Основы статистики

Ознакомление с основными категориями статистики. Изучение задач сводки и ее содержания. Исследование и анализ показателей вариации в анализе взаимосвязей. Характеристика статистического изучения особенностей динамики социально-экономических явлений.

Рубрика Экономика и экономическая теория
Вид курс лекций
Язык русский
Дата добавления 20.09.2014
Размер файла 5,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Первый из этих показателей характеризует относительную высоту планового уровня, т.е. во сколько раз намечаемый объемный показатель превысит достигнутый уровень или сколько процентов от этого уровня составит. Второй показатель отражает фактический объем производства или реализации в процентах или коэффициентах по сравнению с плановым уровнем.

Предположим, оборот торговой фирмы в 2002 г. составил 3,0 млн. руб. Исходя из проведенного анализа складывающихся на рынке тенденций, руководство фирмы считает реальным в следующем году довести оборот до 3,6 млн. руб. В этом случае относительный показатель плана, представляющий собой отношение планируемой величины к фактически достигнутой, составит . Предположим теперь, что фактический оборот фирмы за 2003 г. составил 3,8 млн. руб. Тогда относительный показатель реализации плана, определяемый как отношение фактически достигнутой величины к ранее запланированной, составит

Между относительными показателями плана, реализации плана и динамики существует следующая взаимосвязь: ОПП*ОПРП = ОПД

В нашем примере:

Основываясь на этой взаимосвязи, по любым двум известным величинам при необходимости всегда можно определить третью неизвестную величину.

Относительный показатель структуры представляет собой соотношение структурных частей изучаемого объекта и их целого:

Выражается относительный показатель структуры в долях единицы или в процентах. Рассчитанные величины, соответственно называемые долями или удельными весами, показывают, какой долей обладает или какой удельный вес имеет та или иная часть в общем итоге.

Рассмотрим структуру валового внутреннего продукта РФ в 1 квартале 2003 г. (табл. 4.2.):

Таблица 4.2. Структура валового внутреннего продукта РФ в 1 квартале 2003 г.

Рассчитанные в последней графе данной таблицы проценты представляют собой относительные показатели структуры (в данном случае - удельные веса). Сумма всех удельных весов всегда должна быть строго равна 100% или 1.

Относительный показатель координации представляет собой отношение одной части совокупности к другой части этой же совокупности:

При этом в качестве базы сравнения выбирается та часть, которая имеет наибольший удельный вес или является приоритетной с экономической, социальной или какой-либо другой точки зрения. В результате получают, во сколько раз данная часть больше базисной или сколько процентов от нее составляет, или сколько единиц данной структурной части приходится на 1 единицу (иногда - на 100, 1000 и т.д. единиц) базисной структурной части. Так, на основе данных приведенной выше таблицы 3.2 мы можем вычислить, что на каждый рубль произведенных товаров приходится 1,8 руб. произведенных

услуги 0,4 руб. чистых налогов на продукты.

Относительный показатель интенсивности характеризует степень распространения изучаемого процесса или явления и представляет собой отношение исследуемого показателя к размеру присущей ему среды:

Данный показатель получают сопоставлением уровней двух взаимосвязанных в своем развитии явлений. Поэтому, наиболее часто он представляет собой именованную величину, но может быть выражен и в процентах, промилле, продецимилле.

Обычно относительный показатель интенсивности рассчитывается в тех случаях, когда абсолютная величина оказывается недостаточной для формулировки обоснованных выводов о масштабах явления, его размерах, насыщенности, плотности распространения. Так, например, для определения уровня обеспеченности населения легковыми автомобилями рассчитывается число автомашин, приходящихся на 100 семей, для определения плотности населения рассчитывается число людей, приходящихся на 1 кв.км.

Так, по данным социальной статистики на конец 2003 г. общая численность безработных в РФ составляла 6,1 млн. чел., а экономически активное население - 70,9 млн. чел. Отсюда следует, что уровень безработицы составлял

Разновидностью относительных показателей интенсивности являются относительные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения и играющие важную роль в оценке развития экономики государства или региона. Так как объемные показатели производства продукции по своей природе являются интервальными, а показатель численности населения - моментным, в расчетах используют среднюю за период численность населения (предположим, среднегодовую).

Например, рассматривая лишь абсолютный размер ВВП России в 1 квартале 2003 года (2893 млрд. руб.), трудно оценить или "почувствовать" эту величину. Для того, чтобы на основе данной цифры сделать вывод об уровне развития экономики, необходимо сопоставить ее со среднеквартальной численностью населения страны (145,2 млн.чел), которая в простейшем случае рассчитывается как полусумма численности населения на начало и на конец квартала. В результате квартальный размер ВВП на душу населения составит 19,9 тыс. руб.

Относительный показатель сравнения представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты (предприятия, фирмы, районы, области, страны и т.п.):

Для выражения данного показателя могут использоваться как коэффициенты, так и проценты.

Например, согласно официальным статистическим данным, инвестиции в основной капитал в РФ в 2002 г. за счет средств федерального бюджета составили 81,6 млрд. руб., бюджетов субъектов Федерации и местных бюджетов - 184,5 млрд. руб., средств предприятий - 653,1 млрд. руб. Таким образом можно сделать вывод, что инвестиции за счет средств предприятий в 8 раз превышали инвестиции из средств федерального бюджета и в 3,5 раза превышали инвестиции из бюджетов субъектов Федерации и местных бюджетов.

4.3 Средние показатели

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени. Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности. Широкое применение средних объясняется тем, что они имеют ряд положительных свойств, делающих их незаменимым инструментом анализа явлений и процессов в экономике.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Типичность средней непосредственным образом связана с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности. Так если мы рассчитаем средний курс по акциям всех предприятий, реализуемых в данный день на данной бирже, то получим фиктивную среднюю. Это будет объясняться тем, что используемая для расчета совокупность является крайне неоднородной. В этом и подобных случаях метод средних используется в сочетании с методом группировок: если совокупность неоднородна - общие средние должны быть заменены или дополнены групповыми средними, т.е. средними, рассчитанными по качественно однородным группам.

