Исследование методов утилизации выбросов химической переработки газа, влияющих на окружающаю среду

Загрязнение окружающей среды, связанное с эксплуатацией факельного хозяйства. Общие положения и требования к факельной системе. Комплексное исследование процесса адсорбции примесных соединений природного газа синтетическими цеолитами типа А и X.

Рубрика Экология и охрана природы
Вид диссертация
Язык русский
Дата добавления 23.05.2018
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство высшего и среднего специального образования Республики Узбекистан

Бухарский инженерно-технологический институт

Диссертация

на соискания академической степени магистра

5А321401 - “Химические и нефте-газохимичесике технологии”

Исследование методов утилизации выбросов химической переработки газа, влияющих на окружающаю среду

Максудов Равшан Комилович

Научный руководитель:

доц. Базаров Г.Р.

Бухара-2015 г.

Содержание

факельный загрязнение окружающий среда

Введение

Глава 1. Литературный обзор

1.1 Проблема загрязнения атмосферы

1.2 Загрязнение окружающей среды, связанное с эксплуатацией факельного хозяйства

1.3 Методы очистки газовых выбросов

Глава 2. Методы и объекты исследования

2.1 Методы исследования

2.2 Объекты исследования

Глава 3. Экспериментальная часть

3.1 Общие положения и требования к факельной системе

3.2 Состав и физико-химическая характеристика газовой смеси, выходящей с технологических установок и поступающей на факельную установку

3.3 Исследование адсорбции примесных соединений природного газа синтетическими цеолитами типа А и X

3.3.1 Изотермы, дифференциальные изостерические теплоты и энтропии адсорбции диоксида углерода на цеолите NaX

3.3.2 Изотермы, дифференциальные изостерические теплоты и энтропии адсорбции сероводорода на цеолитах NaX, CaNaA-1 и CaNaA-2

3.3.3 Изотермы, дифференциальные изостерические теплоты и энтропии адсорбции серооксидуглерода на цеолитах NaX, CaNaA-1 и CaNaA-2

3.3.4 Изотермы, дифференциальные изостерические теплоты и энтропии адсорбции метилмеркаптана на цеолитах NaX, CaNaA-1 и CaNaA-2

Заключение

Литература

Введение

Концепция развития нефтегазовой отрасли предусматривает прирост к 2021 году запасов углеводородов на 622,8 миллиона тонн условного топлива.

Узбекистан к 2021 году сохранит объем добычи газа на уровне 66 миллиардов кубометров, жидких углеводородов -- на уровне 3,5 миллиона тонн ежегодно.

Этот объем добычи будет поддерживаться за счет прироста запасов сырья, а также снижения потребления газа на внутреннем рынке, сообщил председатель правления Национальной холдинговой компании «Узбекнефтегаз» Шокир Файзуллаев на конференции, открывшейся в среду в рамках международной выставки Oil & Gas Uzbekistan 2014 в Ташкенте.

Как отметил Шокир Файзуллаев, обеспечение данных показателей позволит также увеличить экспорт газа из Узбекистана на 20% по сравнению с 2013 годом, когда на внешние рынки было поставлено порядка 13 миллиардов кубометров газа.

По данным холдинга, концепция развития нефтегазовой отрасли Узбекистана на 2013-2020 годы предусматривает прирост запасов углеводородов на 622,8 миллиона тонн условного топлива. В частности, запасы природного газа планируется прирастить в объеме 488,5 миллиарда кубометров, жидких углеводородов -- на 41,7 миллиона тонн.

Согласно расчетам специалистов холдинга, для создания надежной сырьевой базы необходимо ежегодно приращивать запасы сырья в объемах, превышающих их добычу, в 1,1-1,5 раза.

Значительная ставка в приросте запасов и добычи углеводородов, по данным «Узбекнефгаза», сделана на проекты с участием иностранных инвесторов. На сегодняшний день зарубежным компаниям передано около 60% общей площади перспективных углеводородных участков недр с прогнозными ресурсами углеводородов в объеме 4,1 миллиарда тонн условного топлива (более50% от общего объема прогнозных ресурсов).

На лицензионных площадях осуществляют геологоразведку и разработку месторождений российские «Газпром» и «ЛУКОЙЛ», корейские Kogas и KNOC, китайская CNPC и вьетнамская Petrovietnam.

Мощности «Узбекнефтегаза» позволяют в настоящее время обеспечивать добычу природного газа в объеме порядка 70 миллиардов кубометров и жидких углеводородов в объеме 8 миллионов тонн в год. Извлекаемые разведанные запасы углеводородов в Узбекистане на 1 января 2014 года, по данным холдинга, составляли более 2,5 миллиарда тонн условного топлива, из которых порядка 65% приходится на запасы газа.

В настоящее время «ЛУКОЙЛ» работает в Узбекистане над реализацией трех проектов СРП - Кандым-Хаузак-Шады-Кунград, разработке месторождений Юго-Западного Гиссара, а также проводит геологоразведку узбекской части Аральского моря. К настоящему времени накопленная добыча газа компании в Узбекистане превысила 20 млрд. кубометров.

Компания до 2020 года планирует добывать около 17-18 млрд. кубометров газа в Узбекистане в год.

Выступление президента республики Узбекистан Ислама Каримова на заседании Правительства Республики 16 января «Об итогах социально-экономического развития Республики Узбекистан за I квартал 2015 года»

В целях обеспечения безусловной реализации важнейших направлений и приоритетов экономической программы на 2015 год, определенных Президентом Республики Узбекистан Исламом Каримовым на заседании Правительства республики 16 января текущего года и направленных на дальнейшее углубление процессов структурных преобразований и либерализации экономики, повышение конкурентоспособности отраслей и укрепление экспортного потенциала страны, поддержку развития частного предпринимательства и повышение занятости населения, в течение I квартала текущего года приняты и обеспечена реализация комплексных мер, направленных на сохранение макроэкономической стабильности и устойчивых высоких темпов роста экономики.

В частности, разработаны и утверждены Президентом страны среднесрочные программы структурных преобразований, модернизации и диверсификации промышленного производства, развития и модернизации инженерно-коммуникационной и дорожно-транспортной инфраструктуры, а также локализации производства готовой продукции, комплектующих изделий и материалов, реализация которых обеспечит прочный фундамент для дальнейшего роста экономики, углубления структурных преобразований и диверсификации производства, поднятия на новый высокий уровень развития важнейших отраслей промышленности, формирования более современной и развитой инфраструктуры.

В результате осуществления комплексных мер по реализации важнейших задач и приоритетов экономической программы на 2015 год в I квартале текущего года обеспечено дальнейшее углубление структурных преобразований экономики, сохранение положительной динамики основных макроэкономических параметров и создание прочной основы для дальнейшего экономического роста в последующих кварталах.

