Подземная нефтегазовая гидродинамика
Физические основы подземной гидродинамики. Дифференциальные уравнения фильтрации. Плоские задачи теории фильтрации об установившемся притоке к скважине. Нестационарная фильтрация упругой жидкости и газа. Задачи Баклея-Леверетта и Рапопорта-Лиса.
Рубрика | Геология, гидрология и геодезия |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 21.10.2014 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Такой поток может реализовываться, когда скважина вскрывает только плоскую горизонтальную, непроницаемую кровлю пласта (рис.3.3). Пласт при этом должен быть неограниченной толщины, а забой иметь полусферическую форму. Приближение к данному виду потока тем лучше, чем глубина вскрытия меньше толщины пласта.
Описанные три вида одномерного потока играют большую роль при решении многих задач нефтегазопромысловой практики. Они лежат в основе ряда исследований закономерностей течения жидкости в пласте, в зависимости от принятой системы разработки или от конструктивных особенностей скважин. Естественно, моделируя каждый из трёх видов одномерного потока, мы прибегаем к некоторой схематизации реальных пластов и течений жидкости. Тем не менее, рассмотренные схемы не только воспроизводят, хотя и приближенно простейшие случаи течения жидкости в реальном пласте, но и помогают изучать более сложные виды потоков пластовой жидкости в тех случаях, в которых сложный фильтрационный поток удобно представить себе состоящим из простейших видов потока.
3.2 Исследование одномерных течений
3.2.1 Задача исследования
Задача исследования установившегося фильтрационного потока заключается в определении дебита (расхода), давления, градиента давления и скорости фильтрации в любой точке потока, а также в установлении закона движения частиц жидкости (или газа) вдоль их траекторий и в определении средневзвешенного по объёму порового пространства пластового давления.
3.2.2. Решение общего дифференциального уравнения установившегося потенциального одномерного потока. Показатель формы потока
При условии вытеснения флюида из пласта или его нагнетания в пласт через галерею или скважину условимся принимать за координату произвольной точки пласта расстояние r до этой точки от:
галереи (для прямолинейно- параллельного потока);
центра контура скважины в основной плоскости (плоскости подошвы пласта) фильтрации (для плоскорадиального потока);
центра полусферического забоя скважины (для сферически-радиального потока).
В случае одномерного потока пласт представляется укрупнённой трубкой тока, а из условия неразрывности потока (уравнение 2.3) следует, что при установившейся одномерной фильтрации массовый расход G через все изобарические (эквипотенциальные) поверхности, определяемые уравнением r=const, в трубке тока будет один и тот же. Таким образом
u= G /F( r ), (3.2)
где F=F( r ) - площадь эквипотенциальной поверхности в функции координаты r. Отметим, в данном случае средняя скорость фильтрации на некоторой эквипотенциальной поверхности совпадает со скоростью фильтрации в любой точке этой поверхности.
Определим величину площади F для различных видов одномерных потоков:
прямолинейно-параллельный поток - F( r )=Bh;
плоскорадиальный поток - F( r ) =2 h r;
радиально-сферический поток - F( r ) = 2 r2.
Обратившись к уравнению (2.7) следует отметить, что положительный массовый дебит будет в тех случаях, когда r отсчитывается от стока, т.е. галерея или скважина - эксплуатационная. Приравнивая правые части (2.7) и (3.2), получаем общее дифференциальное уравнение трех простейших видов потенциального одномерного потока:
, (3.3)
где А и j имеют следующие значения:
прямолинейно-параллельный поток - A = Bh, j = 0;
плоскорадиальный поток - A =2 h, j = 1;
радиально-сферический поток - A = 2, j = 2.
Параметр j получил название показателя формы потока, т.к. характеризует вид одномерного течения.
Разделив в (3.3) переменные и проинтегрировав, получим:
, (3.4)
где С - произвольная постоянная, определяемая из граничных условий.
Из формулы (3.4) следует, что она верна при значениях j=0;2. При j=1 (плоскорадиальный поток) интегрирование (3.3) даёт
. (3.5)
Найдем единственное решение, соответствующее заданным граничным условиям, т.е. определим постоянную С. Наиболее часто представляются следующие два варианта задачи.
Известны: постоянный массовый дебит G и значение потенциала на одной из граничных поверхностей рассматриваемой области пласта, например, на питающем контуре (пластовое значение потенциала) эксплуатационной галереи или скважины (G = G0 = const, = к при r = rк).
Подставляя данные значения в (3.4), получаем:
. (3.6)
Для замыкания данного уравнения необходимо соотношение для массового дебита G = G0 = const.
2. Известны: значения потенциалов на двух граничных поверхностях пласта, например, на забое скважины и на границе пласта с областью питания (на контуре питания). Т.о. = с при r = rc ; = к при r = Rк . Подставляя в равенство (3.4) один раз значения Rк и к, а другой раз значения с и rc, и исключая из двух полученных уравнений постоянную С, найдём массовый дебит G или объёмный дебит Q:
(3.7)
где значения А и j приведены выше.
Исключая из (3.6) величину G / A, при помощи формулы (3.7) получаем:
. (3.8)
По (3.8) можно определить значение потенциала для любой точки пласта с координатой r, если дебит неизвестен.
В случае плоскорадиального потока (j = 1) соответственно рассмотренным выше двум вариантам задачи и поставленным граничным условиям получим равенства:
(3.9)
(3.10)
Таким образом, формулы (3.9), (3.10) действительны только для плоскорадиального потенциального потока любой жидкости. Для других видов одномерного движения имеем формулы (3.7), (3.8). Распределение градиента потенциала описывается зависимостью (3.3).
3.2.3 Потенциальные функции
В предыдущем разделе были получены соотношения, определяющие массовый дебит (3.7, 3.9), распределения потенциала (3.8, 3.10) и градиента потенциала (3.3). В то же время для задач исследования необходимо определение объёмного дебита, давления и скорости фильтрации. В связи с этим, определим выражения потенциальной функци
(2.5)
для случаев флюидов различной физической природы (жидкость или газ), а также различных типов коллекторов (пористые или трещиноватые).
Несжимаемая жидкость и недеформируемый (пористый) пласт
В данном случае k=const, =const, и кроме того, для простоты будем считать =const. Таким образом
. (3.11)
Несжимаемая жидкость и трещиноватый (деформируемый) пласт
Для данных условий =const и, как в предыдущем случае, =const, но
, (1.43)
где * изменяется в пределах от 0,01.10-5 м2/н до 0,006.10-5 м2/н.
В таком случае
. (3.12)
Упругая жидкость и недеформируемый пласт
Считаем k = const, = const, но
. (3.13)
В этом случае
. (3.14)
Совершенный газ и недеформируемый пласт
В данных условиях k = const, = const, но при изотермической фильтрации
= cт р/ рст. (2.29)
При подстановке выражения (2.29) в (2.5) имеем после интегрирования
. (3.15)
Данная потенциальная функция получила название функции Лейбензона по имени автора впервые её предложившего.
