Метрология, стандартизация и сертификация в геологии
Развитие стандартизации, метрологии и сертификации в России. Поверка и калибровка средств измерений. Эталоны физических величин и система воспроизведения основных единиц физических величин. Разработка методик выполнения измерений и их аттестация.
Рубрика | Геология, гидрология и геодезия |
Вид | курс лекций |
Язык | русский |
Дата добавления | 05.08.2015 |
Размер файла | 133,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Области и виды измерений.
Область измерений -- совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой. Вид измерений -- часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.
Принято различать следующие области и виды измерений.
Измерение геометрических величин: длин, отклонений формы поверхностей, параметров сложных поверхностей, углов.
Измерение механических величин: массы, силы, крутящих моментов, прочности и пластичности, параметров движения, твердости.
Измерение параметров потока, расхода, уровня, объема веществ: массового и объемного расхода жидкостей в трубопроводах, расхода газов, вместимости, параметров открытых потоков, уровня жидкости.
Измерение давления, вакуумные измерения: избыточного давления; абсолютного давления, переменного давления, вакуума.
Физико-химические измерения: вязкости, плотности, содержания (концентрации) компонентов в твердых, жидких и газообразных веществах, влажности газов, твердых веществ, электрохимические измерения.
Теплофизические и температурные измерения: температуры, теплофизических величин.
Измерения времени и частоты: методы и средства воспроизведения и хранения единиц и шкал времени и частоты; измерения интервалов времени; измерения частоты периодических процессов; методы и средства передачи размеров единиц времени и частоты.
7. Измерения электрических и магнитных величин на постоянном и переменном токе: силы тока, количества электричества, электродвижущей силы, напряжения, мощности и энергии, угла сдвига фаз; электрического сопротивления, проводимости, емкости, индуктивности и добротности контуров электрических цепей; параметров магнитных полей; магнитных характеристик материалов.
Радиоэлектронные измерения: интенсивности сигналов; параметров формы и спектра сигналов; параметров трактов с сосредоточенными и распределенными постоянными; свойств веществ и материалов радиотехническими методами; антенные измерения.
10. Измерения акустических величин: акустические - в воздушной среде и в газах; акустические -- в водной среде; акустические -- в твердых телах; аудиометрия и измерения уровня шума.
Оптические и оптико-физические измерения: световые, измерения оптических свойств материалов в видимой области спектра; энергетических параметров не когерентного оптического излучения; энергетических параметров пространственного распределения энергии и мощности непрерывного и импульсного лазерного и квазимонохроматического излучения; спектральных, частотных характеристик, поляризации лазерного излучения; параметров оптических элементов, оптических характеристик материалов; характеристик фотоматериалов и оптической плотности.
Измерения ионизирующих излучений и ядерных констант: дозиметрических характеристик ионизирующих излучений; спектральных характеристик ионизирующих излучений; активности радионуклидов; радиометрических характеристик ионизирующих излучений.
Объектом измерения являются физическая система, процесс, явление и т.д., которые характеризуются одной или несколькими измеряемыми физическими величинами. Примером объекта измерений может быть технологический химический процесс, во время которого измеряют температуру, давление, энергию, расход веществ и материалов.
Шкалы измерений.
Измерения различных величин, характеризующих свойства систем, явлений и других процессов занимают важное место в повседневной жизни. Разнообразные проявления (количественные или качественные) любого свойства образуют множества, отображения элементов которых образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой физической величины. Шкала физической величины -- это упорядоченная совокупность значений физической величины, служащая исходной основой для измерений данной величины.
Различают следующие типы шкал измерений:
шкалы наименований характеризуются оценкой (отношением) эквивалентности различных качественных проявлений свойства. Эти шкалы не имеют нуля и единицы измерений, в них отсутствуют отношения сопоставления типа «больше -- меньше». Это самый простой тип шкал. Пример шкалы наименований: шкалы цветов, представляемые в виде атласов цветов. При этом процесс измерений заключается в достижении (например, при визуальном наблюдении) эквивалентности испытуемого образца с одним из эталонных образцов, входящих в атлас цветов;
шкалы порядка описывают свойства величин, упорядоченные по возрастанию или убыванию оцениваемого свойства, т.е. позволяют установить отношение больше/ меньше между величинами, характеризующими это свойство. В этих шкалах может в ряде случаев иметься нуль (нулевая отметка), но принципиальным для них является отсутствие единицы измерения, поскольку невозможно установить, в какое число раз больше или меньше проявляется свойство величины. Примеры шкал порядка: шкалы измерения твердости, баллов силы ветра, землетрясений;
шкалы интервалов (разностей) описывают свойства величин не только с помощью отношений эквивалентности и порядка, но также и с применением отношений суммирования и пропорциональности интервалов (разностей) между количественными проявлениями свойства. Шкалы интервалов могут иметь условно выбранное начало -- нулевую точку. К таким шкалам, например, относятся летоисчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо Рождество Христово, температурные шкалы Цельсия, Фаренгейта, Реомюра.