Категорию средней можно раскрыть через понятие ее определяющего свойства. Согласно этому понятию средняя, являясь обобщающей характеристикой всей совокупности, должна ориентироваться на определенную величину, связанную со всеми единицами этой совокупности. Эту величину можно представить в виде функции:

f(x1,x2,...,xn) (4.1.)

Так как данная величина, в большинстве случаев, отражает реальную экономическую категорию, понятие определяющего свойства средней иногда заменяют понятием определяющего показателя.

Если в приведенной выше функции все величины x1,x2,…,xn заменить их средней величиной х, то значение этой функции должно остаться прежним:

f(x1,x2,..,xn)=f(xЇ,xЇ,…,xЇ) (4.2.)

Исходя из данного равенства и определяется средняя. На практике определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу:

Так, например, для расчета средней заработной платы работников предприятия необходимо общий фонд заработной платы разделить на число работников:

Числитель исходного соотношения средней представляет собой определяющий показатель. Для средней заработной платы таким определяющим показателем является фонд заработной платы. Независимо от того, какой первичной информацией мы располагаем - известен ли нам общий фонд заработной платы или заработная плата и численность работников, занятых на отдельных должностях, или какие-либо другие исходные данные - в любом случае среднюю заработную плату можно получить только через данное исходное соотношение средней.

Для каждого показателя, используемого в экономическом анализе, можно составить только одно истинное исходное соотношение для расчета средней. Если, например, требуется рассчитать средний размер вклада в банке, то исходное соотношение будет следующим:

Размещено на http://www.allbest.ru/

Если же необходимо определить среднюю процентную ставку по кредитам, выданным на один и тот же срок, то потребуется следующее исходное соотношение:

Размещено на http://www.allbest.ru/

Однако от того, в каком виде представлены исходные данные для расчета средней, зависит, каким именно образом будет реализовано ее исходное соотношение. В каждом конкретном случае для реализации исходного соотношения потребуется одна из следующих форм средней величины:

средняя арифметическая,

средняя гармоническая,

средняя геометрическая,

средняя квадратическая, кубическая и т.д.

Перечисленные средние объединяются в общей формуле средней степенной (при различной величине k):

где: х j - i-ый вариант осредняемого признака (i=l,n)

f, - вес i-ro варианта.

Помимо степенных средних в экономической практике также используются средние структурные, среди которых наиболее распространены мода и медиана. При осреднении уровней динамических рядов применяются различные виды средней хронологической.

Наиболее распространенным видом средних величин является средняя арифметическая, которая, как и все средние, в зависимости от характера имеющихся данных, может быть простой или взвешенной. Эта форма средней используется в тех случаях, когда расчет осуществляется по несгруппированным данным.

Предположим, шесть торговых предприятий фирмы имеют следующий объем товарооборота за месяц:

Торговое предприятие

1

2

3

4

5

6

Товарооборот (млн.руб.)

25

18

27

32

15

21

Для того, чтобы определить средний месячный товарооборот в расчете на одно предприятие, необходимо воспользоваться следующим исходным соотношением:

Размещено на http://www.allbest.ru/

Используя приведенные в предыдущем параграфе условные обозначения, запишем формулу данной средней:

(4.3.)

С учетом имеющихся данных получим:

Размещено на http://www.allbest.ru/

В данном случае мы использовали формулу средней арифметической простой (невзвешенной).

Средняя арифметическая взвешенная. При расчете средних величин отдельные значения осредняемого признака могут повторяться, встречаться по несколько раз. В подобных случаях расчет средней производится по сгруппированным данным или вариационным рядам, которые могут быть дискретными или интервальными.

Рассмотрим следующий условный пример:

Таблица 4.3. Сделки по акциям эмитента «X» за торговую сессию

Сделка

Количество проданных акций, шт

Курс продажи, руб.

1

2

3

700

200

950

420

440

410

Определим по данному дискретному вариационному ряду средний курс продажи 1акции, что можно сделать, только используя следующее исходное соотношение:

Чтобы получить общую сумму сделок необходимо по каждой сделке курс продажи умножить на количество проданных акций и полученные произведения сложить. В конечном итоге мы будем иметь следующий результат:

Размещено на http://www.allbest.ru/

Расчет среднего курса продажи произведен по формуле средней арифметической взвешенной:

(4.4.)

В отдельных случаях веса могут быть представлены не абсолютными величинами, а относительными (в процентах или долях единицы). Так, в приведенном выше примере количество проданных в ходе каждой сделки акций соответственно составляет 37,8% (0,378); 10,8% (0,108) и 51,4% (0,514) от их общего числа. Тогда, с учетом несложного преобразования формулы (4.4.) получим:

Размещено на http://www.allbest.ru/

Или (4.5.)

На практике наиболее часто встречаемая при расчете средних ошибка заключается в игнорировании весов в тех случаях, когда эти веса в действительности необходимы. Предположим, имеются следующие данные:

Таблица 4.4. Себестоимость продукции «Z»

Предприятие

Стоимость единицы продукции, руб.

1

2

37

39

Можно ли по имеющимся данным определить среднюю себестоимость данной продукции по двум предприятиям, вместе взятым? Можно, но только в том случае, когда объемы производства данной продукции на двух предприятиях совпадают. Тогда средняя себестоимость составит 38,0 руб. (доказательство этого правила будет приведено ниже). Однако на первом предприятии за рассматриваемый период может быть произведено, к примеру, 50 единиц продукции, а на втором - 700 единиц. Тогда для расчета средней себестоимости потребуется уже средняя арифметическая взвешенная:

Общий вывод заключается в следующем: использовать среднюю арифметическую невзвешенную можно только тогда, когда точно установлено отсутствие весов или их равенство.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. Рассмотрим следующий пример:

Таблица 4.5. Распределение сотрудников предприятия по возрасту

Возраст (лет)

Число сотрудников (чел.)

