Основы статистики

Ознакомление с основными категориями статистики. Изучение задач сводки и ее содержания. Исследование и анализ показателей вариации в анализе взаимосвязей. Характеристика статистического изучения особенностей динамики социально-экономических явлений.

Рубрика Экономика и экономическая теория
Вид курс лекций
Язык русский
Дата добавления 20.09.2014
Размер файла 5,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Наиболее распространенным методом прогнозирования является аналитическое выражение тренда. При этом для выхода за границы исследуемого периода достаточно продолжить значения независимой переменной времени (t).

При таком подходе к прогнозированию предполагается, что размер уровня, харак-теризирующего явление, формируется под воздействием множества факторов, причем не представляется возможным выделить отдельно их влияние. В связи с этим ход развития связывается не с какими-либо конкретными факторами, а с течением времени. На практике для описания тенденции развития явления широко используются модели кривых роста, представляющие собой различные функции времени у = f(t).

Процедура разработки прогноза с использованием кривых роста включает в себя следующие этапы: 1) выбор одной или нескольких кривых, форма которых соответствует характеру изменения ряда динамики; 2) оценка параметров выбранных кривых;-3) проверка адекватности выбранных кривых прогнозируемому процессу и окончательный выбор кривой роста; 4) расчет точечного и интервального прогнозов.

Остановимся на величине доверительного интервала прогноза, который определяется по формуле:

8.36)

где: у - средняя квадратическая ошибка тренда;

t+1 - расчетное значение уровня;

ta - доверительная величина, определяемая на основе t-критерия Стьюдента.

Вместо ta - критерия удобно использовать коэффициент (К*).

Например, необходимо провести прогноз на 2005-2006 гг. по данным таблицы (8.5) количества проданных квартир в N-ом регионе.

Для экстраполяции используем уравнение тренда, полученное по прямой: yЇt = 39,7 + 0,25t. Подставив соответствующее значение t в наше уравнение, получим точечные прогнозы на 2005-2006 гг. (графа 2 таблицы 8.9). Для построения интервальных прогнозов рассчитаем среднеквадратическую ошибку тренда (уt=0,56) и используем значения К

Результаты прогноза представлены в таблице 8.8.

Таблица 8.8. Прогнозные значения численности проданных квартир в N-ом регионе на 2005-2006 гг.

Годы

t

y^n+1

K

уtK*

?n+1 ± у• K*

А

1

2

3

4

5

2005

2

113,2

2,374

1,33

111,9 - 114,5

2006

3

114,4

2,741

1,53

112,9 - 115,9

При анализе рядов динамики иногда приходится прибегать к определению некоторых неизвестных уровней внутри данного ряда динамики, то есть к интерполяции.

Как и экстраполяция, интерполяция может производиться на основе среднего абсолютного прироста, среднего темпа роста, а также с помощью аналитического выравнивания. При интерполяции предполагается, что ни выявленная тенденция, ни ее характер не претерпели существенных изменений в том промежутке времени, уровень (уровни) которого нам неизвестны.

9. Статистический анализ структуры

9.1 Понятие структуры и основные направления ее исследования

Изучаемые статистикой процессы и явления в сфере промышленного или сельскохозяйственного производства, финансов, коммерции, демографии, в социальной и политической областях, как правило, характеризуются внутренней структурой, которая с течением времени может изменяться. Динамика структуры вызывает изменение внутреннего содержания исследуемых объектов и их экономической интерпретации, приводит к изменению установившихся причинно-следственных связей. Именно поэтому изучение структуры и структурных сдвигов занимает важное место в экономико-статистическом анализе.

В статистике под структурой понимают совокупность элементов социально-экономических явлений, обладающих определенной устойчивостью внутригрупповых связей при сохранении основных свойств, характеризующих эту совокупность как целое. В качестве примеров можно привести структуру населения региона по возрасту или уровню доходов, структуру предприятий отрасли по численности промышленно-производственного персонала или стоимости основных фондов и другие.

Классификация структур прежде всего предполагает их разделение на два основных вида по временному фактору. Моментные структуры характеризуют строение социально-экономических явлений по состоянию на определенные моменты времени и отображаются посредством моментных относительных показателей, как правило, на начало или на конец периода (например, структура парка транспортных средств). Интервальные структуры характеризуют строение социально-экономических явлений за определенные периоды времени - дни, недели, месяцы, кварталы, годы (например, структура экспорта и импорта).

Статистика имеет дело как с фактическими, реально существующими структурами, так и со структурами перспективными, прогнозными, оптимальными и стандартизованными. Последние представляют собой какие-либо условные или фактические структуры, принятые в качестве эталонных для расчета и сравнения стандартизованных показателей. Например, для сравнения уровней рождаемости, смертности, заболеваемости и т.п. по двум или более регионам рассчитывают стандартизованные коэффициенты на основе некоторой стандартизованной структуры, в качестве которой может использоваться возрастная структура населения в целом по стране. Основные направления статистического изучения структуры включают:

а)характеристику структурных сдвигов отдельных частей совокупности за два и более периодов;

б)обобщающую характеристику структурных сдвигов в целом по совокупности;

в)оценку степени концентрации и централизации.