Реальный газ и недеформируемый пласт
Как и в предыдущем случае полагаем k = const. Уравнение состояния реального газа имеет вид
р=z R T . (2.30)
В случае изотермического течения газа справедливо следующая модификация данного уравнения:
, (3.16)
где z(pcm) полагают равным 1.
С учетом (3.16), потенциальная функция запишется в виде
, (3.17)
.
Для вычисления интеграла f(p) наиболее часто применяется следующий способ: по графикам или эмпирическим зависимостям z(p), (p) определяются значения z(pс) = zс , (pс)= с , z(pк) = zк , (pк)= к ; переменные z , под знаком интеграла заменяются постоянными, равными z = (zc+zr) / 2; = (c+к) / 2. В этом случае можно вычислить интеграл f
. (3.18)
3.2.4 Анализ основных видов одномерного течения по закону Дарси
Для практического исследования фильтрационных потоков необходимо знать распределение не абстрактной функции - потенциала, а конкретных физических параметров - давления, скорости, закона движения и т.д. Следовательно, необходим переход от зависимостей (3.3, 3.7-3.10) к зависимостям, определяющим выше перечисленные параметры при использовании, приведенных в разделе 3.2.3. выражений для потенциальной функции.
В связи с тем, что для разработки месторождений наибольшее значение имеет плоско-радиальный тип течения (приток к скважине), то ограничимся получением указанных зависимостей для данного вида течения. При этом исходными будут уравнения:
изменения потенциальной функции
(3.10)
;
притока
(3.9)
изменения градиента потенциала
. (3.3)
Течение несжимаемой жидкости через недеформируемый (пористый) пласт
В данном случае
. (3.11)
Следовательно,
распределение давления
(3.19)
градиент давления
(3.20)
объёмный дебит (формула Дюпюи)
(3.21)
скорость фильтрации
(3.22)
закон движения частиц флюида
Движение частицы описывается уравнением .
Интегрируем данное соотношение по времени от 0 до t и по расстоянию от R0 до r, где R0 - начальное положение частицы флюида. В результате получим
. (3.23)
Время отбора всей жидкости из кругового пласта
. (3.24)
средневзвешенное давление
. (3.25)
С целью получения выражения для средневзвешенного давления определим
(3.26)
и, подставив в (3.25) выражение (3.19), проинтегрируем от rc до rк. Пренебрегая rс, по сравнению с rк, получаем
. (3.27)
Рис. 3.4. Индикаторная диаграмма в случае плоскорадиального течения несжимаемой жидкости в недеформируемом пласте по закону Дарси
Анализ:
Дебит не зависит от r, а только от депрессии рк. График зависимости Q от рк (Рис.3.4) называется индикаторной диаграммой, а сама зависимость - индикаторной. Отношение дебита к депрессии называется коэффициентом продуктивности скважины
(3.28)
Рис. 3.5. Зависимость градиента давления и скорости от расстояния до центра скважины
Рис. 3.6. Распределение давления по радиусу
2. Градиент давления и, следовательно, скорость u обратно пропорциональны расстоянию (рис.3.5) и образуют гиперболу с резким возрастанием значений при приближении к забою.
3. Графиком зависимости р=р( r ) является логарифмическая кривая (рис.3.6), вращением которой вокруг оси скважины образуется поверхность, называемая воронкой депрессии. Отсюда, основное влияние на дебит оказывает состояние призабойной зоны, что и обеспечивает эффективность методов интенсификации притока.
4. Изобары - концентрические, цилиндрические поверхности, ортогональные траекториям.
5. Дебит слабо зависит от величины радиуса контура rк для достаточно больших значений rк /rc, т.к. rк /rc входят в формулу под знаком логарифма.
Течение несжимаемой жидкости в трещиноватом (деформируемом) пласте
распределение давления
(3.29)
градиент давления
(3.30)
объёмный дебит
, (3.31)
где знаки перед выражением в правой части зависят от того, является ли скважина эксплуатационной или нагнетательной;
скорость фильтрации
. (3.32)
При малых депрессиях на пласт из-за малости * можно считать, что
и тогда зависимость для давления (3.29) переходит в вид, аналогичный распределению давления в недеформируемом пласте.
При *=0, т.е. для недеформируемого трещиноватого пласта, после раскрытия неопределённости в формуле (3.31) получаем формулу Дюпюи.
Рис. 3.7. Кривые распределения давления:
1- недеформируемый пласт
2 - трещиноватый пласт
Анализ:
1. В общем случае воронка депрессии для деформируемого пласта более крутая, чем для недеформируемого, пористого (рис. 3.7). Указанный характер графиков подтверждает, что в деформирумом трещиноватом пласте, за счет уменьшения раскрытости трещин, при снижении пластового давления возникают дополнительные фильтрационные сопротивления, вызывающие резкое понижение давления на сравнительно небольшом расстоянии от скважины, причем более резко снижается давление в пласте с большим *.
2. Из формулы для объёмного дебита (3.31) следует, что индикаторная кривая - парабола четвёртого порядка с координатами вершины:
. (3.33)
Рис. 3.8. Вид индикаторной кривой при фильтрации несжимаемой жидкости в трещиноватом пласте
Парабола проходит через начало координат, симметрична относительно оси, параллельной оси дебитов; вторая ветвь смысла не имеет (рис.3.8). Однако если учесть реальные пластовые условия (полного смыкания трещин не происходит, т.к. не учитываются факторы, связанные с изменением характеристик течения из-за изменения раскрытия трещин в направлении потока), то можно говорить только о приближённом выполнении экстремальных условий (3.33).
Комплексный параметр * можно определить или графоаналитически или непосредственно из (3.31), взяв по индикаторной кривой два известных значения дебита Q1 и Q2 при двух значениях депрессии рс1 , рс2 , т.е. из соотношения
. (3.34)
По найденному * можно из уравнения (3.31) определить проницаемость k0т.
Потенциальное движение упругой жидкости через недеформируемый пласт
При данном виде течения
. (3.14)
Подобно тому, как в случае однородной несжимаемой жидкости существует линейная зависимость между потенциалом и давлением р, так в установившимся потоке малосжимаемой жидкости существует линейная зависимость между и плотностью . Это означает, что для упругой жидкости зависимость между координатой r выражается точно теми же формулами, какими выражается зависимость между р и r при однородной несжимаемой жидкости. Чтобы найти зависимость для давления подставим в уравнения, связывающие переменные и r, значения , к и с, определяемые уравнением состояния (2.27). Тогда для плоскорадиального течения имеем
. (3.35)
Если взять приближенное линейное уравнение состояния, то придём к тем же зависимостям между р и r , что и при однородной несжимаемой жидкости.