В целом, с начала текущего года в рамках Инвестиционной программы на 2015 год начата реализация 53 новых инвестиционных проектов общей стоимостью свыше 4,8 миллиарда долларов, введены в эксплуатацию 434 новых производственных объекта в рамках реализации территориальных программ социально-экономического развития регионов. Из общего числа реализованных проектов: в промышленности строительных материалов (179 проектов), пищевой промышленности (141), текстильной промышленности и швейной (99), мебельной и бумажной (56), химической и нефтехимической отрасли (37) и других отраслях.

Реализация инвестиционных проектов по модернизации, техническому и технологическому обновлению, а также ввод в строй новых производственных объектов и мощностей способствовали дальнейшему углублению процессов структурных преобразований и диверсификации ведущих отраслей промышленности. В частности, в течение I квартала текущего года обеспечено наиболее динамичное развитие отраслей промышленности, ориентированных на выпуск продукции с высокой добавленной стоимостью, таких как легкая (без хлопкоочистительной) - 120 процентов к аналогичному периоду 2014 года (в том числе хлопчатобумажная - 120,1 процента, трикотажная - 114,5 процента, швейная - 120,6 процента, кожевенная - 118,4 процента), черная металлургия - 111,9 процента, деревообрабатывающая - 108,9 процента, пищевая - 114,8 процента, химическая и нефтехимическая - 109,3 процента.

Значительно увеличено производство тракторов, труб для нефтегазопроводов, карбамида, хлористого калия, холодильников и морозильников, хлопчатобумажных тканей, трикотажного полотна, трикотажных, швейных и чулочно-носочных изделий, кожгалантерейных изделий, муки, молочной продукции, медикаментов и другой готовой продукции.

Итоги социально-экономического развития Республики Узбекистан за I квартал 2015 года свидетельствуют, что благодаря последовательной и целенаправленной реализации эволюционной и поэтапной стратегии реформирования и развития, основанной на разработанных Президентом Республики Узбекистан Исламом Каримовым пяти известных принципах и признанной в мире как «узбекская модель» реформ, несмотря на продолжающиеся в мировых масштабах кризисные явления и растущее противостояние, в Узбекистане обеспечивается сохранение макроэкономической стабильности и устойчивых высоких темпов роста экономики.

Важнейшей задачей по обеспечению дальнейшего устойчивого развития экономики Республики Узбекистан в 2015 году является мобилизация всех имеющихся резервов и возможностей для обеспечения безусловной реализации утвержденных среднесрочных программ структурных преобразований, ускорения процессов диверсификации отраслей, повышения их конкурентоспособности и экспортного потенциала, а также устранение всех преград и ограничений на пути развития частного предпринимательства и, в конечном счете, обеспечение неуклонного роста занятости, качества и уровня жизни населения страны.

Актуальность работы. Утилизация отходов производства в целях предотвращения их вредного воздействия на здоровье человека и окружающую среду, а также вовлечение отходов в хозяйственный оборот в качестве дополнительных источников сырья являются важнейшей экологической задачей во всем мире. В настоящее время перестройка структуры производства нефтеперерабатывающих заводов (НПЗ) и газоперерабатывающих заводов (ГПЗ) направлена в сторону развития безотходных природоохранных технологий, приоритет в финансировании получают проекты, в соответствии с которыми минимизируется количество газотходов, или они повторно и с выгодой используются.

В настоящее время факельные установки позволяют перевести вредные вещества в менее опасные, например, сероводород при сгорании превращается в сернистый газ, оксид углерода - в диоксид углерода и т.д. Не смотря на это, поступающие в окружающую среду продукты сгорания попутного нефтяного газа представляют собой потенциальную угрозу нормальному функционированию человеческого организма на физиологическом уровне. Соотношение составляющих выбросы веществ зависит от состава добываемой нефти и газа.

В результате факельного сжигания газа в атмосферу выбрасывается все больше парниковых газов - почти 100 тыс. т. в год.

Цель работы: Технико-технологические решения, направленные на исследование метода утилизация факельных газов, сбрасываемых с технологических установок.

Основные задачи исследований:

определить способ утилизации факельных газов, сбрасываемых с технологических установок;

изучение физико-химических свойств и состава факельных газов, сбрасываемых с технологических установок;

исследование адсорбции примесных соединений природного газа синтетическими цеолитами типа А и X.

Методы решения поставленных задач.

Классические и современные методы исследования, позволяющие определить физические, физико-химические характеристики, молекулярную массу, функциональный состав, изучить процессы, протекающие в исходном газовом смеси, установить химические составы, структуру, химическую природу и их стабильность.

Основные защищаемые положения.

Изучен состав факельных газов, сбрасываемых с технологических установок и научно обоснованы их вредные воздействия на окружающею среду и организм человека. Исследованы адсорбционные свойства синтетических цеолитов NaX, CaNaA-l, CaNaA-2 и рекомендованы для очистки факельных газов от нежелательных компонентов как, СО2, Н2S, СОS и метилмеркаптан.

Практическая значимость.

В качестве объекта исследования были газовая смесь, выходящая с технологических установок и поступающая на факельную установку в Бухарском нефтеперерабатывающем заводе, адсорбенты: NaX, CaNaA-1 и CaNaA-2, адсорбаты: диоксид углерод - технический газ из баллона, очищенный пропусканием через Р2О5 и Na2CO3, сероводород - чистый газ для синтеза, серооксидуглерода - чистый газ для синтеза, метилмеркаптан - чистый газ для синтеза, н-пентан - получен препаративной хроматографией.

Публикации.

По теме диссертации опубликованы две научных работ из них два тезиса.

Объём работы.

Магистерская диссертация состоит из введения, трёх глав, заключения и списка литературы. Объём магистерской диссертации состоит из 94 страниц, в том числе рисунков и таблиц, списка использованной литературы из 32 наименований и 8 интернет сайтов.

Глава 1. Литературный обзор

1.1 Проблема загрязнения атмосферы

Современная цивилизация осуществляет невиданное давление на природу. Загрязнение природной среды промышленными выбросами оказывает вредное действие на людей, животных, растения, почву, здания и сооружения, снижает прозрачность атмосферы, повышает влажность воздуха, увеличивает число дней с туманами, уменьшает видимость, вызывает коррозию металлических изделий [1].

Под загрязнением окружающей среды следует понимать изменение свойств среды (химических, механических, физических, биологических и связанных с ними информационных), происходящие в результате естественных или искусственных процессов и приводящие к ухудшению функций среды по отношению к любому биологическому или технологическому объекту. Используя различные элементы окружающей среды в своей деятельности, человек изменяет её качество. Часто эти изменения выражаются в неблагоприятной форме загрязнения.