До 25

25 - 30

30 - 40

40 - 50

50 - 60

60 и более

8

32

68

49

21

3

Итого:

181

Для определения среднего возраста персонала найдем середины возрастных интервалов. При этом величины открытых интервалов (первого и последнего) условно приравниваются к величинам интервалов, примыкающих к ним (второго и предпоследнего). С учетом этого середины интервалов будут следующими:

22,5 27,5 35,0 45,0 55,0 65,0

Используя среднюю арифметическую взвешенную, определим средний возраст работников данного предприятия:

Свойства средней арифметической. Средняя арифметическая обладает некоторыми математическими свойствами, более полно раскрывающими ее сущность и в ряде случаев используемыми при ее расчете. Рассмотрим эти свойства:

1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты:

(4.6.)

Действительно, если мы обратимся к приведенному выше примеру расчета среднего курса продажи акций (табл. 5.1.), то получим следующее равенство (за счет округления среднего курса правая и левая части равенства в данном случае будут несколько отличаться):

417,03 х 1850 = 420x700 + 440x200 + 410x950

2. Сумма отклонений индивидуальных значений признака от средней арифметической равна нулю:

(4.7.)

Для нашего примера:

(420-417,03) х 700 + (440-417,03) х 200 + (410-417,03) х 950 ? 0

Математическое доказательство данного свойства сводится к следующему:

3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С:

(4.8.)

Следовательно, сумма квадратов отклонений индивидуальных значений признака от произвольной величины С больше суммы квадратов их отклонений от своей средней на величину

На использовании этого свойства базируется расчет центральных моментов, представляющих собой характеристики вариационного ряда при С = х:1

где k определяет порядок момента (центральный момент второго порядка представляет собой дисперсию).

4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же величину:

(4.9.)

Так, если все курсы продажи акций увеличить на 15 руб., то средний курс также увеличится на 15 руб.:

5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличится или уменьшится в А раз:

(4.10.)

1При С=0 получают начальные моменты (начальный момент 1-го порядка - средняя арифметическая и т.д.).

Предположим, курс продажи в каждом случае возрастет в 2 раза. Тогда и средний курс также увеличится на 100%:

6. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая от этого не изменится:

(4.11.)

Так, в нашем примере удобнее было бы рассчитывать среднюю, предварительно поделив все веса на 100:

Исходя из данного свойства, можно заключить, что если все веса равны между собой, то расчеты по средней арифметической взвешенной и средней арифметической не-взвешенной приведут к одному и тому же результату.

Кроме средней арифметической при расчете статистических показателей могут использоваться и другие виды средних. Однако в каждом конкретном случае, в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, являющееся следствием реализации его исходного соотношения.

Средняя гармоническая взвешенная используется, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель. Рассмотрим расчет средней урожайности, являющейся одним из основных показателей эффективности производства в агробизнесе:

Таблица 5.6. Валовой сбор и урожайность сельскохозяйственной культуры «Y» по районам области

Район

Валовый сбор, тыс. тонн

Урожайность, ц/га

А

Б

В

Г

Д

36

53

29

78

20

13

9

15

8

17

Средняя урожайность любой сельскохозяйственной культуры в среднем по нескольким территориям, агрофирмам, фермерским хозяйствам и т.п. может быть определена только на основе следующего исходного соотношения:

Размещено на http://www.allbest.ru/

Общий валовой сбор мы получим простым суммированием валового сбора по районам. Данные же о посевной площади отсутствуют, но их можно получить, разделив валовой сбор каждого района на урожайность. С учетом этого определим искомую среднюю, предварительно переведя для сопоставимости тонны в центнеры:

Размещено на http://www.allbest.ru/

Таким образом, общая посевная площадь данной культуры в целом по области составляла 215,2 тыс.га, а средняя урожайность - 10,0 ц с одного гектара.

В данном случае расчет произведен по формуле средней гармонической взвешенной:

(4.12.)

Данная формула используется для расчета средних показателей не только в статике, но и в динамике, когда известны индивидуальные значения признака и веса W за ряд временных интервалов.

Средняя гармоническая невзвешенная. Эта форма средней, используемая значительно реже, имеет следующий вид:

(4.13.)

Для иллюстрации области се применения воспользуемся упрощенным условным примером. Предположим, в фирме, специализирующейся на торговле по почте на основе предварительных заказов, упаковкой и отправкой товаров занимаются два работника. Первый из них на обработку одного заказа затрачивает 5 мин., второй - 15 мин. Каковы средние затраты времени на 1 заказ, если общая продолжительность рабочего времени у работников равна?

На первый взгляд, ответ на этот вопрос заключается в осреднении индивидуальных значений затрат времени на 1 заказ, т.е. (5+15):2=10, мин. Проверим обоснованность такого подхода на примере одного часа работы. За этот час первый работник обрабатывает 12 заказов (60:5), второй - 4 заказа (60:15), что в сумме составляет 16 заказов. Если же заменить индивидуальные значения их предполагаемым средним значением, то общее число обработанных обоими работниками заказов в данном случае уменьшится:

Подойдем к решению через исходное соотношение средней. Для определения средних затрат времени необходимо общие затраты времени за любой интервал (например, за час) разделить на общее число обработанных за этот интервал двумя работниками заказов:

Если теперь мы заменим индивидуальные значения их средней величиной, то общее количество обработанных за час заказов не изменится:

Подведем итог: средняя гармоническая невзвешенная может использоваться вместо взвешенной в тех случаях, когда значения Wi для единиц совокупности равны (в рассмотренном примере рабочий день у сотрудников одинаковый).

Средняя геометрическая. Еще одной формулой, по которой может осуществляться расчет среднего показателя, является средняя геометрическая:

- невзвешенная (4.14.)

- взвешенная

Наиболее широкое применение этот вид средней получил в анализе динамики для определения среднего темпа роста, что будет рассмотрено в соответствующей главе.

Средняя квадратическая. В основе вычислений ряда сводных расчетных показателей лежит средняя квадратическая:

- невзвешенная (4.15.)

- взвешенная

Наиболее широко этот вид средней используется при расчете показателей вариации.

В статистическом анализе также применяются степенные средние 3-го порядка и более высоких порядков.

4.4 Структурные средние

Наиболее часто используемыми в экономической практике структурными средними являются мода и медиана. Мода представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой. Медианой называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности.

Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:

Размещено на http://www.allbest.ru/

Рассмотрим определение моды и медианы по несгруппированным данным.