Массовый дебит для упругой жидкости определяется из (3.5) при подстановке из (3.14)
. (3.36)
Приближенная формула массового дебита получается при использовании линейного уравнения состояния
. (3.36*)
Разделив G на плотность , найдем объёмный дебит Q , приведённый к тому давлению, которому соответствует плотность . Так, приводя объёмный дебит к стандартному давлению в 0,1013 МПа, делим G на ст . В этом случае формула (3.36) будет совпадать с формулой (3.21), справедливой для несжимаемой жидкости.
Пренебрегать сжимаемостью жидкости в установившемся потоке можно только при условии достаточно малой величины коэффициента ж и не очень большого перепада давления рс = рк - рс. В этом случае можно, как для несжимаемой жидкости, считать постоянным вдоль потока не только массовый дебит, но и объёмный. В противном случае, вдоль потока: постоянен только массовый дебит; массовая скорость фильтрации изменяется по тому же закону, что скорость фильтрации для несжимаемой жидкости.
Время движения частицы упругой жидкости рассчитывается так же, как и для несжимаемой жидкости.
Рис. 3.9. Распределение давления при плоскорадиальном течении в недеформируемом пласте:
1 - газ;
2 - несжимаемая жидкость
Течение совершенного газа через недеформируемый пласт
В данной постановке , а основные уравнения имеют вид
Распределение давления из (3.10)
(3.37)
Если сравнить распределения давления в случае потока газа с соответствующим распределением для однородной несжимаемой жидкости (рис. 3.9), то увидим, что для газа давление вблизи стенок скважины изменяется более резко, чем для несжимаемой жидкости. Пьезометрическая кривая для газа имеет, следовательно, более пологий характер на большем своём протяжении, чем кривая несжимаемой жидкости; однако у неё более резкий изгиб у стенки скважины, чем у кривой несжимаемой жидкости.
Уравнение притока
(3.38)
Если обе части уравнения (3.38) разделить на ст , то получим формулу для объёмного дебита, приведенного к стандартному давлению
(3.39)
Рис. 3.10. Индикаторная зависимость при фильтрации газа по закону Дарси
Таким образом, индикаторная зависимость для газа описывает параболическую зависимость дебита Qст от депрессии рк (рис.3.10) и линейную зависимость дебита от разницы квадратов пластового и забойного давлений в отличие от индикаторной зависимости для несжимаемой жидкости, где устанавливается линейная связь дебита с депрессией
Распределение градиента давления получим из (3.3)
. (3.40)
Из данной формулы следует, что градиент давления вблизи забоя резко возрастает как за счёт уменьшения r, так и за счёт падения давления р, вызванного сжимаемостью газа.
Изменение скорости фильтрации получим из закона Дарси при использовании уравнения (3.40)
. (3.41)
Из (3.41) видно, что скорость фильтрации слабо меняется вдали от скважины и резко возрастает в призабойной зоне.
Рис. 3.11. Индикаторная зависимость при фильтрации газа по закону Дарси в переменных Q - p2
Уравнение индикаторной линии. Уравнение (3.39) устанавливает линейную связь между дебитом и разностью квадратов контурного и забойного давлений, поэтому для простоты исследований индикаторная диаграмма при фильтрации идеального газа по закону Дарси строится в координатах Qст -(рк2-рс2). В этом случае имеем прямую (рис.3.11), проходящую через начало координат с угловым коэффициентом
. (3.42)
Запишем уравнение (3.39) в координатах Qст-(рк-рс). Так как Qcт=(рк2-рс2), а разность квадратов рк2 - рс2 = 2ркрс - (рс)2, где (рс= рк - рс ), то
.
Таким образом, для случая фильтрации совершенного газа по закону Дарси, имеем параболу с осью, параллельной оси дебитов (рис.3.10). Ветвь параболы, изображенная пунктиром, физического смысла не имеет.
Реальный газ и недеформируемый пласт
Следует использовать при давлении рпл>10МПа и депрессии на пласт рс/рк<0.9.
Как и в предыдущем случае, полагаем k=const. Уравнение состояния реального газа имеет вид
р = z R T . (2.30)
или для изотермического течения газа
, (3.16)
Потенциальная функция имеет вид
, (3.44)
где z = (zc+zк) / 2; = (c+к) / 2; zс =z(pс), с =(pс), zк =z(pк), к =(pк ).
Подставив в (3.9) выражение потенциала (3.44) и перейдя от массового дебита к объёмному, приведённому к стандартным условиям,
Qст = G/cm, получим уравнение притока:
(3.45)
Полученное выражение для дебита реального газа отличается от выражения (3.39) совершенного газа среднепластовыми множителями и z. Если сравнить расчётные значения, то можно заметить, что дебиты реального газа ниже дебитов совершенного при тех же условиях. Для тяжелых углеводородов дебит природного газа может составлять всего лишь 72% дебита совершенного.
3.2.5 Анализ одномерных потоков при нелинейных законах фильтрации
В области нарушения верхней границы закона Дарси необходимо использовать степенной или двухчленный законы фильтрации. В целях общности рассмотрим фильтрацию при двухчленном законе для случая плоскорадиального течения
, (3.46)
.
Несжимаемая жидкость в недеформируемом пласте
Выразим скорость фильтрации через дебит Q
u=Q / (2 rh)
и перепишем выражение (3.46) в виде
.
Отсюда, разделяя переменные и интегрируя, в первом случае, по радиусу от r до Rк и по давлению от р до рк , а, во втором случае, по радиусу от rс до Rк и по давлению от рс до рк, получаем:
распределение давления в пласте
; (3.47)
дебит скважины
. (3.48)
Дебит находится как положительный корень квадратного уравнения (3.48). Из данного уравнения видно, что индикаторная линия - парабола. Кривая распределения давления (3.47) - гипербола и воронка депрессии - гипербола вращения. Крутизна воронки депрессии у стенки скважины будет больше, чем у чисто логарифмической кривой при течении по закону Дарси.
Идеальный газ в недеформируемом пласте
Найдём распределение давления в круговом пласте и выведем формулу притока газа к скважине. С этой целью выразим скорость через приведённый объёмный расход
. (3.49)
Подставим выражение (3.49) в (3.46) и, заменив плотность по уравнению состояния (2.29), получим:
. (3.50)
Разделив переменные и проинтегрировав в пределах р - рс и r - rc получим:
. (3.51)
Распределение давления по (3.51) отличается от распределения давления по закону Дарси наличием последнего члена, что диктует более резкое изменение давления в призабойной зоне.