Рассмотрим последовательно эти три направления исследования.

9.2 Частные показатели структурных сдвигов

Анализ структуры и ее изменений базируется на относительных показателях структуры - долях или удельных весах, представляющих собой соотношения размеров частей и целого. При этом как частные, так и обобщающие показатели структурных сдвигов могут отражать либо «абсолютное» изменение структуры в процентных пунктах или долях единицы (кавычки показывают, что данные показатели являются абсолютными по методологии расчета, но не по единицам измерения), либо ее относительное изменение в процента или коэффициентах.

«Абсолютный» прирост удельного веса i-ой части совокупности показывает, на сколько процентных пунктов возросла или уменьшилась данная структурная часть в j-ый период по сравнению с (j-1) периодом:2

?di = dij - dij-1 (9.1.)

где dij - удельный вес (доля) i-ой части совокупности в j-ый период;

dij-1 - удельный вес (доля) i-ой части совокупности в (j -1)-ый период.

Знак прироста показывает направление изменения удельного веса данной структуры части («+» - увеличение, «-» - уменьшение), а его значение - конкретную величину этого изменения.

Темп роста удельного веса представляет собой отношение удельного веса i-ой части в j-ый период времени к удельному весу той же части в предшествующий период:

(9.2.)

Темпы роста удельного веса выражаются в процентах и всегда являются положительными величинами. Однако, если в совокупности имели место какие-либо структурные изменения, часть темпов роста будет больше 100%, а часть - меньше.

Рассчитаем частные показатели структурных сдвигов по данным о величине зарегистрированного уставного капитала действующих в РФ кредитных организаций (табл. 9.1.):

Как следует из данных таблицы 9.1, наиболее существенно в «абсолютном» выражении изменился удельный вес кредитных организаций с уставным капиталом до 10 млн. руб. - снизился на 22 процентных пункта. В относительном выражении наиболее сильно (почти в 3,4 раза) выросла доля кредитных организаций с уставным капиталом свыше 300 млн. руб.

Таблица 9.1

Группы кредитных организаций по величине уставного капитала (млн. руб.)

Число кредитных организаций

Удельный вес, в % к итогу

Прирост удельного веса, проц. пунктов

?di

Темп роста удельного веса, %

Tpdl i

1.01.00

1.01:03

1.01.00

di0

1.01.03

di1

А

1

2

3

4

5(гр.4-гр.З)

6(гр.4:гр.З)100

до 10

10-30

30-60

60-150

150-300

300 и более

595 313 253 93

43 52

294 291 253 198 123 170

44,1 23,2 18,8 6,9 3,2 3,8

22,1 21,9 19,0 14.9 9,3 12,8

-22,0

-1,3

0,2

8,0

6,1

9,0

50,1 94,4 101,1 215,9 290,6 336,8

Итого

1349

1329

100,0

100,0

0

X

Мы рассмотрели показатели структурных сдвигов за один интервал между двумя периодами. Если же изучаемая структура представлена данными за три и более периодов, появляется необходимость в динамическом осреднении приведенных выше показателей, т.е. в расчете средних показателей структурных сдвигов.

Средний «абсолютный» прирост удельного веса i-ой структурной части показывает, на сколько процентных пунктов в среднем за какой-либо период (день, неделю, месяц, год и т.п.) изменяется данная структурная часть:

(9.3.)

где n - число осредняемых периодов.

Сумма средних «абсолютных» приростов удельных весов всех k структурных частей совокупности, также как и сумма их приростов за один временной интервал, должна быть равна нулю.

Средний темп роста удельного веса характеризует среднее относительное изменение удельного веса i-ой структурной части за п периодов, и рассчитывается по формуле средней геометрической:

(9.4.)

Подкоренное выражение этой формулы представляет собой последовательное произведение цепных темпов роста удельного веса за все временные интервалы. После проведения несложных алгебраических преобразований данная формула примет следующий вид:

(9.5.)

Для иллюстрации этих формул воспользуемся приведенным выше примером (таблица 9.1). Рассчитаем средний годовой прирост (в данном случае -- снижение) удельного веса кредитных организаций 1-ой группы (число уровней ряда п на рассматриваемом интервале равно 4 - 2000, 2001, 2002, 2003гг.):

проц. пункта.

Таким образом можно заключить, что удельный вес кредитных организаций с маленьким уставным капиталом ежегодно снижался в среднем на 7,3 процентного пункта. По последней группе определим средний месячный темп роста удельного веса:

Мы получили, что удельный вес кредитных организаций данной группы в среднем ежегодно возрастал почти в полтора раза.