Предположим, что 9 торговых фирм города реализуют товар А по следующим оптовым ценам (тыс. руб.).

4,4 4,3 4,4 4,5 4,3 4,3 4,6 4,2 4,6

Так как чаще всего встречается цена 4,3 тыс.руб., то она и будет модальной. Для определения медианы необходимо провести ранжирование:

4,2 4,3 4,3 4,3 4,4 4,4 4,5 4,6 4,6

Центральной в этом ряду является цена 4,4 тыс.руб., следовательно, данная цена и будет медианой. Если ранжированный ряд включает четное число единиц, то медиана определяется как средняя из двух центральных значений.

Если мода отражает типичный, наиболее распространенный вариант значения признака, то медиана практически выполняет функции средней для неоднородной, не подчиняющейся нормальном закону распределения совокупности. Она также используется в тех случаях, когда средняя не позволяет объективно оцепить исследуемую совокупность вследствие сильного влияния максимальных и минимальных значений. Проиллюстрируем познавательное значение медианы следующим примером.

Допустим, нам необходимо дать характеристику среднего дохода группы людей, насчитывающей 100 человек, из которых 99 имеют доходы в интервале от 100 до 1000 долл. в месяц, а месячные доходы последнего составляют 50000 долл.:

№п/п 1 2 3 4 ... 50 51 ... 99100

Доход 100 104 104 107... 162 164 ... 200 50000

(долл.)

Если мы воспользуемся средней арифметической, то получим средний доход, равный примерно 600-700 долл., который не только в несколько раз меньше дохода 100-го человека, но и имеет мало общего с доходами остальной части группы. Медиана же, равная в данном случае 163 долл., позволит дать объективную характеристику уровня доходов 99% данной совокупности людей.

Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения).

Предположим, распределение торговых предприятий города по уровню розничных цен на товар А имеет следующий вид:

Цена, руб.

Число торговых предприятий

52

12

53

48

54

56

55

60

56

14

Всего

190

Определение моды по дискретному вариационному ряду не составляет большого труда - наибольшую частоту (60 предп.) имеет цена 55 руб., следовательно она и является модальной.

Для определения медианного значения признака по следующей формуле находят номер медианной единицы ряда:

(4.16.)

где n - объем совокупности.

В нашем случае

Полученное дробное значение, всегда имеющее место при четном числе единиц в совокупности, указывает, что точная середина находится между 95 и 96 предприятиями. Необходимо определить, в какой группе находятся предприятия с этими порядковыми номерами. Это можно сделать, рассчитав накопленные частоты. Очевидно, что магазинов с этими номерами нет в первой группе, где всего лишь 12 торговых предприятий, нет их и во второй группе (12+48=60). 95-ое и 96-ое предприятия находятся в третьей группе (12+48+56=116) и, следовательно, медианой является цена 54 руб.

В отличие от дискретных вариационных рядов определение моды и медианы по интервальным рядам требует проведения определенных расчетов на основе следующих формул:

(4.17.)

где Хо - нижняя граница модального интервала (модальным называется интервал, имеющий наибольшую частоту);

i - величина модального интервала;

fMo - частота модального интервала;

fMo-1 - частота интервала, предшествующего модальному;

fMo+1 - частота интервала, следующего за модальным.

и

(4.18.)

где Хо - нижняя граница медианного интервала (медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот);

i - величина медианного интервала:

Sme-1 - накопленная частота интервала, предшествующего медианному;

fMe - частота медианного интервала.

Проиллюстрируем применение этих формул, используя данные таблицы 4.7.

Информация, подобная представленной в этой таблице, необходима для получения четкого представления о покупательной способности населения страны или региона, для оценки эластичности спроса и, в конечном итоге, для выбора того или иного метода ценообразования и обоснования окончательной цены на товар.

Таблица 5.7. Распределение населения региона по уровню среднедушевого денежного дохода

Среднедушевой денежный доход

(в среднем за месяц), руб.

Удельный вес населения,

%

400 и менее

2,4

400 - 500

15,4

500 - 600

20,1

600 - 700

17,2

700 - 800

12,8

800 - 900

9,2

900 - 1000

6,5

1000 - 1100

4,5

1100 - 1200

3,2

1200 - 1300

2,3

Свыше 1300

6,4

Всего

100,0

Интервал с границами 500 - 600 в данном распределении будет модальным, так как он имеет наибольшую частоту. Используя формулу (5.17), определим моду:

Для определения медианного интервала необходимо определять накопленную частоту каждого последующего интервала до тех пор, пока она не превысит 1/2 суммы накопленных частот (в нашем случае - 50%):

Интервал

Накопленная частота, %

400 и менее

2,4

400 - 500

17,8

500 - 600

37,9

600 - 700

55,1

Мы определили, что медианным является интервал с границами 600 - 700. Определим медиану:

Размещено на http://www.allbest.ru/

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если - имеет место правосторонняя асимметрия, при следует сделать вывод о левосторонней асимметрии ряда.

На основе полученных в последнем примере значений структурных средних можно заключить, что наиболее распространенным, типичным является среднедушевой доход порядка 560 руб. в месяц. В то же время, более половины населения располагает доходом свыше 670 руб. при среднем уровне 735 руб. (средняя арифметическая взвешенная). Из соотношения этих показателей следует вывод о правосторонней асимметрии распределения населения по уровню среднедушевых денежных доходов, что позволяет предполагать о достаточной емкости рынка дорогих товаров повышенного качества и товаров престижной группы.

5. Анализ вариации

5.1 Основные показатели вариации

Информация о средних уровнях исследуемых показателей обычно бывает недостаточно» для полного анализа изучаемого процесса или явления. Иногда совершенно непохожие по своему внутреннему строению совокупности могут иметь равные средние величины. Поэтому для более детального изучения того или иного явления необходимо учитывать разброс или вариацию значений отдельных единиц совокупности. Измерение вариации признаков имеет как теоретическое, так и практическое значение.