Интегрируя уравнение(3.50) в пределах рк - рс и Rк - rc, получаем выражение для притока при пренебрежении 1/Rк по сравнению с 1 / rc
. (3.52)
или в общепринятом виде
. (3.53)
Уравнение (3.53) - основное уравнение, используемое при разработке газовых и газоконденсатных месторождений, так как определяет приток газа к скважине. Коэффициенты А и В определяют по данным исследования газовых скважин при установившихся режимах.
Однородная несжимаемая жидкость в деформируемом (трещиноватом) пласте
Для трещиноватой среды двухчленный закон записывается в виде
, (1.46)
где ; lбл - средний линейный размер блока.
Умножим все члены (1.46) на плотность и вынесем за скобки вязкость . Тогда применительно к плоскорадиальному потоку получим:
, (3.54)
.
После разделения переменных и интегрирования (3.54) в пределах rc - rк ; с - к получим
, (3.55)
Если в (3.55) подставим выражение для трещинной проницаемости и выразим массовый дебит через объёмный, то будем иметь окончательное выражение
. (3.56)
Как видно из (3.56), индикаторная кривая в этом случае определяется в результате сложения двух парабол - параболы четвёртого порядка, симметричной относительно оси, параллельной оси дебитов, и параболы второго порядка (относительно дебита Q) симметричной относительно оси, параллельной оси депрессий (рс) и отстоящей от последней на расстоянии, равном
.
Идеальный газ в деформируемом (трещиноватом) пласте
Из (3.56) при подстановке выражений для плотности, проницаемости и приведённого к стандартным условиям объёмного дебита можно получить следующее выражение:
(3.57)
3.2.6 Фильтрация в неоднородных средах
В продуктивных пластах в различных точках проницаемость неодинакова. При мелкомасштабном хаотичном изменении фильтрационных характеристик по пласту пласт считается в среднем однородно-проницаемым.
Пласт называется макронеоднородным, если его фильтрационные характеристики (проницаемость, пористость) значительно, скачкообразно отличаются в разных областях.
Различают следующие виды макронеоднородности:
а) Слоистая неоднородность (многослойный пласт), т.е. неоднородность по толщине пласта. Предполагается, что пропластки разделены непроницаемыми границами - гидравлически изолированы либо учитываются перетоки между слоями различной проницаемости - гидравлически сообщающиеся; поток в каждом пропластке - прямолинейно-параллельный или плоскорадиальный; в пределах каждого пропластка фильтрационные параметры постоянны, а на границе соседних они претерпевают скачок.
Если течение потенциально, то полный дебит пласта определяется как сумма дебитов всех пропластков. При практических расчетах указанный многослойный пласт можно заменить квазиоднородным с эффективной проницаемостью
, (3.58)
где ki , hi - проницаемость и эффективная толщина i-го пропластка, h- эффективная толщина всего пласта.
б) Зональная неоднородность - пласт по площади состоит из нескольких зон различных фильтрационных параметров, на границах которых данные параметры меняются скачкообразно.
Согласно уравнению неразрывности, массовый дебит постоянен и равен:
при прямолинейно-параллельном потоке
; (3.59)
при плоскорадиальном потоке
, (3.60)
где В - ширина пласта; li , ri - протяженность i- й зоны или её внешний радиус (r0=rc); , i=1,...,n; n - число зон.
При замене зонально-неоднородного пласта - квазиоднородным следует использовать средние эффективные проницаемости:
при прямолинейно-параллельном потоке
; (3.61)
при плоскорадиальном потоке
, (3.62)
где L, Rк - расстояние от галереи до контура и радиус контура.
В практике важное значение имеет случай притока к скважине при наличии вокруг забоя кольцевой зоны с проницаемостью, отличной от проницаемости пласта (торпедирование или кислотная обработка, установка гравийного фильтра, глинизация или порофинизация призабойной зоны и т.д.). При данной задаче надо установить влияние различия проницаемостей кольцевой призабойной зоны и остальной части пласта на продуктивность скважины. С этой целью сравним дебит скважины в неоднородном пласте с двумя областями (n = 2 в формуле 3.60) проницаемости с дебитом скважины в однородном пласте (n = 1).
Расчеты показывают:
Недопустимость постановки прогноза на будущий дебит, исходя только из данных о проницаемости призабойной зоны пласта, а следует использовать квазиоднородное приближение (формула 3.62).
Ухудшение проницаемости призабойной зоны сильнее влияет на дебит, чем увеличение проницаемости в этой зоне. Если произойдёт заметное ухудшение проницаемости даже в небольшой области пласта, примыкающей к скважине, то дебит скважины резко снизится.
В случае фильтрации по закону Дарси увеличивать проницаемость призабойной зоны более, чем в 20 раз не имеет смысла, т.к. дальнейшее увеличение проницаемости практически не ведёт к росту дебита.
Нарушение в пластовых условиях закона Дарси усиливает положительное влияние увеличенной проницаемости призабойной зоны на производительность скважины.
4. ПЛОСКИЕ ЗАДАЧИ ТЕОРИИ ФИЛЬТРАЦИИ ОБ УСТАНОВИВШЕМСЯ ПРИТОКЕ К СКВАЖИНЕ
При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:
Рис. 4.1. Зависимость суммарного дебита от числа скважин
1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Последнее означает, например, невозможность установления нулевого или отрицательного забойного давления.
2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.
Следует отметить, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.4.1). Увеличение дебита при этом требует понижения забойного давления.
Для решения поставленных задач необходимо решить задачу плоской интерференции (наложения) скважин. Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.
Решение задач будем строить на принципе суперпозиции (наложения) потоков. Основанный на этом принципе метод суперпозиции заключается в следующем.
При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.4.2,b).
Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 4.2,a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал
, (4.1)
где i - номер скважины; ri - расстояние между некоторой точкой пласта М и центром скважины под номером i.
Пользуясь методом суперпозиции, определяем потенциал сложного потока:
, (4.2)
Зависимость (4.2) физически означает, что фильтрационные потоки от работы каждого источника-стока накладываются друг на друга. Т.к. пласт предполагается неограниченным, то потенциал на бесконечности равен бесконечности. В центрах стоков-источников (ri=0) потенциал также равен бесконечности.
А б
Рис. 4.2. Схема векторного сложения скоростей фильтрации в произвольной точке М при работе нескольких источников и стоков
Если жидкость несжимаема, то в зависимости (4.2), вместо массовых дебитов, можно использовать объёмные дебиты Q.
Для определения уравнений эквипотенциальных поверхностей (изобар) следует иметь в виду, что во всех точках этих кривых значение потенциала (давления) должно оставаться неизменным. Таким образом, приравнивая (4.2) к некоторой постоянной, получаем:
, (4.3)
где П - знак произведения; С1 - постоянная.
Если дебиты всех скважин равны по величине, то
, (4.4)
где обозначение sign означает знак параметра Gi .
Линии тока образуют семейство кривых, ортогональных изобарам.
