диаграмма выживания: зависимость биологической активности от интенсивности действия фактора среды (уровни жизнедеятельности, необходимые для сохранения жизни в экстремальных условиях - I; для нормального существования - II)

Вершина диаграммы совпадает с точкой биологического оптимума, т.е. наиболее благоприятного для организмов данного вида значения фактора среды. При оптимальных значениях фактора организмы активно питаются, развиваются, растут, размножаются. Диаграммы существования, как правило, несимметричны и неодинаковы для популяции и для отдельной особи этой популяции. Их параметры могут быть установлены экспериментально. За пределами оптимума располагаются области, в которых жизнедеятельность не нарушается, но уже требует напряжения функций. Это зоны адаптации. Вместе с зоной оптимума они образуют область биологической нормы (зону нормальной жизнедеятельности). За ее пределами наступает угнетение жизнедеятельности. Чем больше отклоняется значение фактора от оптимального значения, тем менее благоприятно это для организмов. При приближении к критическим значениям возрастает вероятность нарушения отдельных функций и жизнедеятельности в целом. Критическими называются такие значения фактора, при которых возникающие нарушения обратимы, когда еще сохраняется способность к самовосстановлению после прекращения негативного воздействия. За этими пределами находятся условия неминуемой гибели организма.

Данные зависимости используются при разработке нормативов экологической безопасности: определения предельно допустимых концентраций действующих веществ (ПДК), предельно допустимых уровней воздействия (ПДУ). Для этого изучают переносимость вредных воздействий живыми организмами и устанавливают различные дозы воздействия: минимальные, пороговые, средние летальные (погибает 50 % тестируемых объектов) и абсолютные смертельные. Специализированными тест-объектами могут быть штаммы микроорганизмов, растения и животные. Эти граничные величины составляют основу экологического нормирования.

Разные организмы по-разному реагируют на изменение абиотических факторов. Одни организмы при отклонении значений фактора от точки оптимума сразу же изменяют и проявления жизнедеятельности. Они как бы покорно подчиняются ухудшению внешних условий. Так, с понижением температуры среды понижается температура деревьев и замедляется в них обмен веществ. Однако, если благоприятные условия возвратятся, то экологическая потенция восстановится. Это пассивный тип приспособления. Такие организмы называют выносливыми или толерантными. Другое их название - пойкилобионты (от греч. рoikilos - изменчивый, меняющийся) - пассивно изменяющий свое состояние, свой функции, поддаваясь изменениям в среде. К ним относятся растения и животные, пассивно переносящие охлаждение, замерзание, голод и т. п. Крайние проявления такой способности связаны со специальными приспособлениями: глубоким замедлением жизнедеятельности, состоянием спячки у животных и полным, но обратимым замиранием всех жизненных процессов (у спор, семян и многих низших животных). Переход в это крайнее состояние исключает дальнейшее подчинение среде и расширяет возможность выживания организма в самых неблагоприятных условиях. Большинство организмов биосферы - пойкилобионты [2].

Во многих случаях в определенном диапазоне изменений фактора среды нет подчинения им функций организма: включаются механизмы защиты от неблагоприятных воздействий, сопротивления им или их активного избегания. Такие организмы обладают большей или меньшей устойчивостью или резистентностью (от лат. resistere - сопротивляться) организма по отношению к отклонению от оптимума. Это активный путь приспособления. Такие организмы называются гомойобионтами, т. е. способными поддерживать гомеостаз - постоянство своих свойств, функций при изменении условий среды. Например, постоянство температуры тела у млекопитающих и птиц при значительном изменении температуры среды, или постоянство солевого состава при больших колебаниях водно-солевого снабжения организма. Это примеры высокой физиологической устойчивости, иллюстрирующие действие принципа гомеостаза на уровне организма.

Рис. 3. Диаграммы выживания для разных экологических форм организмов:

1 - толерантные организмы;

2 - резистентные организмы

Выносливость и устойчивость не альтернативны во многих случаях. Они могут встречаться у всех организмов в том или ином состоянии, дополняя друг друга. Одно и тоже растение или животное может быть выносливо к одному фактору и устойчиво по отношению к другому. Или, исчерпав ресурс устойчивости, организм оказывается мало выносливым.