Естественные процессы загрязнения имеют в природе антиподы, способные нейтрализовать действие природного загрязнителя, а многие вещества, созданные человеком, являются инородными по отношению к природе. Естественные источники загрязнения обычно удалены от среды обитания человека, а антропогенные расположены в районах концентрации населения.

Основные пути решения

Увеличение масштабов загрязнения атмосферы требуют быстрых и эффективных способов защиты её от загрязнения, а также способов предупреждения вредного воздействия загрязнителей воздуха. Атмосфера может содержать определённое количество загрязнителя без проявления вредного воздействия, т.к. происходит естественный процесс её очистки.

Первым шагом в установлении вредного воздействия, связанного с загрязнением воздуха, является разработка критерия качества воздуха, а также стандартов качества.

Стандарты качества определяют уровни качества воздуха и предельно допустимые выбросы (ПДВ), которые необходимо выдерживать для обеспечения безопасности жизни.

Контролирующие органы обязаны осуществлять количественный и качественный контроль.

Другим подходом к улучшению состояния атмосферы является требование применения передовых технологических процессов, замена вредных материалов безвредными, применение мокрых способов обработки сырья вместо сухих. Как правило, на промышленных предприятиях используются процессы или устройства для газоочистки и пылеулавливания, чтобы уменьшить или предотвратить величину выброса. Процессы газоочистки могут также разрушить или менять его химические или физические свойства так, что он становится менее опасным. В некоторых случаях используют метод рассеивания в атмосфере. Дымовые трубы должны быть достаточно высокими (300-350 метров), для обеспечения хорошего разбавления примесей путём обтекания воздуха вокруг зданий в зоне аэродинамических теней. Кроме того, необходимо учитывать температуру выбросов и месторасположение труб. Предприятия строят с подветренной стороны по отношению к жилым районам. На ряде предприятий факельные газы используют для отопления зданий, а их избыток направляется на теплоцентраль.

Масштабы

По масштабам загрязнение окружающей среды можно разделить на локальное, региональное и глобальное. Эти три вида загрязнения тесно связаны между собой. Как правило, первичным является локальное загрязнение, которое, если скорость процесса загрязнения больше скорости естественного очищения, переходит в региональное и затем при накоплении количественных изменений - в глобальное изменение качества окружающей среды. Для глобального загрязнения наиболее важным является временный фактор. Существование таких процессов свидетельствует об ограниченности ресурсов атмосферы и о пределах её естественного самовосстановления. Например, использование воздуха в производственных процессах издавна предполагало естественные способности атмосферы к восстановлению первоначальных качеств. В частности, дымовые выбросы в атмосферу, содержащие микрочастицы и токсичные вещества, представляют собой не что иное, как метод разбавления. И даже в наши дни при строительстве высотных и сверхвысотных труб продолжают пользоваться этим древним методом. Однако резкое возрастание объемов выбросов привело к тому, что масштабы загрязнение вплотную приблизились и даже часто перешагивают пределы самовосстановления атмосферы.

При современных уровнях загрязнения вредные вещества от источника загрязнения распространяются на десятки и сотни километров. И даже само понятие источник загрязнения несколько меняет смысл. Если в каком-либо промышленном районе можно выделить точечные источники загрязнения, то в масштабе региона целый промышленный район, например крупный город, может рассматриваться как единый источник с системой точечных, линейных (автомагистрали) и групповых источников. Более того, даже весь регион и даже целая страна может выступать в роли единого источника загрязнения.

Современное индустриальное производство оказывает значительное воздействие на природу в глобальных масштабах. Хотя большая часть загрязняющих веществ и тепловой энергии вырабатывается на ограниченной площади, главным образом в промышленных районах Северной Америки, Европы и Азии, вследствие особенностей циркуляции атмосферы и перемещений в водной оболочке Земли значительная часть некоторых, относительно долго живущих загрязняющих веществ рассеивается на огромных пространствах и даже по всей Земле, приводя к региональному и глобальному загрязнению.

К настоящему времени определились некоторые важные проблемы в области антропогенного глобального загрязнения окружающей природной среды, к числу которых относятся:

1. Возможные изменения климата в связи с поступлением в атмосферу техногенного тепла, углекислого газа и аэрозольных примесей.

2. Возможное нарушение озонового слоя Земли, связанное с поступлением в атмосферу фреонов, окислов азота и некоторых других примесей.

3. Экологические последствия глобального загрязнения природной среды и биосферы радиоактивными веществами, тяжелыми металлами и пестицидами.

4. Общая проблема морской среды атмосферными осадками, речным стоком, наземным и морским транспортом.

5. Дальний атмосферный перенос загрязняющих веществ и проблема кислотных осадков.

Таким образом, масштабы антропогенного воздействия на окружающую среду и уровень вытекающей из этого опасности заставляют искать новые подходы к развитию технологических процессов, которые, являясь не менее эффективными в экономическом смысле, во много раз превосходили бы существующие по степени экологической чистоты. Фактически противоречие между экономикой и экологией означает противоречие между необходимостью гармоничного развития системы природа-человек-производство и недостаточной объективной возможностью, а порой и просто субъективным нежеланием такой гармонии на современном этапе развития производственных сил и производственных отношений.

1.2 Загрязнение окружающей среды, связанное с эксплуатацией факельного хозяйства

Нефтегазовая промышленность Узбекистана - основной сектор топливно-энергетического комплекса нашей страны. От её успешного функционирования зависят эффективное удовлетворение внутреннего и внешнего спроса на нефть, газ и продукты её переработки, обеспечение валютных и налоговых поступлений в федеральный бюджет. Не менее важна эта отрасль и для энергетической безопасности страны и её политических интересов в мире.

Факельное сжигание газа во многих странах стало неотъемлемым атрибутом нефтедобычи.

За Россией в списке стран, сжигающих наибольшее количество попутных газов, следуют Нигерия, Иран, Ирак, Казахстан, Китай, Оман, Узбекистан, Малайзия, Египет, Саудовская Аравия [2].

Загрязнение атмосферы

Основная задача факельных установок - природоохранная. Они предназначены для обезвреживания путем сжигания горючих (взрывоопасных) газов (паров), поступление которых в атмосферу может привести, прежде всего, к взрыву и пожару, а также к вредному воздействию на человека.

Факельные установки позволяют перевести вредные вещества в менее опасные, например, сероводород при сгорании превращается в сернистый газ, оксид углерода - в диоксид углерода и т.д. [3].