условные шкалы - шкалы величин, в которых не определена единица измерения. К ним относятся шкалы наименований и порядка.
Шкалы интервалов, отношений и абсолютные называются обычно метрическими (физическими), а шкалы наименований и порядка -- не метрическими. Практическая реализация шкал измерений осуществляется путем стандартизации как самих шкал и единиц измерений, так и способов и условий их однозначного воспроизведения.
Литература
[2], с.95-104; [16]; [17]; [4].
Лекция 7 - 0,06 кредитов (2 часа). Основные понятия об измерениях и средствах измерений. Единицы физических величин, система СИ. Классификация измерений. Основные характеристики и критерии качества измерений
Основная и производная, размерная и безразмерная физические величины. Система единиц физических величин. Основная и производная единицы. Система СИ. Основные, дополнительные, кратные, дольные и внесистемные единицы.
Под термином «измерение физической величины» понимают совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.
Задачей любого измерения является нахождение значения измеряемой физической величины с определенной точностью. Объект измерения -- это физическая система (процесс, явление и т.д.), которая характеризуется одной или несколькими измеряемыми физическими величинами.
Классификация измерений.
Все измерения классифицируют:
- по способу получения информации;
- по характеру изменения измеряемой величины в процессе измерения;
- по количеству измерительной информации;
- по отношению к основным единицам.
По способу получения информации измерения разделяются на следующие виды:
1. Прямые измерения, при которых искомое значение физической величины получают непосредственно (путем сравнения величины с ее единицей). При прямых измерениях объект исследования приводят во взаимодействие со средством измерений и по его показаниям отсчитывают значение измеряемой величины.
К прямым измерениям относятся измерение массы при помощи весов и гирь, силы тока -- амперметром, температуры -- термометром, измерение длины -- линейкой.
2. Косвенные измерения, при которых искомое значение физической величины определяют на основании прямых измерений других физических величин, функционально связанных с искомой величиной. Например, плотность тела можно определить по результатам измерений
массы и объема.
Совокупные измерения, при которых одновременно проводятся измерения нескольких одноименных величин, и искомое значение величины определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях, при этом число уравнений должно быть не меньше числа величин. Например, значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.
Совместные измерения, при которых одновременно проводятся измерения двух или нескольких не одноименных величин для определения зависимости между ними, например, зависимость длины объекта от температуры.
По характеру изменения получаемой информации в процессе измерений измерения подразделяются на статические и динамические.
Статические измерения -- это такие измерения, когда физическая величина принимается за неизменную на протяжении времени измерения, например, измерение размеров земельного участка.
Динамические измерения -- это измерения, изменяющиеся по размеру физической величины.
Развитие средств измерений и повышение их чувствительности позволяет сегодня обнаружить изменение величин, ранее считавшихся постоянными, поэтому разделение измерений на динамические и статические можно считать условным.
По количеству измерительной информации измерения делятся на однократные и многократные.
Однократные измерения выполняются один раз, а многократные позволяют получить результат из нескольких следующих друг за другом измерений одного и того же объекта. При однократных измерениях показания средств измерений являются результатом измерений, погрешность используемого средства измерений определяет погрешность результата измерения. Применение многократных измерений позволяет повысить точность измерения до определенного предела.
По отношению к основным единицам измерения делятся на абсолютные и относительные.
Абсолютные измерения основаны на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Например, определение массы в килограммах, количества вещества -- в молях, частоты -- в Герцах.
Относительные измерения -- это измерения отношения величины к одноименной величине, играющей роль единицы, или измерения изменения величины по отношению к одноименной величине, принимаемой за исходную. Например, относительная влажность определяется как отношение упругости водяного пара, содержащегося в воздухе, к упругости насыщенного пара при той же температуре и выражается в процентах.
Основные характеристики и критерии качества измерений.