При анализе структуры исследуемого объекта или явления за ряд периодов также можно определить средний удельный вес каждой i-ой части за весь рассматриваемый временной интервал. Однако для его расчета одних лишь относительных данных об удельных весах структурных частей недостаточно, необходимо располагать еще и информацией о размерах этих частей в абсолютном выражении. Используя эти данные, средний удельный вес любой i-ой структурной части можно определить по формуле:

(9.6.)

где xij - величина i-ой структурной части в j- период времени в абсолютном выражении.

Проиллюстрируем эту формулу следующим примером. По итогам биржевых торгов на ММВБ корпоративными ценными бумагами определим средний удельный вес ценных бумаг каждого вида в общем объеме выручки от их реализации (табл. 9.2.):

Таблица 9.2

Вид ценных бумаг

Объем выручки от продажи

2000

2001

2002

Итого

Акции, млрд.руб. (х1j;)

в % к итогу (d1i)

472,0

93,1

707,5 92,4

1144,5 90,5

2324,0

Облигации, млрд.руб. (х2j)

в % к итогу (d2j)

35,1

6,9

58,1 7,6

120,0 9,5

213,2

Всего, млрд.руб.

507,1

765,6

1264,5

2537,2

Определим средний удельный вес выручки от продажи акций в общем объеме выручки от реализации корпоративных ценных бумаг:

Рассчитаем средний удельный вес выручки от продажи облигаций:

Итак, в 2000 - 2002 гг. на долю акций в среднем ежегодно приходилось 91,6% общего объема выручки от реализации корпоративных ценных бумаг, а на долю облигаций -только 8,4%. Отметим, что если бы для расчета этих средних показателей мы воспользовались лишь исходными данными в процентах, результаты были бы иными - удельный вес выручки от продажи облигаций был бы заниженным.

9.3 Обобщающие показатели структурных сдвигов

В отдельных случаях исследователю необходимо в целом оценить структурные изменения в изучаемом социально-экономическом явлении за определенный временной интервал, которые характеризуют подвижность, или наоборот, стабильность, устойчивость данной структуры. Как правило, это требуется для сравнения динамики одной и той же структуры в различные периоды или нескольких структур, относящихся к разным объектам. Во втором случае число структурных частей у разных объектов необязательно должно совпадать.

Среди применяемых для этой цели обобщающих показателей наиболее распространен линейный коэффициент «абсолютных» структурных сдвигов, представляющий собой сумму приростов удельных весов, взятых по модулю, деленную на число структурных частей:

(9.7.)

Этот показатель отражает то среднее изменение удельного веса (в процентных пунктах), которое имело место за рассматриваемый временной интервал в целом по всем структурным частям совокупности.

Для решения данной задачи также применяют квадратический коэффициент «абсолютных» структурных сдвигов, который рассчитывается по формуле:

(9.8.)

Линейный и квадратический коэффициенты «абсолютных» структурных сдвигов позволяют получить сводную оценку скорости изменения удельных весов отдельных частей совокупности. Для сводной характеристики интенсивности изменения удельных весов используется квадратический коэффициент относительных структурных сдвигов;

(9.9.)

Данный показатель отражает тот средний относительный прирост удельного веса (в процентах), который наблюдался за рассматриваемый период.

Для расчета линейного коэффициента «абсолютных» структурных сдвигов за первый период (с 1995 по 1998 гг.) и за второй период (с 1998 по 2001 гг.) соответственно воспользуемся данными итогов гр.4 и гр.7 таблицы 9.3:

проц. пункта

проц. пункта

Итак, с 1995 г. по 1998 г. удельный вес отдельных направлений использования доходов населения изменился в среднем на 3,0 процентного пункта: С 1998 г. по 2001 г. «абсолютные» структурные сдвиги несколько уменьшились. Этот вывод подтверждается квадратическими коэффициентами «абсолютных» структурных сдвигов:

проц. пункта,

проц. пункта.

Далее определим величину квадратических коэффициентов относительных структурных сдвигов, воспользовавшись итоговыми данными гр. 6 и гр. 9:

Расчеты показывают, что в относительном выражении за первые три года удельный вес каждой статьи расходов в среднем изменился примерно на 1/5 своей величины; в последующие три года относительные структурные сдвиги заметно усилились.

Для сводной оценки структурных изменений в исследуемой совокупности в целом за рассматриваемый временной интервал, охватывающий несколько недель, месяцев, кварталов или лет, наиболее удобным является линейный коэффициент «абсолютных» структурных сдвигов за n периодов:

(9.10.)

проц. пункта

Таким образом, за рассматриваемый период среднегодовое изменение по всем направлениям использования доходов составило 0,8 процентного пункта.