Не смотря на это, поступающие в окружающую среду продукты сгорания попутного нефтяного газа представляют собой потенциальную угрозу нормальному функционированию человеческого организма на физиологическом уровне. Соотношение составляющих выбросы веществ зависит от состава добываемой нефти и газа. Основу технологической классификации нефтей составляет содержание серы: класс I - малосернистые нефти, включающие до 0,5% S; класс II - сернистые нефти с 0,5-2% S; класс III - высокосернистые нефти, содержащие свыше 2% S. Около 1/3 всей добываемой в мире нефти содержит свыше 1% S. Следовательно, примерно каждый третий факел в мире является источником загрязнения окружающей среды диоксидом серы, сероводородом, меркаптанами.

В состав выбросов факельного хозяйства входят:

- метан СН4;

- этан С2Н6;

- пропан С3Н8;

- бутан С4Н10;

- пентан С5Н12;

- гексан С6Н14;

- гептан С7Н16;

- оксиды азота NOx;

- диоксид углерода СО2;

- диоксид серы SО2, сероводород Н2S (меркаптаны).

При добыче нефти и газа, богатой ароматическими углеводородами, в выбросах факельного хозяйства содержится большое количество бензола, толуола, ксилола, фенола. Природные углеводородные газы по токсикологической характеристике относятся к веществам 4-го класса опасности, не оказывают токсикологического действия на организм человека, но при концентрациях, снижающих содержание кислорода в атмосфере до 15-16%, вызывают удушье [4].

В результате факельного сжигания газа в атмосферу выбрасывается все больше парниковых газов - почти 100 тыс. т. в год [2].

Углекислый газ (СО2) - важнейший источник климатических изменений, основной парниковый газ, на долю которого приходится, по оценкам, около 64% глобального потепления.

Кроме углекислого газа, усилению парникового эффекта способствует увеличение содержания метана в атмосфере. Метан интенсивно поглощает тепловое излучение Земли в инфракрасной области спектра на длине волны 7,66 мкм. Метан занимает второе место после углекислого газа по эффективности поглощения теплового излучения Земли. Вклад метана в создание парникового эффекта составляет примерно 30% величины, принятой для углекислого газа [5].

Факельные стояки являются источником 5,4% всех выбросов оксидов азота [3].

Углеводороды под действием ультрафиолетового излучения солнца вступают в реакцию с оксидами азота, в результате образуются новые токсичные продукты - фотооксиданты, являющиеся основой фотохимического смога.

Особенностью фотохимического смога является то, что образующиеся вещества значительно превышают по токсичности исходные атмосферные загрязнители. Фотохимический смог представляет собой желто-зеленую или сизую сухую дымку.

Схема образования фотохимического смога выглядит следующим образом:

Оксид азота окисляется кислородом воздуха до диоксида азота:

2NO + O2 = 2NO2

Диоксид азота на свету разлагается до монооксида азота и атомарного кислорода:

NO2 = NO + О (на свету)

Последний при взаимодействии с кислородом воздуха в присутствии инертных частиц образует озон:

О + O2 + М = O3 + М

Озон реагирует с монооксидом азота, в результате образуются диоксид азота и кислород:

O3 + NO = NO2 + O2

Но в присутствии углеводородов монооксид азота реагирует с ними. Результаты этого взаимодействия с экологической точки зрения очень опасны. Во-первых, образуются очень агрессивные и вредные органические соединения - пероксиацетилнитраты (ПАН). Во-вторых, монооксид азота таким образом связывается, остается меньше возможности для протекания его реакций с озоном. Так происходит накопление озона.

Озон, вступая в реакцию с углеводородами, тоже образует вредные соединения - альдегиды. К примеру, реакция озона с этаном:

СН3-СН3 + O3 = СН3-СН=О + НО

- в результате образуется альдегид - этаналь.

Далее этаналь на свету взаимодействует с атомарным кислородом с образованием радикалов:

СН3-СН=О +О = СН3-С=О + НО

Органические радикалы в присутствии кислорода воздуха порождают радикалы пероксидов. Пероксорадикалы могут реагировать с NO2. Из образующихся при этом соединений наиболее известен пероксоацетилнитрат, концентрация которого в смоге может достигать 50 млрд. - 1 %.

Поскольку это вещество легко вступает в реакцию взаимодействия с различным органическими веществами, например ферментами, оно чрезвычайно токсично для человека и других живых организмов [6].

Диоксид азота и его фотохимические производные оказывают воздействие не только на органы дыхания, но и на органы зрения. При малых дозах характерны аллергии и раздражения, при больших - бронхиты и трахеиты. Начиная с 0,15 мг/м3, при длительных воздействиях наблюдается увеличение частоты нарушений дыхательных функций и заболеваний бронхитом [7].

Одновременные выбросы оксидов азота и серы обусловливают выпадение кислотных дождей. Ежегодно в промышленно развитых странах в воздушный бассейн выбрасывается до 50 млн. т оксидов азота, что превышает их естественный фон в воздухе населенных пунктов [3].

Сернистые соединения обладают резким запахом, тяжелее воздуха, растворяются в воде.

Сернистый ангидрид (SO2) токсичен. Симптомы при отравлении сернистым газом - насморк, кашель, охриплость, першение в горле. При вдыхании сернистого газа более высокой концентрации - удушье, расстройство речи, затруднение глотания, рвота, возможен острый отёк лёгких. ПДК максимально-разового воздействия - 0,5 мг/мл [7].

Сероводород (сернистый водород, сульфид водорода) - бесцветный горючий газ с резким запахом, t кипения 60,35°C. Водный раствор - сероводородная кислота. Сероводород часто встречается в месторождениях нефти и газа.

Сероводород (H2S) токсичен: острое отравление человека наступает уже при концентрациях 0,2-0,3 мг/м3, концентрация выше 1 мг/м3 - смертельна.

Предельно допустимая концентрация сероводорода в воздухе рабочей зоны составляет 10 мг/м3, а в смеси с углеводородами С-С3 равна 3 мг/м3.

Сероводород H2S является агрессивным газом, провоцирующим кислотную коррозию, которую в этом случае называют сероводородной коррозией. Растворяясь в воде, он образует слабую кислоту, которая может вызвать точечную коррозию в присутствии кислорода или диоксида углерода.

В этой связи, без современных станций подготовки газа и модулей сероочистки, сероводород способен наносить сильнейший ущерб людям. Без станций очистки от сероводорода серьезно страдает и выходит из строя самое различное оборудование в нефтяной и газоперерабатывающей отраслях.

Бороться с сероводородной коррозией чрезвычайно трудно: несмотря на добавки ингибиторов кислотной коррозии, трубы из специальных марок нержавеющей стали быстро выходят из строя. И даже полученную из сероводорода серу перевозить в металлических цистернах можно в течение ограниченного срока, поскольку цистерны преждевременно разрушаются из-за растворенного в сере сероводорода. При этом происходит образование полисульфанов. Полисульфаны более коррозионно-активные элементы, чем сероводород.