К основным характеристикам измерений, которые определяют и качество измерений, относятся: принцип, метод, погрешность результатов измерения, точность, правильность, сходимость и воспроизводимость результатов измерений. Последовательность операций выполнения измерений, правила и приемы, позволяющие получить результат с требуемой точностью, излагаются в документе, который называется методикой выполнения измерений (МВИ). МВИ должна содержать метрологические характеристики и быть аттестована соответствующими метрологическими службами.
Принцип измерений -- физическое явление (физический закон или эффект), положенное в основу измерений. Например, применение эффекта Доплера для измерения скорости движения звезд, вращения небесных тел.
Метод измерений -- прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Например, определение структуры соединений методом ядерного магнитного резонанса или методом инфракрасной спектроскопии.
Погрешность измерений -- отклонение результатов измерений от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму целого ряда составляющих, каждая из которых имеет свою причину.
Сходимость -- это близость друг к другу результатов измерений одной и той же величины, выполненных повторно одним и тем же средством, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.
Воспроизводимость -- близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температура, давление, влажность и др.).
Точность -- характеристика качества измерений, отражающая близость к нулю значения погрешности результатов измерений. Высокая точность измерений соответствует малым величинам погрешностей измерения.
В 2002 году в России введены в действие государственные стандарты ГОСТ Р ИСО 5725-2002 части 1-6 под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений», которые являются прямым применением шести частей основополагающего Международного стандарта ИСО 5725. Эти стандарты используются в практической деятельности при разработке, аттестации и применении методик выполнения измерений, стандартизации методик контроля (испытаний, измерений, анализа), испытаниях продукции, в том числе для целей подтверждения соответствия, оценки компетентности испытательных лабораторий согласно требованиям ГОСТ Р ИСО/МЭК 17025-2000. Стандарты ИСО 5725 могут применяться для оценки точности выполнения измерений различных физических величин, характеризующих измеряемые свойства того или иного объекта, в соответствии со стандартизованной процедурой. Следует отметить, что в отечественной метрологии точность и погрешность результатов измерений, как правило, определяются сравнением результатов измерений с истинным или действительным (условно истинным) значением измеряемой физической величины. Часто за действительное значение принимают общее среднее значение (математическое ожидание) установленной совокупности результатов измерений. В ИСО 5725 вместо термина «действительное значение» введен термин «принятое опорное значение», который и рекомендуется для использования в практике. Термины «правильность» и «прецизионность» в отечественных нормативных документах по метрологии до введения стандартов ГОСТ Р ИСО 5725-2002 не использовались.
Правильность характеризует степень близости среднего арифметического значения большого числа результатов измерений к истинному (действительному) или принятому опорному значению. Показателем правильности обычно является значение систематической погрешности.
Прецизионность -- степень близости друг к другу независимых результатов измерений, полученных в конкретных регламентированных условиях. Мера прецизионности обычно вычисляется как стандартное отклонение результатов измерений. Крайние показатели прецизионности -- повторяемость (сходимость) и воспроизводимость широко используются в отечественных нормативных документах, в том числе в большинстве государственных стандартов на методы контроля. Термин «точность» в соответствии с ГОСТ Р ИСО 5725-1-2002 определяется как степень близости результата измерений к применяемому опорному значению.
Внедрение стандартов ГОСТ Р ИСО 5725 только начинается в России и направлено на более эффективную реализацию требований Российской государственной системы стандартизации при разработке стандартов на методы контроля продукции различных отраслей промышленности.
Таким образом, при правильном выборе метода измерений, повышая такие показатели как точность, правильность, уменьшая погрешности измерений, можно достигать высокого качества измерений.
Физические величины и их единицы.
Основным предметом измерения в метрологии является физическая величина.
Физическая величина применяется для описания систем и объектов, относящихся к любым наукам и сферам деятельности.
Физические величины подразделяются на два вида: основные и производные.
Совокупность физических величин, образованная в соответствии с принятыми принципами, создает систему физических величин, при этом одни величины принимаются как независимые, а другие определяются как функции независимых величин.
Основная физическая величина -- это величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.
Производная физическая величина -- величина, входящая в систему величин и определяемая через основные величины этой системы.
Основным величинам соответствуют основные единицы измерений, а производным -- производные единицы измерений.
Производная единица -- это единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами или с основными и уже определенными производными. Например, м/с -- единица скорости, образованная из основных единиц СИ -- метра и секунды.
Система единиц СИ -- единственная система единиц физических величин, которая сегодня принята и используется в большинстве стран мира. Она обладает несомненными достоинствами и преимуществами перед другими системами единиц.