Метод суперпозиции можно использовать не только в бесконечных пластах, но и в пластах, имеющих контур питания или непроницаемую границу произвольной формы. В этом случае для выполнения тех или иных условий на границах вводятся фиктивные стоки или источники за пределами пласта. Фиктивные скважины, в совокупности с реальными обеспечивают необходимые условия на границах, и задача сводится к рассмотрению одновременной работы реальных и фиктивных скважин в неограниченном пласте. Данный метод называется методом отображения источников и стоков.
4.1 Приток к совершенной скважине
Формула (4.2) основная в решении задач интерференции скважин. Рассмотрим применение этой формулы в случаях: фильтрационного потока от нагнетательной скважины к эксплуатационной; пласта с произвольным контуром питания, но удалённым от скважин и пласта с прямолинейным контуром питания.
4.1.1 Фильтрационный поток от нагнетательной скважины к эксплуатационной
Рис. 4.3. Схема расположения источника 01 и стока 02
Пусть сток О1 и источник О2 равнодебитны, т.е. имеют одинаковые по модулю массовые дебиты G. Расстояние между источником и стоком равно 2а. Исследуем поток от источника к стоку.
Проведём ось 0 х через точки О1 и О2 таким образом, чтобы точка О1 находилась от начала координат 0 на расстоянии а1, а точка О2 на расстоянии а2 (рис. 4.3).
По формуле (4.2) определим потенциальную функцию потока. При этом учтем знаки дебитов: источник G 1= - G, а сток G 2= + G. После подстановки получим:
, (4.5)
где r1 и r2 - расстояния любой точки пласта до стока и источника, соответственно.
Уравнение изобар (4.4) при этом будет иметь вид
(4.6)
и соответствует окружностям, центры которых расположены на прямой, проходящей через центры скважин (рис.4.4). Среди окружностей есть одна, имеющая бесконечно большой радиус - прямая, которая делит расстояние между скважинами и всю плоскость течения пополам. Половина всех окружностей конечного радиуса расположена по одну сторону от этой прямой, остальные окружности - по другую.
Рис. 4.4. Фильтрационное поле источника и стока
Семейство линий тока ортогонально изобарам и, следовательно, в данном случае тоже окружности. Все линии тока проходят через сток и источник. Центры всех окружностей линий тока расположены на прямой, делящей расстояние между стоком и источником пополам (рис.4.4).
Массовый дебит эксплуатационной и нагнетательной скважин при их совместной деятельности определяется на основе соотношения (4.5), расписанного для каждой скважины при учете отношений радиусов (рис.4.3): на контуре эксплуатационной скважины - ; на контуре нагнетательной скважины - . Решая, полученную систему уравнений, имеем
. (4.7)
Массовая скорость фильтрации в любой точке пласта М (рис.4.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока
(4.8)
Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим для однородной несжимаемой жидкости время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами, то есть по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, прошедшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.
Чтобы решить указанную задачу, выразим скорость в (4.8) через производную расстояния по времени и, поместив начало координат в сток О1, проинтегрируем полученное уравнение по х от х0 до х. Тогда время движения частицы от некоторой точки х0 до точки х определится зависимостью
. (4.9)
Время обводнения Т, т.е. прохождения частицы расстояния О1О2= 2а определится из (4.9), если принять х=0; х0=2а
, (4.10)
где m - пористость; Q - объёмный дебит.
Зная Т, можно найти площадь обводнения , приравнивая объёмы TQ и mh.
. (4.11)
Анализ формул (4.9) и (4.10) показывает, что расстояние, пройденное частицей за время Т от нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.
4.1.2 Приток к группе скважин с удаленным контуром питания
В большинстве практических случаев контур питания находится довольно далеко. Поэтому решения данной задачи позволяют провести предварительную оценку однородных участков месторождений.
Рис. 4.5. Схема группы скважин в пласте с удаленным контуром питания
Пусть в пласте расположена группа из n скважин (рис. 4.5) с различными дебитами Gi, забойными потенциалами pi и радиусами скважин ri. Расположение скважин задано и на достаточно большом удалении находится контур питания, форма которого неизвестна, но известен порядок расстояния rк от контура питания до группы скважин. При этом rк намного больше расстояния между скважинами. Считаем, что потенциал контура к и забойные потенциалы скважин i. заданы.
Для определения дебитов используем формулу (4.2) при помещении точки М на забое каждой скважины, что позволяет записать n - уравнений вида
, (4.12)
где rci - радиус скважины на которую помещена точка М; rji - расстояние между i - й и j - й скважинами; ci - забойный потенциал i - й скважины.
Неизвестных же - n+1, так как константа С тоже неизвестна. Для нахождения С воспользуемся условием =к на удалённом контуре питания:
. (4.13)
Приближение заключается в том, что для удаленных точек контура питания от скважин принимаем одно и то же расстояние rк , что справедливо для достаточного удаления контура, учитывая что оно находится под знаком логарифма. Уравнение (4.13) и будет (n+1) уравнением.
Таким образом, плоская задача интерференции при удалённом контуре питания сводится к решению алгебраической системы уравнений первой степени (4.12), (4.13).
При помощи данной системы можно находить или депрессию при заданном дебите, или получить значения дебитов при заданных депрессиях. При найденных дебитах можно определить пластовое давление в любой точке по (4.2), причем результат будет тем точнее, чем дальше эта точка отстоит от контура питания.
4.1.3 Приток к скважине в пласте с прямолинейным контуром питания
Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1 на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения, на котором поддерживается постоянный потенциал к. На скважине радиуса rc поддерживается постоянный потенциал с.
Рис. 4.6. Схема притока к скважине с прямолинейным контуром питания
Найдём дебит скважины G и распределение функции . Так как контур питания пласта 0у является эквипотенциальной линией, то все линии тока, сходящиеся в центре скважины О1, должны быть перпендикулярны к прямой 0у (рис.4.6). Для определения поля течения добьёмся выполнения граничных условий на контуре введением фиктивного источника О2 с дебитом, равным дебиту стока О1, путём зеркального отображения данного стока относительно прямой 0у.Таким образом используем ранее упомянутый метод отображения и задачу о потоке в пласте с прямолинейным контуром питания и с одиночной эксплуатационной скважиной сведём к ранее рассмотренной в разделе 4.1.1. задаче о фильтрационном потоке от источника к стоку. Отличие данных задач только в постановке граничных условий: в задаче раздела 4.1.1. источник питания - нагнетательная скважина, а в данном случае - прямолинейный контур, а источник О2 фиктивный.
Используем для определения дебита выражение (4.10), но со следующей заменой граничных условий:
= к при r1 = r2 ,т.е. при r1/r2 = 1;
= с при r1 = rс , r2 2а, т.е. при r1/r2 rс /2а.