Когда факторы среды отклоняются от оптимальных значений, у многих организмов наблюдается опережающее реагирование - избегание неблагоприятных воздействий и активный поиск других более благоприятных условий и местообитаний - гомеостатическое поведение: миграции, перелеты птиц, создание и использование убежищ. Если не удается избежать неблагоприятных воздействий, то сопротивление им достигается с помощью физиологической регуляции: при низкой температуре у птиц и млекопитающих благодаря уменьшению периферического кровотока и вздыбливанию перьев и шерсти возрастает теплоизоляция тела. Одновременно усиливается обмен веществ в мышцах и во внутренних органах, чем достигается увеличение теплообразования и поддержание постоянной температуры тела.

Физиологическое регулирование может оказаться недостаточным для противостояния неблагоприятным условиям среды. Длительное напряжение физиологических функций приводит к истощению ресурсов организма и может иметь отрицательные последствия. Поэтому, когда отклонения условий среды от биологического оптимума стойкие, происходят изменения физиологической регуляции. Они уменьшают напряжение организма. Подобные изменения носят название физиологической адаптации или акклиматизации. Акклиматизации растений, животных и человека имеют большое экологическое значение. Они связаны с сезонными перепадами температуры, влажности и т. п. Например, утепление покровов пуха, пера, меха осенью у млекопитающих и птиц, накопление подкожного жира. В тканях происходят различные биохимические изменения, направленные на экономное расходование энергии. Новые физиологические качества, приобретаемые во время акклиматизации, утрачиваются при возвращении в оптимальные условия. Эти качества не передаются по наследству.

Совместное действие абиотических факторов

В естественных условиях на живые организмы всегда действует не один, а сложный комплекс факторов. Для существования организма необходимо оптимальное сочетание ряда факторов. Никогда не бывает, чтобы все они были представлены своими оптимальными значениями. Поэтому экологический оптимум сочетания факторов отличается от оптимума какого-нибудь одного фактора. В природных экосистемах действует неограниченное число факторов, но можно выделить всегда конечное число факторов, от которых зависит жизнь организма. Совместное действие этих факторов может быть разным. Оно может быть синергическим, когда различные воздействия как бы усиливают друг друга и производят больший эффект, чем сумма раздельных влияний. Или факторы могут взаимно ослаблять действие друг друга. Почти всегда можно выделить фактор, который сильнее других влияет на состояние организма. Дефицит какого-нибудь одного важного ресурса (света, воды, тепла или пищи) ограничивает жизнедеятельность даже тогда, когда все остальные условия оптимальны. Такие факторы называют ограничивающими или лимитирующими.

В 1840 году немецкий химик Юстус Либих заинтересовался влиянием питательных веществ почвы, таких как калий, азот и фосфор, на урожайность растений. Он установил зависимость, что величина урожая определяется количеством того элемента в почве, потребность растения в котором удовлетворена меньше всего. В качестве пояснения Либих рисовал бочку с отверстиями [6] (рис.4).

Рис. 4. Иллюстрация закона минимума

Грани бочки можно рассматривать как экологические факторы, а отверстия в них - значения экологических факторов. Уровень воды в бочке символизирует выносливость организма. Если в такую бочку наливать воду, то вода нальется только до первой дырки. Компонент, значение которого минимально (соответствует на рисунке первой дырке), и будет определять выносливость организма.

Например, магний является центральным комплексообразующим ионом хлорофилла, если нет магния, то не образуется хлорофилл.

Либих сформулировал закон минимума еще до возникновения экологии. Закон этот эмпирический и его дополняют. Либих распространял его на вещества, затем стали учитывать температуру, влажность, освещенность. Поэтому он прибрел обобщенную формулировку: выносливость организма определяется слабым звеном в цепи его экологических потребностей.

...

Подобные документы

  • История развития экологии. Становление экологии как науки. Превращение экологии в комплексную науку, включающую в себя науки об охране природной и окружающей человека среды. Первые природоохранные акты на Руси. Биография Келлера Бориса Александровича.

    реферат [24,9 K], добавлен 28.05.2012

  • Основы экологии человека: понятия и термины. Взаимосвязь экологии человека с проблемами сохранения здоровья. Главные аксиомы экологии. Понятие зоны экологической стабильности, нестабильности. Важнейшие современные антропогенные экосистемы, их особенности.

    реферат [46,1 K], добавлен 24.12.2014

  • История зарождения и этапы становления экологии как науки, оформление экологии в самостоятельную отрасль знаний, превращение экологии в комплексную науку. Возникновение новых направлений науки: биоценология, геоботаника, популяционная экология.