Основные из них:
- универсальность -- охват всех областей науки, техники, производства;
- унификация единиц для всех видов измерений (механических, тепловых, электрических, магнитных и др.), например, вместо ряда единиц давления (атмосфера нормальная (физическая), атмосфера техническая, мм рт.столба, мм водяного столба, бар, торр, дина на см2 и др.) в СИ применяется единая единица давления -- Паскаль; вместо ряда единиц работы и энергии используется одна единица -- джоуль;
- когерентность (связанность, согласованность) величин; коэффициенты пропорциональности в уравнениях, определяющих единицы производных величин равны 1;
- возможность воспроизведения единиц с высокой точностью в соответствии с их определениями;
- упрощение записи уравнений и формул в физике, химии, а также в технических расчетах, отсутствие в них производных коэффициентов;
- уменьшение числа допускаемых единиц;
- единая система образования кратных и дольных единиц, имеющих собственное наименование;
- облегчение процесса образования;
- лучшее взаимопонимание при развитии международных научно-технических и экономических связей.
В настоящее время система единиц СИ состоит из 7 основных и ряда производных единиц физических величин. Приняты следующие определения основных единиц СИ.
Единица длины -- метр -- длина пути, проходимого светом в вакууме за 1/299792458 доли секунды.
Единица массы -- килограмм -- масса, равная массе международного прототипа килограмма (платиноиридиевый цилиндр (90% Pt, 10% Ir)).
Единица времени -- секунда -- продолжительность 9192631770 периодов излучения, соответствующих, переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, не возмущенного внешними полями.
Единица силы электрического тока -- ампер -- сила не изменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создает между этими проводниками силу взаимодействия, равную 2 * 10-7 Н на каждом участке проводника длиной 1 м.
Единица термодинамической температуры -- кельвин (до 1967 г. имел наименование градус Кельвина) -1/273,16 часть термодинамической температуры тройной точки воды. Допускается выражение термодинамической температуры в градусах Цельсия.
Единица количества вещества -- моль -- количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в 0,012 кг углерода с атомной массой 12.
Структурные элементы -- это атомы, молекулы, ионы или другие частицы, из которых состоит данное вещество.
Единица силы света -- кандела -- сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 * 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт*ср-1.
Кратные и дольные единицы. Размеры единиц системы СИ часто бывают неудобны -- или слишком велики или очень малы. Поэтому пользуются кратными и дольными единицами, т.е. единицами, в подходящее целое число раз большими или меньшими единицы данной системы. Широко применяются десятичные кратные и дольные единицы, которые получаются умножением исходных единиц на число 10, возведенное в степень.
Кратная единица -- это единица физической величины, в целое число раз превышающая системную или внесистемную единицу.
Дольная единица -- это единица физической величины, значение которой в целое число раз меньше системной или внесистемной единицы.
Внесистемные единицы -- это такие единицы физических величин, которые не входят в принятую в каждом конкретном случае систему единиц. Они подразделяются на:
- допускаемые к применению наравне с единицами СИ;
- допускаемые к применению в специальных областях;
- временно допускаемые;
- устаревшие (не допускаемые).
Литература
[2], с.105-110, 114-120; [2], с.98-122; [16]; [17]; [4].
Лекция 8 - 0,06 кредитов (2 часа). Средства измерений, их классификация. Принципы выбора средств измерений. Метрологические характеристики средств измерений. Классы точности средств измерений
Классификация измерений. Основные элементы и этапы процесса измерений. Характеристики и критерии качества измерений. Погрешность, сходимость, воспроизводимость, точность измерений. ГОСТ Р ИСО 5725-2002 - правильность и прецизионность измерений.
Классификация средств измерений. Измерительные преобразователи, приборы, установки и системы. Факторы, влияющие на выбор средств измерений. ГОСТ 8.009-84. Номенклатура метрологических характеристик средств измерений. Погрешность измерений. Утверждения типа средств измерений.
Средство измерений - техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности, в течение известного интервала времени.
Приведенное определение раскрывает суть средства измерений, заключающуюся, во-первых, в умении хранить (или воспроизводить) единицу физической величины; во-вторых, в неизменности размера хранимой единицы. Эти важнейшие факторы и делают техническое средство средством измерений. Если размер единицы в процессе измерений изменяется более чем установлено нормами, таким средством нельзя получить результат с требуемой точностью.
Измерять можно лишь тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру во времени.