Необходимо отметить, что последний показатель может использоваться как для сравнения динамики двух и более структур, так и для анализа динамики одной и той же структуры за разные по продолжительности периоды времени.

9.4 Показатели концентрации и централизации

Одна из задач статистического анализа структуры заключается в определении степени концентрации изучаемого признака по единицам совокупности или в оценке неравномерности его распределения. Такая неравномерность может иметь место в распределении доходов по группам населения, жилой площади по группам семей, прибыли по группам предприятий и т.д. При исследовании неравномерности распределения изучаемого признака по территории понятие «концентрация» обычно заменяется понятием «локализация».

Оценка степени концентрации наиболее часто осуществляется по кривой концентрации (Лоренца) и рассчитываемым на ее основе характеристикам. Для этого необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Для удобства вычислений и повышения аналитичности данных единицы совокупности, как правило, разбиваются на равные группы -10 групп по 10% единиц в каждой, 5 групп по 20% единиц и так далее.

Наиболее известным показателем концентрации является коэффициент Джини, обычно используемый как мера дифференциации или социального расслоения:

, (9.11.)

где: dxi - доля i-ой группы в общем объеме совокупности;

dyi - доля i-ой группы в общем объеме признака;

dHyi - накопленная доля i-ой группы в общем объеме признака.

Если доли выражены в процентах, данную формулу можно преобразовать: для 10%-го распределения-

(9.12.)

для 20%-го распределения -

(9.13.)

Чем ближе к 1 (100%) значение данного признака, тем выше уровень концентрации; при нуле мы имеем равномерное распределение признака по всем единицам совокупности.

Оценка степени концентрации также может быть получена на основе коэффициента Лоренца:

(9.14.)

При использовании данного коэффициента можно оперировать как долями единицы, так и процентами. Коэффициент Лоренца изменяется в тех же границах, что и коэффициент Джини.

Определим степень концентрации доходов населения по данным таблицы 9.3:

Таблица 9.3. Распределение доходов населения России в 2002 г.

20%-ные группы населения

Объем денежных доходов

dxi

dxi dyi

dHyi

dxi dHyi

dxi -dyi

% к итогу

dyi

А

1

2.

3

4

5

6

7

Первая(с наименьшими доходами)

5,6

0,056

0,2

0,0112

0,056

0,0112

0,144

Вторая

10,4

0,104

0,2

0,0208

0,160

0,032

0,096

Третья

15,4

0,154

0,2

0,0308

0,314

0,0628

0,046

Четвертая

22,8

0,228

0,2

0,0456

0,542

0,1084

0,028

Пята(с наивысшими доходами)

45,8

0,458

0,2

0,0916

1,000

0,2000

0,258

Итого

100,0

1,0

1,0

0,200

X

0,4144

0,572

Для расчета коэффициента Джини воспользуемся итоговыми данными граф 4 и 6 таблицы 9.3:

Такой же результат мы получим, выполнив расчеты в процентах:

Размещено на http://www.allbest.ru/

Второй способ расчета проще, однако, исходная формула незаменима в тех случаях, когда имеются неравные группы по объему совокупности (в нашем примере - по численности населения).

Для сравнения отметим, что наибольшей величины за последние годы коэффициент Джини, рассчитанный по данным о распределении общего объема денежных доходов населения РФ, достигал в 1999г. - 40,0%.

Используя данные графы 7 таблицы 9.4, определим коэффициент Лоренца:

Оба коэффициента указывают на относительно высокую степень концентрации доходов населения.

Если под концентрацией понимается степень неравномерности распределения изучаемого признака, не связанная ни с объемом совокупности, ни с численностью отдельных групп, то централизация означает сосредоточение объема признака у отдельных единиц (объема продукции данного вида на отдельных предприятиях, капитала в отдельных банках и т.п.). Обобщающий показатель централизации имеет следующий вид:

(9.15.)

где mi - значение признака i-ой единицы совокупности;

М - объем признака всей совокупности.

Максимальное значение, равное 1, данный коэффициент достигает лишь в том случае, когда совокупность состоит только из одной единицы, обладающей всем объемом признака. Минимальное значение коэффициента приближается к нулю, но никогда его не достигает.

Рассмотрим следующий пример. Предположим, выпуск продукции А сконцентрирован на 5 предприятиях, расположенных в трех районах области (табл. 9.4):

Таблица 9.4.

Район

Число предприятий

Объем производства, млн. руб.

Доля одного предприятия в общем объеме продукции,

(гр. 3: Итог гр. 2)

всего

в среднем на 1 предприятие (гр.2:гр.1)

А

1

2

3

4

А

Б

В

1

1

3

5374

1225

2610

5374

1225

870

0,584

0,133

0,094

Итого

5

9209

X

X

Вычислим показатель централизации производства данного вида продукции:

Рассчитанная величина свидетельствует о высокой степени централизации. Отметим, что аналитическая ценность показателей концентрации и централизации повышается при проведении сравнений во временном или территориальном аспектах.