    реферат [20,8 K], добавлен 06.06.2010

  • Теоретические проблемы социальной экологии. Информационные, математические и нормативно-технологические методы, их закономерности, специфика и объективная необходимость единства. Основные законы социальной экологии, их сущность, содержание и значение.

    реферат [15,0 K], добавлен 29.03.2009

  • Зарождение и становление экологии как науки. Взгляды Ч. Дарвина на борьбу за существование. Оформление экологии в самостоятельную отрасль знаний. Свойства "живого вещества" согласно учению В.И. Вернадского. Превращение экологии в комплексную науку.

    реферат [36,5 K], добавлен 21.12.2009

  • Характеристика этапов развития экологии: первобытное общество и античные цивилизации, от Средневековья к Возрождению, век естествознания. Основные принципы экологии. Основные факторы внешней среды. Глобальная экология и опасность экологического кризиса.

    курсовая работа [40,5 K], добавлен 19.07.2010

  • Содержание и основные положения социальной и прикладной экологии. Задачи, поставленные перед данными науками. Использование методологии исследований из смежных отраслей знаний. Генетическое исследование человеческих рас. Значение медицинской экологии.

    презентация [699,2 K], добавлен 22.11.2014

  • Предмет, задачи, методы экологии. Место экологии в системе естественных наук. Проблемы, связанные с антропогенным воздействием на биосферу. Явление парникового эффекта и его влияние на экосистемы. Единая государственная система экологического мониторинга.

    контрольная работа [30,8 K], добавлен 21.10.2010

  • Исследование предыстории экологии как отдельной дисциплины. Ознакомление с основными этапами расширения экологической мысли. Рассмотрение роли "Истории животных" Аристотеля. Изучение влияния современной экологии на социальные и гуманитарные науки.

    презентация [1,7 M], добавлен 19.04.2015

  • Определение экологии. Основные разделы. Законы экологии. Организм и среда. Практическое значение экологии. Взаимодействие сельскохозяйственных и природных экосистем, сочетания окультуренных и естественных ландшафтов.

    реферат [14,4 K], добавлен 25.10.2006

  • Структура современной экологии как науки. Понятие среды обитания и экологических факторов. Экологическое значение пожаров. Биосфера как одна из геосфер Земли. Сущность законов экологии Коммонера. Опасность загрязнителей (поллютантов) и их разновидности.

    контрольная работа [2,7 M], добавлен 22.06.2012

  • Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.

    методичка [66,2 K], добавлен 07.01.2012

  • Краткая история формирования и становления экологии как науки. Ситуации, побудившие развитие экологии в ХХ веке. Характеристика экологической обстановки Красноярского края. Категории и природа пестицидов. Пути попадания пестицидов в организм человека.

    реферат [48,0 K], добавлен 25.07.2010

  • Идея возникновения медицинской географии как науки, изучающей влияние местности на здоровье людей. Создание экологии человека для формирования на территории страны здоровой, экологически чистой, безопасной и социально комфортной среды обитания человека.

    контрольная работа [21,5 K], добавлен 18.03.2014

  • Понятие социальной экологии, ее основные функции и цели - создание теории эволюции взаимоотношений человека и природы, логики и методологии преобразования природной среды. Соотношение социальной экологии с традиционными науками и сферами деятельности.

    презентация [65,2 K], добавлен 14.01.2011

  • Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.

    реферат [16,3 K], добавлен 10.05.2010

  • История термина медицинской экологии. Формирование нового направления на границе медицинских дисциплин и экологии. Объект и предмет этой дисциплины. Разработка мероприятий, обеспечивающих сохранение оптимального для здоровья людей экологического баланса.

    презентация [598,5 K], добавлен 05.11.2014

  • Предмет, объект и методология социальной экологии, анализ истории развития социоэкологических знаний и определений. Логическая структура, теории и функции социальной экологии. Социально-экологическое взаимодействие, разновидности адаптации человека.

    реферат [28,3 K], добавлен 26.09.2010

  • Изучение экологии как биологической науки, которая исследует структуру и функционирование систем надорганизменного уровня (популяции, сообщества, экосистемы), в естественных и измененных человеком условиях. Принципы эволюционной теории Ч. Дарвина.

    презентация [3,7 M], добавлен 09.06.2019

  • Понятие экологии как науки, ее сущность и особенности, предмет и методы изучения, основные цели и задачи, значение в современном обществе. Разновидности экологии, их характеристика и отличительные признаки, состав и структура, основные элементы.

    реферат [65,8 K], добавлен 03.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.