Вследствие коррозионных действий сероводорода, присутствующего в газах, значительно сокращается срок службы силового генерационного оборудования и аппаратуры при добыче, транспорте, переработке и использовании газа. Сероводород, присоединяясь к непредельным соединениям, образует меркаптаны, которые являются агрессивной и токсичной частью сернистых соединений - химическими ядами.

Меркаптаны - сильные нервные яды, обладают наркотическим эффектом, вызывают паралич мышечных тканей. В организм человека могут проникнуть через дыхательные пути, кожу, слизистые оболочки.

Предельно допустимая концентрация метилмеркаптана - 0,8 мг/м3, этилмеркаптана - 1мг/м3 Ароматические углеводороды - наиболее токсичные компоненты нефти, их содержание колеблется в пределах 5-35%.

Если нефть содержит большое количество ароматических углеводородов - то и при работе факельной установки ароматические углеводороды будут входить в состав выбросов. Нефтяной бензол относится к числу токсичных продуктов 2-го класса опасности. Пары бензола при высоких концентрациях действуют наркотически, вредно влияют на нервную систему, оказывают раздражающее действие на кожу и слизистые оболочки глаз.

Предельно допустимая концентрация паров бензола в воздухе рабочей зоны составляет 15/5 мг/м3 (максимальная/среднесменная). Бензол обладает резорбтивным действием, проникает в организм через неповрежденную кожу. Аллергенными и кумулятивными свойствами не обладает [8]. Ксилол (диметилбензол) относится к третьему классу опасности, его пары при высоких концентрациях отрицательно воздействуют на нервную систему, кожные покровы и слизистые оболочки человека.

Нефтяной толуол (метилбензол) также относится к числу токсичных продуктов третьего класса опасности. Пары толуола при высоких концентрациях действуют наркотически, вредно влияют на нервную систему, оказывают раздражающее действие на кожу и слизистую оболочку глаз. Предельно допустимая концентрация паров толуола в воздухе рабочей зоны составляет 50 мг/м3 [9].

Бенз(а)пирен, образующийся в процессе горения углеводородов, является наиболее типичным химическим канцерогеном окружающей среды, он опасен для человека даже при малой концентрации, поскольку обладает свойством биоаккумуляции.

Бенз(а)пирен хорошо растворяется в маслах, жирах, сыворотке человеческой крови. Накапливаясь в организме человека до опасных концентраций, бенз(а)пирен стимулирует образование злокачественных опухолей. Кроме того, он оказывает мутагенное действие на организм.

Среднесменная предельно допустимая концентрация (ПДК) бенз(а)пирена в воздухе рабочей зоны - не более 0,00015 мг/м3.

В воздухе бенз(а)пирен преимущественно связан с твердыми частицами атмосферной пыли. Твердые частицы, содержащие бенз(а)пирен, довольно быстро выпадают из воздуха вследствие седиментации (разрушение коллоида и выпадение осадка), а также с атмосферными осадками и переходят в почву, растения, почвенные воды и водоемы. Это обуславливает довольно большую изменчивость концентрации бенз(а)пирена в атмосферном воздухе, которая зависит не только от интенсивности выброса его из источника загрязнения, но и от метеорологических условий. Будучи химически сравнительно устойчивым, бенз(а)пирен может долго мигрировать из одних объектов в другие. В результате многие объекты и процессы окружающей среды, сами, не обладающие способностью синтезировать бенз(а)пирен, становятся его вторичными источниками.

Фенол по степени воздействия на организм относится к высокоопасным веществам. Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны - 0,3 мг/м3. При превышении ПДК возможны отравление, раздражение слизистых оболочек и ожог кожи. При хроническом отравлении возникает раздражение дыхательных путей, расстройство пищеварения, тошнота, слабость, кожный зуд, конъюнктивит. Фенол кумулятивными свойствами не обладает.

К тяжелым металлам, присутствующим в выбросах факельных установок, относятся никель и ванадий. Вдыхание пыли, содержащей ванадий, даже в небольших количествах приводит к раздражению и хрипам в легких, кашлю, болям в груди, насморку и першению в горле. Иногда наблюдается удушье, зеленоватый налет на языке и побледнение кожных покровов. Правда, эти признаки исчезают уже вскоре после прекращения вдыхания загрязненного воздуха.

Вредные вещества, попадая в атмосферу, подвергаются физико-химическим превращениям, рассеиваются или вымываются из атмосферы. Степень загрязнения атмосферы зависит от того, будут ли эти вещества переноситься на большие расстояния от источника или скапливаться в районе их выброса.

Самыми значительными факторами, влияющими на распространение загрязняющих веществ, являются метеорологические условия: направление движения воздуха и скорость ветра, количество и продолжительность штилей, влажность воздуха и осадки, интенсивность солнечной радиации. Большую роль играют инверсии температуры. При инверсиях содержание примесей в атмосфере на 10-60% выше, чем при их отсутствии.

По ряду заболеваний (новообразования, болезни нервной системы и органов чувств и пр.) наблюдается тенденция к росту. Очень опасны воздействия, последствия которых выявляются не сразу. Таковыми являются влияние загрязняющих веществ на способность людей к зачатию и вынашиванию детей, развитие наследственных патологий, ослабление иммунной системы, рост числа онкологических заболеваний.

Загрязнение почвы

В почву загрязняющие вещества поступают в газовой фазе, в растворе атмосферных осадков, в составе твердых частиц. В результате почвообразовательных процессов они перераспределяются по почвенному профилю, накапливаются в верхних или нижележащих горизонтах, выщелачиваются и выносятся грунтовыми водами [11].

Почвенный покров представляет собой основной канал стока загрязняющих веществ и попадания их в наземные экосистемы. К примеру, бенз(а)пирен, полиароматический углеводород 1 класса опасности, в окружающей среде накапливается преимущественно в почве. Предельно допустимая концентрация бенз(а)пирена в почве составляет 0,02 мг/кг. Максимальное содержание бенз(а)пирена наблюдается в поверхностных слоях почв. Это связано с тем, что гумусовые горизонты, содержащие наибольшее количество органических веществ, обладают более высокой сорбционной способностью, благодаря чему и происходит накопление бенз(а)пирена в почвах. Из почвы поступает в ткани растений и продолжает своё движение дальше по трофической цепи, при этом на каждой её ступени содержание бенз(а)пирена в природных объектах возрастает на порядок.

Оксиды азота и серы являются источниками появления в атмосфере кислот, которые приводят к возникновению кислотных дождей, под влиянием которых происходит подкисление почв. При подкислении почв изменяются структурные и физико-химические показатели почв.