10. Индексы

10.1 Общие понятия об индексах

«Индекс» в переводе с латинского - указатель или показатель. В статистике индексом называют показатель относительного изменения данного уровня исследуемого явления по сравнению с другим его уровнем, принятым за базу сравнения. В качестве такой базы может быть использован или уровень за какой-либо прошлый период времени (динамический индекс), или уровень того же явления по другой территории (территориальный индекс). Индексы являются незаменимым, инструментом исследования в тех случаях, когда необходимо сравнить во времени или пространстве две совокупности, элементы которых непосредственно суммировать нельзя.

В целом, индексный метод направлен на решение следующих задач:

характеристика общего изменения уровня сложного социально-экономического явления;

анализ влияния каждого из факторов на изменение индексируемой величины путем элиминирования воздействия прочих факторов;

анализ влияния структурных сдвигов на изменение индексируемой величины.

В дальнейшем изложении индексного метода будут использоваться следующие общепринятые обозначения:

i - индивидуальный индекс;

I - сводный индекс;

р - цена;-

q - количество;

1 - текущий период;

0 - базисный период.

Простейшим показателем, используемым в индексном анализе, является индивидуальный индекс, который характеризует изменение во времени экономических величин, относящихся к одному объекту:

- индекс цены,

где р1 - цена товара в текущем периоде;

р0 - цена товара в базисном Периоде;

Изменение физической массы проданного товара в натуральном выражении измеряется индивидуальным индексом физического объема реализации:

Изменение стоимостного объема товарооборота по данному товару отразится в значении индивидуального индекса товарооборота. Для его расчета товарооборот текущего периода (произведение цены на количество проданного товара) сравнивается с товарооборотом предшествующего периода:

Данный индекс также может быть получен как произведение индивидуального индекса цены и индивидуального индекса физического объема реализации.

Индивидуальные индексы, в сущности, представляют собой относительные показатели динамики или темпы роста, и по данным за несколько периодов времени могут рассчитываться в цепной или базисной формах.

В отличие от индексов индивидуальных, сводные индексы позволяют обобщить показатели по нескольким товарам. Исходной формой сводного индекса является агрегатная форма.

Агрегатная форма индекса позволяет найти для разнородной совокупности такой общий показатель, в котором можно объединить все ее элементы. При анализе динамики цен индивидуальные цены различных товаров складывать неправомерно, но суммировать товарооборот по этим товарам вполне допустимо. В текущем периоде такой товарооборот по п товарам составит:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Если мы сравним товарооборот в текущем периоде с его величиной в базисном периоде, то получим сводный индекс товарооборота:

(10.1.)

Для иллюстрации этого и последующих индексов воспользуемся следующими условными данными (табл. 10.1.):

Таблица 10.1 Цены и объем реализации трех товаров

Размещено на http://www.allbest.ru/

Рассчитаем индекс товарооборота:

Размещено на http://www.allbest.ru/

Рассчитанное значение индекса позволяет заключить, что товарооборот в целом по данной товарной группе в текущем периоде по сравнению с базисным возрос на 8,9% /108,9% - 100,0%/. Отметим, что размер товарной группы, единицы измерения товаров при расчете этого и последующих индексов значения не имеют.

Величина индекса товарооборота формируется под воздействием двух факторов -на нее оказывает влияние как изменение цен на товары, так и изменение объемов их реализации. Для того, чтобы оценить изменение только цен (индексируемой величины), необходимо количество проданных товаров (веса индекса) зафиксировать на каком-либо постоянном уровне. При исследовании динамики таких показателей, как цена и себестоимость физический объем реализации обычно фиксируют на уровне текущего периода. Таким способом получают сводный индекс цен (по методу Пааше):

(10.2.)

Для рассматриваемого примера получим:

Таким образом, по данной товарной группе цены в феврале по сравнению с январем в среднем возросли на 10,7%. При построении данного индекса цена выступает в качестве индексируемой величины, а количество проданного товара - в качестве веса.

Рассмотрим сводный индекс цен более подробно. Числитель данного индекса содержит фактический товарооборот текущего периода. Знаменатель же представляет собой условную величину, показывающую каким был бы товарооборот в текущем периоде при условии сохранения цен на базисном уровне. Поэтому соотношение этих двух категорий и отражает имевшее место изменение цен.

Числитель и знаменатель сводного индекса цен также можно интерпретировать и по-другому. Числитель представляет собой сумму денег, фактически уплаченных покупателями за товары в текущем периоде. Знаменатель же показывает, какую сумму покупатели заплатили бы за те же товары, если бы цены не изменились. Разность числителя и знаменателя будет отражать величину экономии (если знак «-») или перерасхода («+») покупателей региона от изменения цен:

Необходимо отметить, что в статистической практике также используется сводный индекс цен, построенный по методу Ласпейреса, когда веса или объемы продаж фиксируются на уровне базисного, а не текущего периода:

(10.З.)