Так, например, для выявления наиболее стабильно работающего коллектива или предприятия наравне с другими показателями рассчитывают и основные показатели вариации. Эти показатели дают возможность количественно определить размеры устойчивости производительности труда, уровня квалификации, цен на основные виды выпускаемой продукции и т.п. Измерение размеров вариации такого показателя, как «выполнение работ в срок» имеет важное значение для принятия решений заказчиками и инвесторами. т.к. ситуация, в которой присутствует изменчивость признака, часто содержит риск. Особое значение показатели вариации приобретают в анализе рынка ценных бумаг, где мера колеблемости отождествляется с мерой рискованности вложения денежных средств.

Основными показателями, характеризующими вариацию, являются:

размах,

дисперсия,

среднее квадратическое отклонение,

коэффициент вариации.

Для иллюстрации расчетов этих показателей воспользуемся следующими данными:

Имеются данные о продаже основных марок холодильников:

Таблица.5.1.

Простейшим показателем, уже использованным выше при группировке данных, является размах вариации. Он представляет собой разность максимального и минимального значений признака:

R = X max - X min

R= 1200-460 = 740$

Этот показатель служит незаменимой мерой разброса экстремальных значений признака. Кроме характеристики границ разброса признака, размах вариации может быть использован для выявления ошибок. При наличии очень больших (или очень малых) ошибочно записанных значений признака размах вариации сразу резко возрастает, что требует проверки и корректировки исходных данных.

Недостатком данного показателя является то, что он оценивает только границы варьирующего признака и не отражает его колеблемость внутри этих границ. Вследствие этого размах вариации может неправильно характеризовать общую колеблемость признака.

Этого недостатка лишен другой показатель -- дисперсия, рассчитываемый как средний квадрат отклонений значений признака от их средней величины. Между индивидуальными отклонениями от средней и колеблемостью признака существует прямая зависимость: чем сильнее колеблемость признака, тем больше отклонения его значений от средней величины и менее устойчив изучаемый показатель.

Как и средняя величина этот показатель может быть рассчитан в двух формах: взвешенной и невзвешенной:

невзвешенная форма (5.1.)

взвешенная форма

где: хi - отдельные значения признака

хЇ- общая средняя

fi - вес варианта признака в общей совокупности.

По приведенным выше данным определим средневзвешенную цену холодильника и рассчитаем дисперсию:

Дисперсию в отдельных случаях удобнее рассчитывать по другой формуле:

, т.е. дисперсия равна разности средней из квадратов индивидуальных значений признака и квадратом средней величины.

Эту формулу можно представить иначе:

невзвешенная форма (5.2.)

- взвешенная форма

Следует отметить, что дисперсия еще не дает представления об однородности совокупности, и этому показателю трудно дать экономическую интерпретацию, т.к. он рассчитан в квадратных единицах. Поэтому следующим шагом в исследовании однородности совокупности является расчет среднего квадратического отклонения, показывающего, насколько в среднем отклоняются конкретные варианты признака от его среднего значения. Оно определяется как квадратный корень из дисперсии и имеет ту же размерность что и изучаемый признак:

- невзвешенная форма (5.3.)

- взвешенная форма

В нашем примере среднее квадратическое отклонение равно:

Таким образом, цена каждой марки холодильника отклоняется от средней цены в среднем на 271,1$

Рассмотренные показатели позволяют получить абсолютное значение вариации признака. Однако для сравнения разных совокупностей с точки зрения устойчивости какого-либо одного признака или для определения однородности совокупности рассчитывают относительные показатели.

Эти показатели вычисляются как отношение размаха вариации, среднего линейного отклонения или среднего квадратического отклонения к средней арифметической или медиане. Чаще всего эти показатели выражаются в процентах.

Коэффициент осцилляции (Vr):

(5.4.)

Линейный коэффициент вариации (VdЇ):

(5.5.)

Наиболее распространенным показателем является коэффициент вариации:

(5.6.)

Определим значение этого показателя по данным таблицы 1:

Рассчитанная величина свидетельствует о неоднородности цен на холодильники, т.к. однородной совокупность считается, если коэффициент вариации меньше 33% (для распределений близких к нормальному).

Следует отметить, что коэффициент вариации может быть более 100%, что, в частности, может быть при наличии значений сильно отличающихся от средней величины. Такой результат означает, что в исследуемой совокупности сильна вариация признаков по отношению к средней величине.

Если исследуется вариация альтернативных признаков, т.е. признаков, которыми одни единицы совокупности обладают, а другие - нет, то дисперсия альтернативного признака определяется по формуле:

(5.7.)

где: р - доля единиц, обладающих данным признаком,

q - доля единиц не обладающих данным признаком.

Максимальное значение дисперсии доли равно 0,25 (когда p=q=0.5).

Информативность показателей вариации повышается, если они рассчитываются для целей сравнительного анализа. При этом показатели рассчитанные по одной совокупности сопоставляются с показателями, рассчитанными по другой аналогичной совокупности или по той же самой, но относящейся к другому периоду времени. Например, исследуется динамика вариации на товары длительного пользования по месячным или ежегодным данным в одном и том же торговом предприятии или за один и тот же период времени, но по разным регионам.

5.2 Использование показателей вариации в анализе взаимосвязей

Изучая вариацию интересующего нас признака в пределах исследуемой совокупности и опираясь на общую среднюю в расчетах, трудно оценить степень воздействия на него какого-либо отдельного признака.

При проведении такого анализа исходная совокупность должна представлять собой множество единиц, каждая из которых характеризуется двумя признаками -- факторным (оказывающим влияние на взаимосвязанный с ним признак) и результативным (подверженным влиянию).

Для выявления взаимосвязи исходная совокупность делится по факторному признаку на группы. Выводы о степени взаимосвязи базируются на анализе вариации результативного признака. Если статистическая совокупность разбита на группы по какому-либо признаку, то для оценки влияния различных факторов, определяющих вариацию индивидуальных значений признака, используют правило сложения дисперсий.

Общая дисперсия представляет собой сумму средней из внутригрупповой и межгрупповой и дисперсий:

(5.8.)

где: у20- общая дисперсия

у Ї2- средняя из внутригрупповых дисперсий

д 2 - межгрупповая дисперсия

Общая дисперсия характеризует вариацию признака по всей совокупности как результат влияния всех факторов, определяющих индивидуальные различия единиц совокупности.