С увеличением подкисления почвы снижается активность микрооорганизмов-деструкторов, а также изменяется видовой состав микробиоты [11]. В выбросах факельных установок содержатся тяжелые металлы - ванадий и никель. Никель относится ко II классу опасности - токсичные вещества, ванадий к III классу опасности - слаботоксичные вещества.

Поступая на поверхность почвы, тяжелые металлы накапливаются в почвенной толще, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции [12].

Тяжелые металлы большей частью концентрируются в поверхностном горизонте почв 0-10-20 см, где они присутствуют в составе твердых частиц, гумусового вещества, в почвенном растворе [10].

Тяжелые металлы могут блокировать реакции с участием фермента, что приводит к уменьшению или прекращению его каталитического действия. Никель может полностью прекращать действие декарбоксилазы и уменьшать эффективность Энолазы, АТФ-азы, Аргинилазы, Карбоксилазы, Дегидрогеназы [13].

Тяжелые металлы существенно влияют на численность, видовой состав и жизнедеятельность почвенной микробиоты. Они вызывают микробостатический эффект, способствуют проявлению мутагенных свойств [12].

Тяжелые металлы претерпевают в почве химические превращения, в ходе которых их подвижность изменяется в очень широких пределах. Наибольшую опасность представляют подвижные формы, наиболее доступные для растений. Подвижность тяжелых металлов существенно зависит от почвенно-экологических факторов, основные среди которых - содержание органического вещества, кислотность почвы, окислительно-восстановительные условия, плотность почвы и т.д. [13].

Влияние выбросов факельных установок на растительность

Индикаторами загрязнения атмосферы являются растительные сообщества. Загрязняющие вещества поступают в растения через устьица и корни. Величина отверстия устьиц и интенсивность света влияют на процесс повреждения растений малыми газовыми примесями. Они могут вызывать «видимые» повреждения (некроз тканей), которые подразделяются на острые и хронические. В противоположность «видимым» повреждениям возникло понятие «невидимый ущерб, наносимый токсическими газами». «Невидимые повреждения» проявляются в снижении фотосинтезной активности, в преждевременном старении, снижении роста и более сильной подверженности к вторичным повреждениям. Такого рода растения могут накапливать токсины, и они опасны для животных. Токсические газы - причина серьезных физиолого-биологических нарушений в ассимиляционных органах: окислительное разрушение клеточных мембран и в связи с этим потеря водоудерживающей способности; нарушение строения хлоропластов и структур клетки; активизация дыхания и окислительных ферментов (но дыхание быстро сменяется угнетением); разрушение пигментов (преимущественно хлорофилла) [14].

Поглотительная способность насаждений зависит от состава пород, полноты, бонитета, возраста, ассимиляционной поверхности крон деревьев, длительности вегетации. Наибольшей поглотительной способностью обладают древесные растения, за ними по мере снижения идут местные сорные травы, цветочные растения и газонные травы [15]. В зонах интенсивного загрязнения факельных установок у хвойных пород деревьев отмечается усыхание ветвей нижнего порядка и суховершинность. По мере приближения к факелу сомкнутость крон древесной растительности уменьшается. Так, по исследованиям Т.Е. Старковой и М.Т. Васбиевой, на расстоянии 2000 м от факела сомкнутость крон в среднем составила 47%, а в зоне интенсивного загрязнения - около 33 %. Хвойные породы острее реагируют на близость к факелу. Так, по направлению господствующих ветров вблизи факельной установки подрост ели сибирской и пихты сибирской отсутствует. Состояние подроста лиственных пород по мере приближения к факелу ухудшается (признак - прирост по высоте) [16].

Сосна обыкновенная - умеренно чувствительное к действию SO2 растение. Сосна не типична для зон с повышенной концентрацией SO2 в воздухе, сернистый ангидрид лимитирует ее распространение.

Синдром хлоротической карликовости (СХК) вызывается двумя газами - озоном и сернистым ангидридом. Эта болезнь характеризуется светло-зеленым цветом новых иголок, которые затем становятся пятнистыми и желтыми, а позднее закрученными с обожженными кончиками. Старые иглы опадают раньше, чем появляются новые. Деревья сильно угнетены и обычно погибают.

Кроме этих растений, к воздействию атмосферной двуокиси серы чувствительны: тополь гибридный, люцерна, ячмень, гречиха, тыквы, сосна Банкса, ель европейская и другие.

Токсичность NO2 в пять раз меньше токсичности SO2 и воздействие 6 млн-1 NO2 в течение 4-8 часов вызывает повреждение нескольких видов растений, включая горох, кустовую фасоль и люцерну [17].

Характерный признак действия на растения этого фитотоксиканта - периферическое повреждение листьев, скручивание их вовнутрь, некроз и отмирание листовых пластинок [14].

Озон и пероксоацилнитраты (ПАН) - сильные окислители. Они оказывают влияние на метаболизм, рост и энергетические процессы в растениях, ингибируя многие ферментативные реакции, например, синтез гликолипидов, полисахаридов стенок клетки, целлюлозы и т.д. Озон и ПАН также влияют на процесс фотосинтеза.

Чувствительные виды растений уже после часовой обработки озоном при концентрации 0,05-0,1 мг/м3 проявляются признаки угнетения (белая или коричневая крапчатость). Озон также изменяет структуру клеточных мембран, вследствие чего можно наблюдать серебристую пятнистость листьев. При воздействии озона также окисляются пигменты и листья обесцвечиваются. На глянцевом слое кожицы листьев и игл проявляются трещины, и лист становится хрупким. Кроме того, в трещинах могут прорастать грибные споры, проникающие затем вглубь листа и разрушающие его. Этот инфекционный процесс является одной из причин гибели лесов.

ПАН становится физиологически активным только при освещении. Фотолитически он распадается на и пероксоацетил-радикал, который окисляя, разрушает пигменты растений.

Фотохимические окислители оказывают наибольшее воздействие на салатные культуры, бобы, свеклу, злаки, виноград и декоративные насаждения. Сначала на листьях образуется водное набухание. Через некоторое время нижние поверхности листьев приобретают серебристый или бронзовый оттенок, а верхние становятся пятнистыми с белым налетом. Затем наступает быстрое увядание и гибель листьев.

Важным биоиндикатором загрязнения являются эпифитные лишайники. В зоне интенсивного загрязнения разнообразие эпифитных лишайников резко сужается. В исследованиях Т.Е. Старковой и М.Т. Васбиевой в непосредственной близости от факела произрастал только один вид лишайников - пармелия бородавчатая. Наблюдалось отмирание слоевищ и наличие некротических пятен пармелии бородавчатой. В зоне с высокой повторяемостью ветров эпифитные лишайники сохраняются только со стороны ствола, защищенной от ветра по отношению к факелу. Ствол дерева служит механическим барьером для экотоксиканотов [16].