Третьим индексом в рассматриваемой индексной системе (включающий индекс цен, рассчитанный по методу Паше) является сводный индекс физического объема реализации. Он характеризует изменение количества проданных товаров не в денежных, а в физических единицах измерения. Весами в данном случае выступают цены, которые фиксируются на базисном уровне:

(10.4.)

В нашем случае индекс составит:

Физический объем реализации (товарооборота) сократился на 1,6% (98,4%-100,0%). Между рассчитанными индексами существует следующая взаимосвязь:

Или 1,107-0,984 = 1,089

На основе данной взаимосвязи по значениям двух известных индексов всегда можно определить неизвестное значение третьего индекса.

10.2 Средние формы сводных индексов

На практике при расчете индексов часть необходимой информации может отсутствовать или базироваться на результатах выборочных обследований. В подобных случаях вместо индексов в агрегатной форме удобнее использовать средние арифметические и средние гармонические индексы. Любой сводный индекс можно представить как среднюю взвешенную из индивидуальных индексов. Однако при этом форму средней нужно выбрать таким образом, чтобы полученный средний индекс был тождественен исходному агрегатному индексу.

Предположим, мы располагаем данными о стоимости проданной продукции в текущем периоде и индивидуальными индексами цен, полученными, например, в результате выборочного наблюдения. Тогда при расчете сводного индекса цен по методу Пааше можно использовать следующую замену:

В целом же, сводный индекс цен в данном случае будет выражен в форме средней гармонической:

(10.5.)

Рассмотрим следующий условный пример (табл. 10.2):

Таблица 10.2. Данные о реализации и ценах по товарной группе

Товар

Реализация в текущем периоде, руб.

Изменение цен в текущем периоде по сравнению с базисным, %

А

44000

-1,3

Б

56000

+4,2

В

31000

+2,5

Последняя графа таблицы содержит информацию об изменениях индивидуальных индексов цен или их приростах. С учетом этих приростов несложно определить первоначальные значения индексов, которые по товарам А, Б и В соответственно составляют 0,987, 1,042 и 1,025.

Рассчитаем значение сводного индекса:

Произведенный расчет позволяет заключить, что цены по данной товарной группе в среднем возросли на 1,9%.

Мы получили значение сводного индекса цен в среднегармонической форме, соответствующее сводному индексу Пааше в агрегатной форме. Для получения значения, соответствующего индексу Ласпейреса, индекс цен необходимо представить в среднеарифметической форме. При этом используется следующая замена:

С учетом этой замены сводный индекс цен в среднеарифметической форме можно представить следующим образом:

(10.6.)

Среднеарифметическая форма также может использоваться при расчете сводного индекса физического объема товарооборота. При этом производится замена:

Тогда сводный индекс физического объема товарооборота имеет вид:

(10.7.)

Для иллюстрации этой формы расчета воспользуемся следующим примером (табл. 10.3):

Таблица 10.3. Данные о реализации трех товаров в натуральном и стоимостном выражении

Товар

Стоимостной объем реализации в базисном периоде, руб.

Изменение физического объема реализации в текущем периоде по сравнению с базисным, %

А

87000

+3,4

Б

54000

-12,0

В

73000

-8,5

Индивидуальные индексы физического объема соответственно будут равны 1,034; 0,880; 0,915. С учетом этого рассчитаем среднеарифметический индекс:

В результате расчета мы получили, что физический объем реализации товаров рассматриваемой товарной группы в среднем снизился на 4,5%.

10.3 Расчет сводных индексов за последовательные периоды

На практике, как правило, расчет индексов не является разовой акцией. Индексы позволяют получать сводную оценку изучаемых процессов постоянно, месяц за месяцем, год за годом. Однако при этом для достижения сопоставимости они должны рассчитываться по единой методологии. Такая методология или схема расчета индексов за несколько последовательных временных периодов называется системой индексов.

В зависимости от информационной базы и целей исследования индексная система может строится по-разному. Рассмотрим некоторые варианты ее построения их на примере сводного индекса цен, рассчитываемого за п периодов.

Если сравнивать цены каждого периода с ценами периода предшествующего получаемая индексная система будет включать цепные индексы, отражающие изменение цен за каждый из периодов рассматриваемого временного интервала. При этом в качестве весов можно использовать объемы реализации каждого конкретного периода или же постоянные объемы какого-либо периода, принятого в качестве базисного. Тогда индексная система будет включать индексы, соответственно, с переменными или с постоянными весами. Цепные индексы цен с переменными весами имеют следующий вид:

Размещено на http://www.allbest.ru/

При использовании постоянных весов система преобразуется:

Размещено на http://www.allbest.ru/

Отметим, что использование постоянных весов более предпочтительно, так как рассчитываемые таким образом индексы мультипликативны, т.е. их можно последовательно перемножать и получать величину показателя за более продолжительный период. Так, например, располагая индексами цен за три последовательных месяца, можно получить сводную оценку изменения цены в целом за квартал и т.п. Индексы с переменными весами такой возможности не предоставляют.