(5.9.)

где: хi - отдельные значения признака

xЇi -общая средняя варьирующего признака

ѓi - вес варианта признака в общей совокупности.

Межгрупповая дисперсия характеризует вариацию, обусловленную влиянием фактора, положенного в основу группировки.

(5.10.)

где: xЇ - общая средняя варьирующего признака

xЇj - средняя j-ой группы

nj - число единиц в j-ой группе

Средняя из внутри групповых дисперсий отражает ту часть вариации результативного признака, которая обусловлена действием всех прочих неучтенных факторов, кроме фактора, по которому осуществлялась группировка. Другими словами внутригрупповая дисперсия отражает случайную вариацию. Внутригрупповая дисперсия раскатывается отдельно по каждой j-ой группе.

(5.11.)

где: хi - значение признака у отдельных элементов j-ой труппы

xЇj - средняя j-ой группы

nj - число единиц j-ой группы

Для всех групп в целом вычисляется средняя из внутригрупповых дисперсий, взвешенных на частоты соответствующих групп по формуле:

(5.12.)

Взаимосвязь между тремя видами дисперсий получила название правила сложения дисперсий. Таким образом, зная два вида дисперсий всегда можно определить третий: . Из этого равенства следует, что общая дисперсия, как правило, будет больше средней из групповых дисперсий. Это обусловлено тем, что при расчленении общей совокупности единиц на части по какому-либо признаку образуются более или менее однородные группы, в результате чего сокращается колеблемость признаков в пределах каждой группы. Это приводит к тому, что средняя из групповых дисперсий оказывается меньше дисперсии признака по всей совокупности единиц, причем разница между этими показателями будет тем больше, чем однороднее получаются группы в результате расчленения общей совокупности.

Теснота связи между факторным и результативным признаками оценивается на основе эмпирического корреляционного отношения:

Данный показатель может принимать значения от 0 до 1. Чем ближе к 1 будет его величина, тем сильнее взаимосвязь между рассматриваемыми признаками.

(5.13.)

На следующем условном примере исследуем зависимость объема выполненных работ от формы собственности проектно-изыскательских организаций.

Таблица 5.2. Выполнение работ проектно-изыскательскими организациями разной формы собственности

Форма собственности

Количество предприятий

Объем выполненных работ (млн. руб.)

Итого

Государственная

4

10,30,20,40

100

Негосударственная

6

20,40,60,20,50,50

240

Итого

10

340

Решение:

Определяется средний объем выполненных работ для предприятий двух форм собственности.

Определяется средний объем выполненных работ для каждой формы собственности.

Рассчитываются общая и внутригрупповые (т.е. для каждой группы) дисперсии.

4. Определяется средняя из внутригрупповых и межгрупповая дисперсия. Для это го расчета полученные ранее данные заносятся в таблицу.

Вспомогательная таблица.

Форма собственности

Число предприятий

Средняя по группе

Внутригрупповые дисперсии

Государственная

4

25

125

Негосударственная

6

40

233

Итого

10

* Средняя из внутри групповых дисперсий

* Межгрупповая дисперсия

На последнем этапе решения задачи необходимо проверить тождество, отражающее закон сложения дисперсий:

54,0+189,8=243,8

Таким образом, можно сделать вывод о том, что объем работ, выполненных проектно-изыскательскими организациями на 22% [(54,0/243,8)х100%] зависит от фактора, положенного в основание группировки, т.е. от формы собственности, а на 78% [(189,8/243.8)х100%)] - от прочих факторов.

Вывод о том, что объем выполненных работ в гораздо большей степени зависит от каких-либо других факторов, чем от формы собственности предприятий подтверждается и величиной эмпирического корреляционного отношения:

Величина этого показателя свидетельствует о том, что зависимость объема работ от формы собственности предприятия невелика.

6. Выборочное наблюдение

6.1 Цели и этапы выборочного наблюдения

Выборочное наблюдение в настоящее время находит достаточно широкое применение в обследованиях промышленных и сельскохозяйственных предприятий, изучении цен на потребительском рынке, в обследованиях бюджетов и занятости населения. Выборочный метод является важнейшим источником информации в контроле качества продукции, в маркетинговых и социологических исследованиях.

Выборочным наблюдением называется такое несплошное обследование, при котором признаки регистрируются у отдельных единиц изучаемой статистической совокупности, отобранных с использованием специальных методов, а полученные в процессе обследования результаты с определенным уровнем вероятности распространяются на всю исходную совокупность.

Выборочное наблюдение нельзя отождествлять с несплошным обследованием вообще, так как оно является лишь одним из видов последнего, наиболее проработанным с методологической и организационной точек зрения. Помимо выборочного наблюдения несплошное обследование может осуществляться путем монографического описания, методом основного массива или на основе различных видов анкетирования, когда отсутствуют какие-либо специальные методы отбора респондентов и процент заполненных и возвращенных анкет заранее не известен.

Преимущества выборочного наблюдения заключаются в существенной экономии различного вида ресурсов, а именно:

а) финансовых средств, затрачиваемых на сбор и обработку данных, подготовку и оплату кадров;

б) материально-технических ресурсов (канцелярские товары, оргтехника, расходные материалы, транспортное обслуживание и т.п.);

в) рудовых ресурсов, привлекаемых к обследованию на всех его этапах;

г) сокращении времени, затрачиваемого как на получение первичной информации, так и на ее последующую обработку вплоть до публикации итоговых материалов.

В то же время, необходимо четко представлять, что выборочное наблюдение, как бы грамотно с методологической точки зрения оно не было организовано, всегда связано с определенными, пусть небольшими и измеряемыми ошибками. Поэтому, когда вариация регистрируемых признаков очень сильная и процент отбора для получения выборочных значений с заданной точностью достигает 20-25%, следует правильно оценить целесообразность несплошного обследования, сопоставив достаточно большие затраты всех ресурсов на такую объемную выборку и ожидаемые погрешности статистических характеристик. Вполне вероятно, что проведение сплошного обследования в подобных случаях будет более оправданным.