При повышении концентрации SО2 в воздухе листоватые и кустистые лишайники исчезают первыми [17].

По мере приближения к факелу наблюдается уменьшение высоты клевера лугового, количество стеблей на одно растение уменьшается с девяти до семи.

Сельскохозяйственные посевы, находящиеся в близи факельных установок, также испытывают негативное влияние загрязнения.

На расстоянии 2000 м от промышленного объекта при повторяемости ветров 15 % ухудшается структура урожайности сельскохозяйственных культур: растения яровой пшеницы имеют более короткий колос, низкую озерненность и, соответственно, меньшую продуктивность колоса [16].

В нашей климатической зоне, согласно исследованиям М.С. Мартюшевой, в непосредственной близости к факельным установкам произрастают Ежа Сборная, Мятлик луговой, Пырей ползучий, Горошек мышиный, Клевер розовый, Чина луговая, Одуванчик лекарственный, Осот полевой, Нивяник обыкновенный. Именно эти растения проявляют наибольшую резистентность к факельным выбросам [18].

Повышение освещенности и температуры ведет активизации физиологических процессов растений, увеличению поглощения газов и повреждения листьев.

Исследования по изучению механизмов поглощения газа позволили установить, что в растениях они не только накапливаются в листьях и хвое, но и подвергаются транслокации по органам, а также удаляются в почву и корни [19].

Из почвы растения поглощают бенз(а)пирен, тяжелые металлы. Повышенные содержания никеля в почвах приводят к эндемическим заболеваниям - у растений появляются уродливые формы.

Высокое загрязнение почвы бенз(а)пиреном обнаруживается даже не расстоянии 1-2 км от источника выбросов. В связи с этим следует помнить об опасности накопления этого вещества в сельскохозяйственной продукции. Наибольшее количество бенз(а)пирена накапливает капуста белокачанная и картофель, наименьшее - зерно, томаты, молоко.

В органах растений бенз(а)пирен распределяется неравномерно. В семенах зерновых культур содержится приблизительно в 100 раз меньше этого вещества, чем в листьях, стеблях, корнях. Максимальное количество бенз(а)пирена накапливается в кожуре клубней картофеля - 0,34-3,72 мкг/кг, а в мякоти - 0,09-0,61 мкг/кг [13].

1.3 Методы очистки газовых выбросов

До определенного этапа развития человеческого общества, в частности индустрии, в природе существовало экологическое равновесие, т.е. деятельность человека не нарушала основных природных процессов или очень незначительно влияла на них. Экологическое равновесие в природе с сохранением естественных экологических систем существовало миллионы лет и после появления человека на земле. Так продолжалось до конца XIX в. Двадцатый век вошел в историю как век небывалого технического прогресса, бурного развития науки, промышленности, энергетики, сельского хозяйства. Одновременно как сопровождающий фактор росло и продолжает расти вредное воздействие индустриальной деятельности человека на окружающую среду. В результате происходит в значительной мере непредсказуемое изменение экосистем и всего облика планеты земля.

В настоящее время с ростом и бурным развитием промышленности большое внимание уделяется ее экологической обоснованности, а именно проблеме очистке и утилизации отходов. Впервые как проблему газовые выбросы можно рассматривать на примере лондонского «смога» (от англ. smoke - дым), под которым первоначально понимали смесь сильного тумана и дыма. Такого типа смог наблюдался в Лондоне уже более 100 лет назад. В настоящее время это уже более широкий термин - над всеми большими и индустриально развитыми мегаполисами помимо дымотуманного смога выделяют и фотохимический смог. Если причиной смога первого типа является в основном сжигание угля и мазута, то причиной второго - выбросы автотранспорта. Конечно же, все это усугубляется некоторым кумулятивным действием большого количества примесей Zb, при дымотуманном смоге сернистый газ дает аэрозоль серной кислоты (из ряда кислотных дождей) который, естественно, намного реактивней по своему действию.

Неудивительно, что в настоящее время пристальное внимание уделяется проблеме удаления первопричин возникновения таких нежелательных явлений, как выбросы в атмосферу.

В газообразных промышленных выбросах вредные примеси можно разделить на две группы:

а) взвешенные частицы (аэрозоли) твердых веществ -- пыль, дым; жидкостей - туман

б) газообразные и парообразные вещества.

К аэрозолям относятся взвешенные твердые частицы неорганического и органического происхождения, а также взвешенные частицы жидкости (тумана). Пыль - это дисперсная малоустойчивая система, содержащая больше крупных частиц, чем дымы и туманы. Счетная концентрация (число частиц в 1 см3) мала по сравнению с дымами и туманами. Неорганическая пыль в промышленных газовых выбросах образуется при горных разработках, переработке руд, металлов, минеральных солей и удобрений, строительных материалов, карбидов и других неорганических веществ. Промышленная пыль органического происхождения - это, например, угольная, древесная, торфяная, сланцевая, сажа и др. К дымам относятся аэродисперсные системы с малой скоростью осаждения под действием силы тяжести. Дымы образуются при сжигании топлива и его деструктивной переработке, а также в результате химических реакций, например при взаимодействии аммиака и хлороводорода, при окислении паров металлов в электрической дуге и т.д. Размеры частиц в дымах много меньше, чем в пыли и туманах, и составляют от 5 мкм до субмикронных размеров, т.е. менее 0,1 мкм. Туманы состоят из капелек жидкости, образующихся при конденсации паров или распылении жидкости. В промышленных выхлопах туманы образуются главным образом из кислоты: серной, фосфорной и др. Вторая группа - газообразные и парообразные вещества, содержащиеся в промышленных газовых выхлопах, гораздо более многочисленна. К ней относятся кислоты, галогены и галогенопроизводные, газообразные оксиды, альдегиды, кетоны, спирты, углеводороды, амины, нитросоединения, пары металлов, пиридины, меркаптаны и многие другие компоненты газообразных промышленных отходов.

В настоящее время, когда безотходная технология находится в периоде становления и полностью безотходных предприятий еще нет, основной задачей газоочистки служит доведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами.

Очистка газов от аэрозолей. Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.

Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся:

- гравитационное осаждение;

- инерционное и центробежное пылеулавливание;

- фильтрация.