Если сравнивать цены каждого периода с ценами какого-либо базисного периода (как правило - начального) получаемая индексная система будет включать базисные индексы, отражающие изменение цен накопленным итогом, т.е. с начала рассматриваемого временного интервала. Например, изменение цен в январе по сравнению с декабрем предшествующего года, в феврале - по сравнению с тем же декабрем и т.д. При этом в качестве весов также можно использовать объемы реализации каждого конкретного периода или же постоянные объемы периода, принятого в качестве базисного. Система базисных индексов с переменными весами имеет следующий вид:

Размещено на http://www.allbest.ru/

Базисные индексы цен с постоянными весами рассчитываются по формулам

Размещено на http://www.allbest.ru/

Отметим, что использование постоянных весов приводит базисные индексы, так же как и индексы цепные, к сопоставимому виду.

10.4 Индексный анализ влияния структурных изменений

Индексы позволяют оценить динамику показателей, характеризующих разнородные в качественном отношении совокупности, как правило, товарные группы. Однако, далее если рассматриваемая совокупность однородна (товар или вид продукции одного вида) на величине результативного показателя будет отражаться влияние структурных изменений, например, изменений в структуре производства или реализации данного товара по территориям. Рассмотрим случай, когда один товар или вид продукции реализуется или производится в нескольких местах (табл. 10.4.):

Таблица 10.4. Данные о ценах и объемах реализации товара «X» в двух регионах

Регион

2003

2004

цена, тыс.руб.

продано, шт.

цена, тыс.руб.

продано, шт

1

7

36000

8

10000

2

5

12000

6

34000

Проведем анализ изменения цен на данный товар. Из таблицы видно, что цена в каждом регионе возросла. Для сводной оценки этого роста воспользуемся средними показателями. Так как в данном случае реализуется один и тот же товар, вполне правомерно рассчитать его среднюю цену за июнь и за июль. Индекс цен переменного состава представляет собой соотношение средних значений за два рассматриваемые периода:

(10.8.)

Рассчитанное значение индекса указывает на снижение средней цены данного товара на 0,8%, т.е. с 6,50 тыс. руб. до 6,45 тыс. руб. В то же время, из приведенной выше таблицы видно, что цена в каждом регионе в 2003 г. по сравнению с 2002 г. возросла. Данное несоответствие объясняется влиянием изменения структуры реализации товаров по регионам: в 2002 г. по более высокой цене продали товара втрое больше, а в 2003 г. ситуация принципиально изменилась (в данном условном примере для наглядности числа подобраны таким образом, чтобы это различие в структуре продаж было очевидным). Иными словами, на динамике средней цены данного товара отразились структурные сдвиги в рассматриваемой совокупности. Оценить воздействие этого фактора можно с помощью индекса структурных сдвигов:

(10.9.)

Первая формула в этом индексе позволяет ответить на вопрос, какой была бы средняя цена в 2003 г., если бы цены в каждом регионе сохранились на уровне предыдущего года. Вторая часть формулы отражает фактическую среднюю цену 2002 г. В целом по полученному значению индекса мы можем сделать вывод, что за счет структурных сдвигов цены снизились на 16,1%.

Последним в данной системе является индекс цен фиксированного состава, который не учитывает влияние структуры:

(10.10.)

Полученное значение индекса позволяет сделать вывод о том, что если бы структура реализации товара «X» по регионам не изменилась, средняя цена возросла бы на 18,3%. Однако влияние на среднюю цену фактора структурных изменений оказалось сильнее и в итоге цена даже несколько снизилась. Данное взаимодействие рассматриваемых факторов отражается в следующей взаимосвязи:

1,183-0,839 = 0,992.

Аналогично строятся индексы структурных сдвигов, переменного и фиксированного состава для анализа изменения себестоимости, урожайности и других показателей.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность статистического изучения социально-экономических явлений. Группировка данных статистических наблюдений в анализе производства зерновых культур, изучение средних характеристик и показателей вариации. Использование рядов динамики и метода индекса.

    курсовая работа [172,2 K], добавлен 13.03.2014

  • Роль статистики в анализе социально-экономических явлений и процессов. Расчёт среднего линейного отклонения, дисперсии, среднеквадратического отклонения, линейного коэффициента вариации. Графическое и практическое определения структурных средних.