Подставляя последовательно соответствующие граничные значения , r1 и r2 в равенство (4.10) получаем два уравнения, определяющих потенциалы на контуре и забое. Из этих уравнений легко находится массовый дебит одиночной скважины в пласте с прямолинейным контуром
. (4.14)
Если бы в пласте была нагнетательная скважина, то в формуле (4.14) достаточно только изменить знак правой части.
4.1.4 Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы
Данная задача может возникнуть при расположении добывающей скважины вблизи сброса или около границы выклинивания продуктивного пласта. В этом случае реальную скважину-сток зеркально отображают относительно непроницаемой границы, и дебиту скважины - отображения приписывают тот же знак, что и дебиту реальной скважины. При притоке к двум равнодебитным скважинам скорость фильтрации на непроницаемой границе будет направлена вдоль границы, т.е. граница является линией тока и фильтрация через неё отсутствует. Дебит скважины определяется из уравнений (4.12) и (4.13) для n=2 в пласте с удалённым контуром питания:
. (4.15)
4.1.5 Приток к скважине в пласте с произвольным контуром питания
В естественных условиях контур питания имеет произвольную форму и её не всегда удаётся определить. Кроме того, часто не удаётся определить достаточно точно и расстояние а от скважины О1 до контура. Можно ли в этом случае пользоваться формулой предыдущего раздела? Любой произвольный контур В находится между прямолинейным Впр. и круговым Вкр. (рис.4.7).
Расчеты дебитов проведенные для этих двух крайних разновидностях контуров показывают:
1. При вычислении дебита скважины форма внешнего контура пласта не имеет сколько-нибудь существенного значения.
2. Чем дальше от внешнего контура пласта находится скважина, тем меньший дебит она имеет. Однако так как величина расстояния входит под знаком логарифма, то даже значительное изменение этого расстояния мало влияет на величину дебита
3. В случае расположения скважины эксцентрично относительно контура поток можно считать плоскорадиальным и дебит рассчитывать по формуле Дюпюи, если rк.>103 rc и эксцентриситет а1< rк /2.
Таким образом, для практических расчетов точное знание формы и расстояния до контура питания необязательно, но порядок расстояния до контура питания должен быть известен.
Рис.4.7. Схема видов контуров питания
4.1.6 Приток к бесконечным цепочкам и кольцевым батареям скважин
При рациональной системе разработки нефтяных месторождений скважины располагают обычно в виде рядов, расставленных вдоль контура нефтегазоносности и контура питания. Эти линии называются батареями или рядами скважин. Без большой погрешности можно считать дебит скважин в каждом ряду одинаковым, если в каждом ряду скважины находятся в одинаковых условиях. Дебиты же скважин в разных рядах будут отличаться друг от друга. Наибольший дебит имеет первый ряд, ближайший к контуру питания, а по мере удаления дебит уменьшается. Поэтому число одновременно работающих рядов редко превышает два-три, и последующие ряды включаются по мере приближения контура нефтегазоносности. Когда вода подошла к первому ряду, то он выключается и включается один из следующих рядов и так далее.
В этом случае число неизвестных уменьшается от числа скважин n до числа рядов N (обычно число рядов не превышает 2-4), что значительно упрощает решение задачи пункта 4.1.2.
Приток к скважинам кольцевой батареи
Рис. 4.8. Схема кольцевой батареи
Пусть центры скважин располагаются в вершинах правильного n-угольника, т.к. что скважины образуют кольцевую батарею радиуса а (рис. 4.8). Контур питания удалён от скважин на расстояние, значительно превышающее радиус батареи, и тогда можно считать, что все скважины равноудалены от контура питания на расстояние rк. Будем считать, что на контуре питания поддерживается постоянное значение потенциала к и на контуре скважин потенциал постоянен и равен с. В данной постановке, следовательно, надо решить задачу о плоском течении к n точечным стокам, размещённым равномерно на окружности радиуса а.
Для получения формулы дебита скважин воспользуемся формулой (4.2):
, (4.15)
где G - массовый дебит любой скважины батареи, rj - расстояния от некоторой точки пласта до всех n скважин; h - толщина пласта.
Граничные условия:
на контуре питания =к=const при rj=rк;
на контуре скважины =с=const
при r1=rс; rj(j1)=2a sin[(n-1)/n].
Используя данные граничные условия, преобразуем формулу (4.15):
, (4.16)
. (4.17)
В последнем выражении
. (4.18)
Тогда (4.17) перепишется в виде
(4.19)
и из (4.16), (4.19) получим выражение для определения дебита скважины
. (4.20)
Формула (4.20) справедлива при любом целом n. В частности, при n=1 имеем выражение типа формулы Дюпюи для определения дебита при плоскорадиальном потоке:
. (4.21)
Формула (4.20) - приближенная. Её можно применять в случае, если размеры пласта во много раз больше площади внутри окружности батареи скважин, например, при водонапорном режиме, когда жидкость можно считать несжимаемой. Если же в пласте установился режим растворенного газа, то трудно ожидать, что площадь, занятая газированной жидкостью, простирается до границ пласта.
Если расстояние до контура незначительно превышает радиус батареи, то, строго говоря, следует воспользоваться более точной формулой:
. (4.22)
Эта формула при n=1 переходит в формулу определения дебита эксцентрично заложенной одиночной скважины (а - эксцентриситет скважины). В большинстве практических случаев можно пользоваться формулой (4.20), т.к. уже при rк=10а дебиты, подсчитанные по формулам (4.20) и (4.22), различаются не более чем на одну тысячную процента.
Определим дебит батареи, умножив формулу (4.20) на число скважин в батарее n:
. (4.23)
Рассмотрим поле течения в области действия круговой батареи, т.е. построим семейства линий тока и изобар. Уравнение изобар получаем из (4.3) путём представления радиусов rj в полярной системе координат (рис. 4.8):
. (4.24)
Данное уравнение позволяет построить поле изобар, а линии тока пересекают изобары под прямым углом.
Рис. 4.9. Изобары и изолинии тока для кольцевой батареи из трёх скважин
Плоскость течения (рис. 4.9) кольцевой батареи с n равнодебитными скважинами, размещенными в вершинах правильного многоугольника, делится на n равных частей (секторов) прямыми линиями тока Н, сходящимися в центре батареи и делящими расстояние между двумя соседними скважинами пополам. Эти линии тока называются нейтральными. Другое семейство прямых линий тока Г проходит через центры скважин и делит сектор, ограниченный двумя нейтральными линиями, пополам. Это - главные линии.
Семейство изобар подразделяется на два подсемейства, которые разграничиваются изобарой пересекающей себя в центре батареи столько раз, сколько скважин составляет данную батарею. Первое подсемейство изобар определяет приток к отдельным скважинам и представляет собой замкнутые, каплеобразные кривые, описанные вокруг каждой скважины. Второе семейство - определяет приток к батарее в целом и представляет собой замкнутые кривые, описанные вокруг батареи.