В то же время, при решении ряда задач выборочное наблюдение является единственно возможным способом получения необходмой информации. Так, контроль многих видов продукции связан с их порчей, потерей товарного вида, нарушением герметизации и т.п. Например, нельзя проверить каждую производимую предприятием электролампу на соблюдение требований по продолжительности горения. Нельзя проверить на соответствие стандартам каждого пакета с соком или молочной продукцией, так как это связано с вскрытием их упаковки. В подобных случаях контроль качества может осуществляться только с использованием выборочного метода.

Реализация выборочного метода базируется на понятиях генеральной и выборочной совокупностей.

Генеральной совокупностью называется вся исходная изучаемая статистическая совокупность, из которой на основе отбора единиц или групп единиц формируется совокупность выборочная. Поэтому генеральную совокупность также называют основой выборки.

Отбор единиц в выборочную совокупность может быть повторным или бесповторным.

При повторном отборе попавшая в выборку единица подвергается обследованию, т.е. регистрации значений ее признаков, возвращается в генеральную совокупность и наравне с другими единицами участвует в дальнейшей процедуре отбора. Таким образом, некоторые единицы могут попадать в выборку дважды, трижды или даже большее число раз. И при изучении выборочной совокупности они будут рассматриваться как отдельные Независимые наблюдения.

Отметим, что число единиц генеральной совокупности, участвующих в отборе, при таком подходе остается постоянным. Поэтому вероятность попадания в выборку для всех единиц совокупности на протяжении всего процесса отбора также не меняется.

На практике методология повторного отбора обычно используется в тех случаях, когда объем генеральной совокупности не известен и теоретически возможно повторение единиц с уже встречавшимися значениями всех регистрируемых признаков.

Например, при проведении маркетинговых исследований мы не можем сколько-нибудь точно оценить, какое число потребителей предпочитают стиральный порошок конфетной торговой марки, сколько покупателей предпочитают делать покупки именно в данном супермаркете и т.д. Поэтому возможно повторение совершенно идентичных единиц как по причине практически неограниченных объемов совокупности, так и вследствие возможной повторной регистрации. Предположим, при проведении обследования один и тот же покупатель может дважды прийти в магазин и дважды подвергнуться обследованию.

При выборочном контроле качества продукции объем генеральной совокупности также часто не определен, так как процесс производства может осуществляться постоянно, каждый день дополняя генеральную совокупность новыми единицами - изделиями. Поэтому в выборочную совокупность могут попасть два и более изделий с абсолютно Шлаковыми характеристиками. Следовательно, и в этом случае при обработке результатов выборки необходимо ориентироваться на методологию, используемую при повторном отборе.

При бесповторном отборе попавшая в выборку единица подвергается обследованию и в дальнейшей процедуре отбора не участвует. Такой отбор целесообразен и практически возможен в тех случаях, когда объем генеральной совокупности четко определен. Получаемые при этом результаты, как правило, являются более точными по сравнению с результатами, основанными на повторной выборке.

Как уже отмечалось выше, выборочное наблюдение всегда связано с определенными ошибками получаемых характеристик. Эти ошибки называются ошибками репрезентативности (представительности).

Ошибки репрезентативности обусловлены тем обстоятельством, что выборочная Совокупность не может по всем параметрам в точности воспроизвести совокупность генеральную. Получаемые расхождения или ошибки репрезентативности позволяют заключить, в какой степени попавшие в выборку единицы могут представлять всю генеральную совокупность. При этом следует различать систематические и случайные ошибки репрезентативности.

Систематические ошибки репрезентативности связаны с нарушением принципов формирования выборочной совокупности. Например, вследствие каких-либо причин, связанных с организацией отбора, в выборку попали единицы, характеризующиеся несколько большими или, наоборот, несколько меньшими по сравнению с другими единицами значениями наблюдаемых признаков. В этом случае и рассчитанные выборочные характеристики будут завышенными или заниженными.

Случайные ошибки репрезентативности обусловлены действием случайных факторов, не содержащих каких-либо элементов системности в направлении воздействия на рассчитываемые выборочные характеристики. Но даже при строгом соблюдении всех принципов формирования выборочной совокупности выборочные и генеральные характеристики будут несколько различаться. Получаемые случайные ошибки могут быть статистически оценены и учтены при распространении результатов выборочного наблюдения на всю генеральную совокупность. Оценка ошибок выборочного наблюдения основана на теоремах теории вероятностей.

При дальнейшем рассмотрении теории и методов выборочного наблюдения в данной главе используются следующие общепринятые условные обозначения:

N - объем (число единиц) генеральной совокупности;

п - объем (число единиц) выборочной совокупности;

х - генеральная средняя, т.е. среднее значение изучаемого признака по генеральной совокупности (средняя прибыль, средняя величина активов, средняя численность работников предприятия и т.п.);

у - выборочная средняя, т.е. среднее значение изучаемого признака по выборочной совокупности;

М - численность единиц генеральной совокупности, обладающих определенным вариантом или вариантами изучаемого признака (численность городского населения, численность сельского населения, количество бракованных изделий, число нерентабельных предприятий ит.п.);

р - генеральная доля, т.е. доля единиц, обладающих определенным вариантом или вариантами изучаемого признака, во всей генеральной совокупности (доля городского населения в общей числености населения, доля бракованной продукции в общем выпуске, доля нерентабельных предприятий в общей численности предприятий и т.п.); определяется как M/N;

m - численность единиц выборочной совокупности, обладающих определенным вариантом или вариантами изучаемого признака;

w - выборочная доля, т.е. доля единиц, обладающих определенным вариантом или

вариантами изучаемого признака, в выборочной совокупности; определяется как m/n;

м - средняя ошибка выборки;

? - предельная ошибка выборки.

Ошибка выборки или отклонение выборочной средней от средней генеральной находится в прямой зависимости от дисперсии изучаемого признака в генеральной совокупности, и в обратной зависимости - от объема выборки. Таким образом среднюю ошибку выборки можно представить как

При проведении выборочного наблюдения дисперсия изучаемого признака в генеральной совокупности, как правило, не известна. В то же время, между генеральной дисперсией и средней из всех возможных выборочных дисперсий существует следующее соотношение:

В связи с тем, что на практике в большинстве случаев из генеральной совокупности в определенный момент времени производится только одна выборка, дисперсия изучаемого признака по этой выборке и используется при расчете ошибки. Учитывая, что при достаточно большом объеме выборки отношениеблизко к 1, формула средней ошибки повторной выборки принимает следующий вид:

где у2 - дисперсия изучаемого признака по выборочной совокупности.