    контрольная работа [438,8 K], добавлен 06.11.2010

  • Основные категории и понятия теории статистики. Ряды динамики и их применение в анализе социально-экономических явлений. Сводка и группировка статистических данных. Общая характеристика системы национальных счетов. Статистика рынка товаров и услуг.

    курс лекций [68,4 K], добавлен 08.08.2009

  • Понятие статистики, пути ее развития, отличительные черты массовых явлений и признаки единиц совокупности. Формы, виды и способы статистического наблюдения. Задачи и виды статистической сводки. Метод группировки, абсолютные и относительные показатели.

    реферат [33,9 K], добавлен 20.01.2010

  • Анализ обобщающих показателей и закономерностей социально-экономических явлений и процессов в конкретных условиях места и времени. Описание количественной стороны массовых социально-экономических явлений, отражаемых посредством показателей статистики.

    контрольная работа [761,6 K], добавлен 22.01.2015

  • Изучение предмета, задач, методов исследования (наблюдение - сплошное, выборочное; группировка, обобщающие показатели) социальной-экономической статистики в условиях рынка. Ознакомление с организационной и информационной базами государственной статистики.

    реферат [28,5 K], добавлен 10.05.2010

  • Понятие производительности труда и определение задач её статистического изучения с использованием методов теории статистики. Расчет показателей выработки продукции и анализ их динамики. Проведение факторного индексного анализа производительности труда.

    курсовая работа [836,4 K], добавлен 26.05.2013

  • Особенности построения статистических сводок и рядов распределения в экономическом исследовании. Практическое применение метода группировок при анализе кадрового состава современной организации. Этапы изучения взаимосвязей социально-экономических явлений.

    курсовая работа [240,4 K], добавлен 20.01.2015

  • Статистика как одна из древнейших отраслей знаний, возникшая на базе хозяйственного учета. Развитие статистики как науки. Определение предмета статистики. Статистическое наблюдение как этап статистического исследования. Методы и показатели статистики.

    контрольная работа [38,9 K], добавлен 20.01.2010

  • Предмет статистики. Метод статистики. Расчёт показателей вариации. Ряды динамики. Выборочное наблюдение. Для общеэкономических специальностей, статистика является основой для разработки и совершенствования методов экономического анализа.

    курсовая работа [134,4 K], добавлен 21.10.2004

  • Понятие статистики как науки, история её возникновения и развития. Основные виды хозяйственного учёта и статистическая деятельность в Республике Беларусь. Формула расчета индивидуального индекса цен. Классификация рядов динамики в экономическом анализе.

    лекция [388,7 K], добавлен 10.04.2013

  • Характеристика предмета статистики как общественной науки, статистическое изучение массовых явлений. Понятие статистической совокупности, проведение анкетного опроса покупателей для изучения контингента. Статистические показатели коммерческих банков.

    контрольная работа [24,9 K], добавлен 11.08.2015

  • Изучение динамики общественных явлений. Классификация рядов динамики, правила их построения и показатели анализа. Основные показатели вариации курса акций АО "Газпром". Расчетная таблица для определения параметров линейной функции. Анализ тенденции.

    курсовая работа [184,1 K], добавлен 10.02.2013

  • Исследование современной демографической ситуации в Российской Федерации, моментов политики, проводимой государством. Изучение численности населения и особенностей его размещения, основных группировок населения. Анализ показателей статистики населения.

    контрольная работа [40,1 K], добавлен 28.06.2012

  • Краткая история зарождения и развития статистики как науки. Предмет изучения и характеристика основных задач статистики. Статистические методы сбора и обработки данных для получения достоверных оценок и результатов. Источники статистических данных.

    лекция [23,7 K], добавлен 13.02.2011

  • Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа [351,2 K], добавлен 20.05.2010

  • Проведение экспериментального статистического исследования социально-экономических явлений и процессов Смоленской области на основе заданных показателей. Построение статистических графиков, рядов распределения, вариационных рядов, их обобщение и оценка.

    курсовая работа [786,2 K], добавлен 15.03.2011

  • Система показателей статистики товародвижения и сбыта продукции, индексные методы статистического изучения. Анализ ассортимента, динамики и структуры реализованной продукции, статистический анализ индексов товародвижения. Резервы роста товарооборота.

    курсовая работа [2,5 M], добавлен 10.08.2011

  • Основные категории статистики. Группировка - основа научной обработки данных статистики. Содержание сводки и статистическая совокупность. Построение вариационного, ранжированного и дискретного рядов распределения. Группировка предприятий по числу рабочих.

    контрольная работа [23,3 K], добавлен 17.03.2015

  • Понятие и предмет статистики, теоретические основы и категории, взаимосвязь с другими науками. Объект и метод изучения статистики. Основные задачи, принципы организации и функции государственной статистики в РФ. Примеры статистической закономерности.

    лекция [17,3 K], добавлен 02.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.