Скорость фильтрации по главным линиям максимальна, а по нейтральным линиям - минимальна. В центре кольцевой батареи скорость фильтрации равна нулю, т.е. частица жидкости, находящаяся в точке, в которой изобара пересекает сама себя, неподвижна. Такие точки фильтрационного поля называются точками равновесия и при разработке в окрестностях таких точек образуются “застойные области”. В условиях водонапорного режима в этих областях могут возникать “целики нефти”. Зная положения точек равновесия в пласте, можно находить рациональные приёмы для своевременной ликвидации целиков нефти. Одним из таких приёмов является изменение режима работы скважин, заставляющее нефть целика прийти в движение в нужном направлении.
Для кольцевой батареи, на основе анализа формул (4.20)-(4.23), можно сделать ряд оценок эффекта взаимодействия:
дебит изменяется непропорционально числу скважин и радиусу батареи (расстоянию между скважинами);
с увеличением числа скважин дебит каждой скважины уменьшается при постоянном забойном давлении, т.е. растет эффект взаимодействия;
взаимодействие скважин может практически не проявляться только при очень больших расстояниях между скважинами (в случае несжимаемой жидкости, строго говоря, влияние скважин распространяется на весь пласт);
с увеличением числа скважин темп роста суммарного дебита батареи замедляется (рис. 4.1), а именно, сверх определённого предела увеличение числа скважин оказывается неэффективным в виду прекращения прироста дебита.
Приток к прямолинейной батарее скважин
Рассмотрим, как и в предыдущем случае, приток к батарее при удалённом контуре питания в режиме поддержания постоянного забойного давления. В отличие от круговой батареи необходимо различать два случая:
число скважин батареи нечетное;
число скважин четное.
В обоих случаях дебиты скважин, равноудаленные от середины или от концов батареи, будут одинаковы, а при разной удаленности будут отличаться. Последнее вызывается неодинаковой интенсивностью влияния со стороны скважин батареи на те или иные скважины. При этом при нечетном числе скважин дебит средней скважины отличается от дебитов других скважин.
Дебиты равномерно расположенных скважин можно определить общим методом с использованием формулы (4.2). Можно вывести аналогичные уравнения для любой скважины прямолинейной батареи конечной длины в пласте с прямолинейным контуром питания, но с использованием дополнительно метода отображения. В этом случае запись уравнений оказывается громоздкой из-за необходимости учета не только взаимных расстояний между скважинами, но также расстояний между скважинами и воображаемыми источниками и расстояний между этими последними.
Для практических расчетов можно использовать приближенную формулу П.П. Голосова для общего дебита скважин прямолинейной батареи:
для нечетного числа скважин 2n+1, где n - любое целое число
; (4.25)
для четного числа скважин 2n
. (4.26)
Здесь h - толщина пласта; - расстояние между скважинами; L - расстояние до контура.
Ошибка в определении дебитов по данным формулам не превышает 3-4% при L=10км, rс=10см, при расстояниях между скважинами 100м 500м.
Приведенные формулы можно использовать при любом контуре питания, т.к. проведенные ранее исследования взаимодействия двух скважин показали, что форма контура питания пласта мало влияет на взаимодействие скважин. При этом, по мере приближения скважин к контуру питания эффект взаимодействия уменьшается, но в реальных условиях значительного удаления скважин от контура питания погрешность определения расстояния до контура даже в 100% не отражается значительно на эффекте взаимодействия. Для однородных пластов и жидкостей относительные изменения дебитов скважин, вызванные эффектом взаимодействия, не зависят от физико-геологических характеристик пласта и от физических параметров жидкости.
Рис. 4.10. Схема прямолинейной батареи скважин
Рассмотрим фильтрационное поле (рис.4.10), поддерживаемое бесконечной цепочкой равностоящих скважин (требование бесконечности приводит к ликвидации граничных эффектов на концах батареи и равнодебитности скважин, так как все скважины оказываются в равных условиях притока к ним флюидов).
Для получения формул дебита скважины бесконечной прямолинейной батареи воспользуемся формулой (4.20) дебита скважины кольцевой батареи. Положим, что
rк = l + a;
a = n /(2 ), (4.27)
где L = const - разность между радиусом контура питания и радиусом кольцевой батареи а; = const - длина дуги окружности радиусом а между двумя соседними скважинами кольцевой батареи.
Подставив значения rк , a в формулу (4.20), получим
, (4.28)
где z= / (2l).
Переходя в данной формуле к пределу при n и учитывая, что=e, получаем формулу массового дебита скважины прямолинейной батареи
. (4.29)
Здесь L - расстояние от контура питания до батареи; - расстояние между скважинами батареи; h - толщина пласта.
Суммарный дебит из n - скважин определится следующим выражением
. (4.30)
Для несжимаемой жидкости соотношение (4.35) можно переписать через давление и объёмный дебит
. (4.31)
Ортогональная сетка, изображающая фильтрационное поле бесконечной прямолинейной батареи, изображена на рис. 4.11 .
Рис.4.11. Фильтрационное поле для бесконечной батареи
Здесь, как и в кольцевой батарее, имеются главные и нейтральные линии тока перпендикулярные цепочке. Нейтральными линиями тока вся плоскость течения делится на бесконечное число полос, каждая из которых является полосой влияния одной из скважин, находящейся в середине расстояния между двумя соседними нейтральными линиями. Главные линии тока проходят через центры скважин параллельно нейтральным линиям.
Изобара, бесчисленное множество раз пересекающая сама себя, отделяет изобары внешнего течения ко всей батареи, охватывающих всю цепочку скважин, от изобар притока к скважине, охватывающих только данную скважину. Точки пересечения граничной изобары являются точками равновесия и они делят интервал между двумя соседними скважинами пополам.