При определении возможных границ значений характеристик генеральной совокупности рассчитывается предельная ошибка выборки, которая зависит от величины ее средней ошибки и уровня вероятности, с которым гарантируется, что генеральная средняя не выйдет за указанные границы. Согласно теореме А.М.Ляпунова, вероятность той или иной величины предельной ошибки, при достаточно большом объеме выборочной совокупности, подчиняется нормальному закону распределения и может быть определена на основе интеграла Лапласа.

...

Подобные документы

  • Сущность статистического изучения социально-экономических явлений. Группировка данных статистических наблюдений в анализе производства зерновых культур, изучение средних характеристик и показателей вариации. Использование рядов динамики и метода индекса.

    курсовая работа [172,2 K], добавлен 13.03.2014

  • Роль статистики в анализе социально-экономических явлений и процессов. Расчёт среднего линейного отклонения, дисперсии, среднеквадратического отклонения, линейного коэффициента вариации. Графическое и практическое определения структурных средних.

    контрольная работа [438,8 K], добавлен 06.11.2010

  • Основные категории и понятия теории статистики. Ряды динамики и их применение в анализе социально-экономических явлений. Сводка и группировка статистических данных. Общая характеристика системы национальных счетов. Статистика рынка товаров и услуг.

    курс лекций [68,4 K], добавлен 08.08.2009

  • Понятие статистики, пути ее развития, отличительные черты массовых явлений и признаки единиц совокупности. Формы, виды и способы статистического наблюдения. Задачи и виды статистической сводки. Метод группировки, абсолютные и относительные показатели.

    реферат [33,9 K], добавлен 20.01.2010

  • Анализ обобщающих показателей и закономерностей социально-экономических явлений и процессов в конкретных условиях места и времени. Описание количественной стороны массовых социально-экономических явлений, отражаемых посредством показателей статистики.

    контрольная работа [761,6 K], добавлен 22.01.2015

  • Изучение предмета, задач, методов исследования (наблюдение - сплошное, выборочное; группировка, обобщающие показатели) социальной-экономической статистики в условиях рынка. Ознакомление с организационной и информационной базами государственной статистики.

    реферат [28,5 K], добавлен 10.05.2010

  • Понятие производительности труда и определение задач её статистического изучения с использованием методов теории статистики. Расчет показателей выработки продукции и анализ их динамики. Проведение факторного индексного анализа производительности труда.

    курсовая работа [836,4 K], добавлен 26.05.2013

  • Особенности построения статистических сводок и рядов распределения в экономическом исследовании. Практическое применение метода группировок при анализе кадрового состава современной организации. Этапы изучения взаимосвязей социально-экономических явлений.

    курсовая работа [240,4 K], добавлен 20.01.2015

  • Статистика как одна из древнейших отраслей знаний, возникшая на базе хозяйственного учета. Развитие статистики как науки. Определение предмета статистики. Статистическое наблюдение как этап статистического исследования. Методы и показатели статистики.

    контрольная работа [38,9 K], добавлен 20.01.2010

  • Предмет статистики. Метод статистики. Расчёт показателей вариации. Ряды динамики. Выборочное наблюдение. Для общеэкономических специальностей, статистика является основой для разработки и совершенствования методов экономического анализа.

    курсовая работа [134,4 K], добавлен 21.10.2004

  • Понятие статистики как науки, история её возникновения и развития. Основные виды хозяйственного учёта и статистическая деятельность в Республике Беларусь. Формула расчета индивидуального индекса цен. Классификация рядов динамики в экономическом анализе.

    лекция [388,7 K], добавлен 10.04.2013

  • Характеристика предмета статистики как общественной науки, статистическое изучение массовых явлений. Понятие статистической совокупности, проведение анкетного опроса покупателей для изучения контингента. Статистические показатели коммерческих банков.

    контрольная работа [24,9 K], добавлен 11.08.2015

  • Изучение динамики общественных явлений. Классификация рядов динамики, правила их построения и показатели анализа. Основные показатели вариации курса акций АО "Газпром". Расчетная таблица для определения параметров линейной функции. Анализ тенденции.

    курсовая работа [184,1 K], добавлен 10.02.2013

  • Исследование современной демографической ситуации в Российской Федерации, моментов политики, проводимой государством. Изучение численности населения и особенностей его размещения, основных группировок населения. Анализ показателей статистики населения.

    контрольная работа [40,1 K], добавлен 28.06.2012

  • Краткая история зарождения и развития статистики как науки. Предмет изучения и характеристика основных задач статистики. Статистические методы сбора и обработки данных для получения достоверных оценок и результатов. Источники статистических данных.

    лекция [23,7 K], добавлен 13.02.2011

  • Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа [351,2 K], добавлен 20.05.2010

  • Проведение экспериментального статистического исследования социально-экономических явлений и процессов Смоленской области на основе заданных показателей. Построение статистических графиков, рядов распределения, вариационных рядов, их обобщение и оценка.

    курсовая работа [786,2 K], добавлен 15.03.2011

  • Система показателей статистики товародвижения и сбыта продукции, индексные методы статистического изучения. Анализ ассортимента, динамики и структуры реализованной продукции, статистический анализ индексов товародвижения. Резервы роста товарооборота.

    курсовая работа [2,5 M], добавлен 10.08.2011

  • Основные категории статистики. Группировка - основа научной обработки данных статистики. Содержание сводки и статистическая совокупность. Построение вариационного, ранжированного и дискретного рядов распределения. Группировка предприятий по числу рабочих.

    контрольная работа [23,3 K], добавлен 17.03.2015

  • Понятие и предмет статистики, теоретические основы и категории, взаимосвязь с другими науками. Объект и метод изучения статистики. Основные задачи, принципы организации и функции государственной статистики в РФ. Примеры статистической закономерности.

    лекция [17,3 K], добавлен 02.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.