В большинстве промышленных газоочистительных установок комбинируется несколько приемов очистки от аэрозолей, причем конструкции очистных аппаратов весьма многочисленны.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40-100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Производительность осадительных камер П = S*w0, где S - площадь горизонтального сечения камеры, или общая площадь полок, м2; w0 - скорость осаждения частиц, м/с. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10-15 м/с. Гидравлическое сопротивление аппарата 100-400 Па (10-40 мм вод. ст.). Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Газовый поток подается в цилиндрическую часть циклона тангенциально, описывает спираль по направлению к дну конической части и затем устремляется вверх через турбулизованное ядро потока у оси циклона на выход. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м3/ч), степень очистки составляет около 90% при диаметре частиц d >30 мкм. Для частиц с d = 530 мкм степень очистки снижается до 80%, а при d = 25 мкм она составляет менее 40%.

...

Подобные документы

  • Характеристика и особенности загрязнений окружающей среды, почвы, атмосферы связанных со строительством и эксплуатацией факельного хозяйства. Негативное влияние выбросов факельных установок на растительность. Утилизация нефтяных попутных газов.

    курсовая работа [54,5 K], добавлен 18.04.2011

  • Анализ Карачаганакского нефтегазоконденсатного месторождения и его влияния на окружающую среду. Технология очистки природного газа и переработки кислых газов с получением серы. Расчет абсорбционной колонны и объемов выбросов вредных веществ в атмосферу.

    дипломная работа [4,2 M], добавлен 07.09.2010

  • Исследование воздействия попутного нефтяного газа на окружающую среду. Определение наиболее приемлемых с экономической точки зрения способов утилизации попутного нефтяного газа. Описание и построение модели вертикально-интегрированной нефтяной компании.

    дипломная работа [1,2 M], добавлен 02.09.2016

  • Интенсивное развитие процессов переработки углеводородного сырья. Основные химические продукты переработки нефти и природного газа. Причины утечек горючей жидкости или углеводородного газа. Методы повышения уровня экологической безопасности производства.

    презентация [460,0 K], добавлен 15.04.2014

  • Основные объекты загрязнения окружающей среды. Физическое загрязнение, связанное с изменением физических, температурно-энергетических, волновых и радиационных параметров внешней среды. Процесс прогрессирующего накопления металлов в окружающей среде.

    презентация [609,6 K], добавлен 28.03.2015

  • Общая характеристика теплоэнергетики и её выбросов. Воздействие предприятий на атмосферу при использовании твердого, жидкого топлива. Экологические технологии сжигания топлива. Влияние на атмосферу использования природного газа. Охрана окружающей среды.

    контрольная работа [28,2 K], добавлен 06.11.2008

  • Проблема утилизации отходов целлюлозно-бумажной промышленности и переработки макулатуры. Особенности загрязнения атмосферы выбросами предприятия "Гомельобои". Основные этапы производства бумаги. Мероприятия по защите окружающей среды и их оценка.

    дипломная работа [245,2 K], добавлен 18.06.2014

  • Исследование существующих технологий переработки полиэтиленовой продукции. Состояние окружающей среды в районе размещения объекта. Состояние атмосферного воздуха. Перечень загрязняющих веществ, выбрасываемых в атмосферу и гидросферу, их параметры.

    курсовая работа [221,9 K], добавлен 09.01.2017

  • Отрицательное воздействие предприятий рыбной промышленности на объекты окружающей среды. Требования, предъявляемые к территории рыбоперерабатывающих предприятий. Проблемы утилизации отходов промышленности Камчатского края и мероприятия по их устранению.

    курсовая работа [31,9 K], добавлен 17.02.2015

  • Основные понятия о мониторинге окружающей среды, методы контроля загрязнений окружающей среды. Анализ методов контроля загрязнений. Рациональное и комплексное использование полезных ископаемых и энергетических ресурсов. Понятие экологического риска.

    курсовая работа [47,4 K], добавлен 15.03.2016

  • Влияние сжигания попутного нефтяного газа в факельной установке на естественные и искусственные фитоценозы. Зависимость влияния выбросов на луговые фитоценозы по мере приближения к факелу согласно розе ветров. Фитотоксичность нефтезагрязненной почвы.

    дипломная работа [676,4 K], добавлен 13.04.2015

  • Загрязнение окружающей среды человеком. Основные типы атомных электростанций (АЭС) и их радиоактивные выбросы. Влияние АЭС на окружающую среду и особенности санитарно-гигиенических требований к их работе. Контроль выбросов АЭС и опыт эксплуатации.

    контрольная работа [26,4 K], добавлен 03.05.2009

  • Влияние сжигания попутного нефтяного газа в факельной установке на естественные и искусственные фитоценозы. Негативное воздействие выбросов на луговые фитоценозы по мере приближения к факелу согласно розе ветров. Чувствительность двудольных растений.

    дипломная работа [388,6 K], добавлен 11.04.2015

  • Загрязнение окружающей среды вследствие несоблюдения экологических требований в сфере энергетики и сельского хозяйства. Использование ядохимикатов, проблемы окружающей среды, связанные с животноводством. Предотвращение истощения земель и водных ресурсов.

    презентация [2,9 M], добавлен 11.12.2013

  • Влияние атмосферных загрязнений на окружающую среду и здоровье населения. Особенности производства металлургической, химической и нефтехимической промышленности Российской Федерации как самых загрязняющих почву, водоемы и воздушный бассейн отраслей.

    реферат [18,2 K], добавлен 18.07.2011

  • Расчет фактора биоаккумуляции для планктона, хищной рыбы и поганки. Методы определения годовых выбросов углекислого газа автомобилем Toyota Prius. Объемы загрязнения воздушного бассейна в заданном городе. Коэффициент повышения для каждого загрязнителя.

    контрольная работа [58,8 K], добавлен 15.11.2010

  • Антропогенное загрязнение атмосферы, водных ресурсов и литосферы, динамика выбросов. Проблемы, стоящие перед г. Севастополем в области охраны окружающей природной среды. 68-я позиция Украины в рейтинге по темпам экономического развития и качеству жизни.

    реферат [28,7 K], добавлен 10.05.2009

  • Определение расхода природного газа в котельной. Расчет выбросов окиси углерода и диоксида азота. Исследование концентрации вредных веществ в отходящих газах. Алгоритм расчета рассеивания загрязняющих веществ в атмосферном воздухе для холодных газов.

    контрольная работа [2,0 M], добавлен 14.03.2014

  • Отрицательное влияние тепловых двигателей, выбросы вредных веществ в атмосферу, производство автомобилей. Авиация и ракетоносители, применение газотурбинных двигательных установок. Загрязнение окружающей среды судами. Способы очистки газовых выбросов.

    реферат [16,9 K], добавлен 30.11.2010

  • Характеристика природных условий территории. Оценка воздействия предприятия на окружающую среду. Расчет платы за загрязнение окружающей среды цеха водоканализации ООО "Заводские Сети", расположенного в Автозаводском районе города Нижнего Новгорода.

    курсовая работа [96,5 K], добавлен 11.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.