4.1.7 Метод эквивалентных фильтрационных сопротивлений
Данный метод называется методом Борисова и позволяет сложный фильтрационный поток в пласте при совместной работе нескольких батарей эксплуатационных и нагнетательных скважин разложить на простейшие потоки - к одиночно работающей скважине и к одиночно работающей батареи. Реализация данного метода достигается введением понятий внутреннего и внешнего фильтрационных сопротивлений, которые придают простейший физический смысл членам уравнений, используемых для подсчетов дебитов и значений потенциальных функций. Для выяснения этих понятий сравним формулы (4.30) или (4.31) с законом Ома I=U / R, где I - ток, U - разность потенциалов и R - сопротивление. Из сравнения видно, что фильтрационное сопротивление определяется величиной знаменателя правой части (4.30), который состоит из двух слагаемых. Если в (4.30) оставить только первое слагаемое, то оно будет выражать дебит в прямолинейно-параллельном потоке через площадь величиной nh на длине L . Таким образом первое слагаемое выражает фильтрационное сопротивление потоку от контура питания к участку прямолинейной бесконечной цепочки, занятому n скважинами, в предположении замены батареи галереей. Борисов назвал эту часть фильтрационного сопротивления - внешним фильтрационным сопротивлением:
. (4.32)
Оставим теперь в (4.30) только второе слагаемое. В этом случае получим аналог формулы Дюпюи для суммарного дебита n скважин при плоскорадиальном течении и в предположении, что каждая скважина окружена контуром питания длиной . Таким образом второе слагаемое выражает местное фильтрационное сопротивление, возникающее при подходе жидкости к скважинам. Появление этого сопротивления объясняется искривлением линий тока у скважин и по Борисову оно получило название внутреннего
. (4.33)
На внешнее и внутреннее фильтрационные сопротивления разделяется также полное фильтрационное сопротивление кольцевой батареи:
...Подобные документы
Основы фильтрации неньютоновских жидкостей. Реологические модели фильтрующихся жидкостей. Плоские задачи теории фильтрации об установившемся притоке к скважине. Оценки эффекта взаимодействия скважин круговой батареи. Скважины с удаленным контуром питания.
презентация [430,1 K], добавлен 15.09.2015Сущность дифференциальных уравнений движения сжимаемой и несжимаемой жидкости в пористой среде. Анализ уравнения Лапласа. Характеристика плоских задач теории фильтрации и способы их решения. Особенности теории фильтрации нефти и газа в природных пластах.
курсовая работа [466,6 K], добавлен 12.05.2010Анализ процессов разработки месторождений углеводородного сырья с использованием математических моделей течений многофазной жидкости в пористых средах. Фильтрация многокомпонентных смесей с учетом фазовых превращений. Вид функции Баклея-Леверетта.
контрольная работа [5,1 M], добавлен 02.04.2018Осесимметричный приток газа к скважине. Линеаризация уравнения Лейбензона и основное решение линеаризованного уравнения. Решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний. Расчет по линеаризованной формуле.
курсовая работа [108,5 K], добавлен 31.01.2011Основы теории фильтрации многофазных систем. Характеристики многофазной среды. Сумма относительных проницаемостей. Потенциальное движение газированной жидкости. Определение массовой скорости фильтрации капельно-жидкой фазы газированной жидкости.
презентация [255,4 K], добавлен 15.09.2015Установившееся движение газов по линейному закону фильтрации. Одномерное движение газов. Плоскорадиальный фильтрационный поток газа по двухчленному закону фильтрации и по степенному закону фильтрации. Обобщенная интерпретация законов фильтрации газа.
курсовая работа [561,7 K], добавлен 11.04.2015Исследование притока жидкости и газа к несовершенной скважине. Влияние радиуса скважины на её производительность. Определение коллекторских свойств пласта. Фильтрация газа в пористой среде. Приближенные методы решения задач теории упругого режима.
презентация [577,9 K], добавлен 15.09.2015Гидродинамическая фильтрации жидкостей и газов в однородных и неоднородных пористых средах. Задачи стационарной и нестационарной фильтрации. Расчет интерференции скважин; теория двухфазной фильтрации. Особенности поведения вязкопластичных жидкостей.
презентация [810,4 K], добавлен 15.09.2015Потенциал точечного стока на плоскости и в пространстве. Исследование задач интерференции скважин. Приток жидкости к группе скважин в пласте с удаленным контуром питания; к бесконечным цепочкам и кольцевым батареям скважин при фильтрации нефти и газа.
курсовая работа [1,3 M], добавлен 21.10.2012Влияние радиуса скважины на ее производительность. Формулы для плоских и сферических радиальных притоков к скважинам с линейным и нелинейным законами фильтрации. Закон распределения давления для галереи. Расчет скорости фильтрации по закону Дарси.
курсовая работа [1,3 M], добавлен 07.04.2012Литолого-стратиграфическая характеристика разреза. Cеноманская и неокомские залежи. Приток газа к несовершенным скважинам при двучленном законе фильтрации. Определение давлений и расхода газа. Определение коэффициентов фильтрационного сопротивления.
курсовая работа [216,7 K], добавлен 12.03.2015Точное решение осесимметричного притока газа к скважине. Линеаризация уравнения Лейбензона и основное решение. Метод усреднения: понятие, особенности. Расчет депрессии на пласт по точной и приближенным формулам. Относительная погрешность расчетов.
курсовая работа [99,3 K], добавлен 02.03.2015Верхняя граница применимости закона Дарси, проявление инерционных сил при достаточно высоких скоростях фильтрации. Проявление неньютоновских реологических свойств жидкости, взаимодействие с твердым скелетом пористой среды при малых скоростях фильтрации.
реферат [331,2 K], добавлен 19.04.2010Практическое использование уравнений нелинейно-упругого режима фильтрации. Характеристика методики обработки индикаторных линий. Приближенный метод определения коэффициента макрошероховатости по результатам исследования несовершенных газовых скважин.
курсовая работа [2,1 M], добавлен 06.11.2012Основные положения науки о движении нефти, воды, газа и их смесей (флюидов) через коллектора. Описание требований адекватности моделей реальным процессам подземной гидромеханики. Изучение особенностей законов фильтрации пористой и трещинной среды.
презентация [760,3 K], добавлен 15.09.2015Общие положения теории функций комплексного переменного. Физический смысл функции тока. Порядок исследования плоских течений с помощью комлексного переменного. Определение массовой скорости. Метод комформного отображения. Многокомпонентная фильтрация.
презентация [467,3 K], добавлен 15.09.2015Определение понижения уровня в центральной скважине водозабора, состоящего из n=3 скважин, расположенных параллельно совершенному урезу реки на расстоянии 2Q=100 м друг от друга. Определение времени наступления стационарного режима фильтрации в скважине.
контрольная работа [1,3 M], добавлен 29.06.2010Расчёт фильтрационных параметров при движении нефти в трещиноватых породах. Границы приёмистости линейного закона фильтрации. Анализ течения несжимаемой жидкости в деформируемом пласте. Методика исследования коллекторских свойств трещиноватых пластов.
курсовая работа [417,5 K], добавлен 08.04.2013Анализ работы газовой скважины в пористой среде при установившемся режиме фильтрации газа. Исследование зависимости дебита газовой скважины от ее координат внутри сектора. Диагностика газовой скважины по результатам гидродинамических исследований.
курсовая работа [741,1 K], добавлен 15.04.2015Составление расчетной схемы кустовой откачки и проведение ее диагностики. Определение коэффициента фильтрации и упругой водоотдачи, вычисление параметров пласта, расчет коэффициента пьезопроводности. Построение графика площадного прослеживания.
контрольная работа [917,0 K], добавлен 29.06.2010