Средства измерений включают в себя меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы.
Мера. К мерам относятся средства измерений, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью.
Существуют следующие разновидности мер:
? однозначная мера - мера, воспроизводящая физическую величину одного размера (например, гиря 1кг);
? многозначная мера - мера, воспроизводящая физическую величину разных размеров (например, штриховая мера длины);
? набор мер - комплект мер разного размера одной и той же физической величины, предназначенных для применения, как в отдельности, так и в различных сочетаниях (набор гирь);
? магазин мер - набор мер, конструктивно объединенных в единое устройство с приспособлениями для соединения их в различных комбинациях (например, магазин электрических сопротивлений).
Измерительный преобразователь - это техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Измерительные преобразователи являются конструктивно обособленными элементами и самостоятельно для измерений не применяются. Они входят в состав измерительной установки, измерительной системы или применяются вместе с каким-либо средством измерений (например, термоэлектрический преобразователь).
Измерительный прибор - это средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.
По способу индикации значений измеряемой величины измерительные приборы разделяются на показывающие и регистрирующие.
Различают также приборы прямого действия и приборы сравнения, аналоговые и цифровые, самопишущие и печатающие приборы.
Измерительная установка - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте (например, установка для поверки счетчиков электрической энергии).
Измерительная система - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств. Они размещаются в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях (например, измерительная система электростанции, позволяющая получить измерительную информацию о ряде физических величин в разных энергоблоках).
В зависимости от назначения измерительные системы разделяют на информационные, контролирующие и управляющие.
Метрологические свойства и метрологические характеристики средств измерений.
Метрологические свойства средств измерений - это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.
Перечень важнейших из них регламентируется ГОСТ 8.009-84 "ГСИ. Нормируемые метрологические характеристики средств измерений". Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было установить погрешность средств измерений в известных рабочих условиях эксплуатации.
Все метрологические свойства средств измерений можно разделить на две группы:
1) свойства, определяющие область применения средств измерений;
2) свойства, определяющие качество измерения.
К основным метрологическим характеристикам, определяющим свойства первой группы, относятся диапазон измерений и порог чувствительности.
Диапазон измерений - область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева или справа), называют соответственно нижним или верхним пределом измерений.
Порог чувствительности - наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается малом изменении массы, как 10 мг.
К метрологическим свойствам второй группы относятся три главных свойствах, определяющих качество измерений: точность, сходимость измерений и воспроизводимость.
Наиболее широко в метрологической практике используется первое свойство - точность измерений. Рассмотрим его более подробно. Точность измерений средств измерений определяется их погрешностью.
Погрешность - это разность между показаниями средств измерений и истинным (действительным) значением измеряемой физической величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуется ее действительным значением. Для рабочего средства измерения за действительное значение принимают показания рабочего эталона низшего разряда (допустим, 4-го), для эталона 4-го разряда, в свою очередь, - значение физической величины, полученное с помощью рабочего эталона 3-го разряда. Таким образом, за базу для сравнения принимают значения средств измерений, которое является в поверочной схеме вышестоящим по отношению к подчиненному средству измерения, подлежащему поверке:
Xп = Xп - Xо,
где ДXп - погрешность поверяемого средства измерения; Xп - значение той же самой величины, найденное с помощью поверяемого средства измерения; Xо - значение средства измерения, принятое за базу для сравнения, т.е. действительное значение.
Наибольшее распространение получили метрологические свойства, связанные с абсолютными и относительными погрешностями.
Точность измерений средств измерений - качество измерений, отражающее близость их результатов к действительному (истинному) значению измеряемой величины. Точность определяется показателями абсолютной и относительной погрешности.
Определяемая по формуле (3) Xп является абсолютной погрешностью. Однако, в большей степени точность средств измерений характеризует относительная погрешность (д), т.е. выраженные в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным средством измерения:
д =100.хп/хо
Точность может быть выражена обратной величиной погрешности - 1/8. Если погрешность д = 0,1% или 0,001 = 10-3, то точность равна 103.
Систематическая погрешность - составляющая погрешности результата измерения, остающаяся постоянной (или же закономерно изменяющейся) при повторных измерениях одной и той же величины. Ее примером может быть погрешность градуировки. Если эта погрешность известна, то ее исключают из результатов разными способами, в частности введением поправок.
При нормировании систематической составляющей погрешности средства измерения устанавливают пределы допускаемой систематической погрешности средства измерения -Д. Величина систематической погрешности определяет такое метрологическое свойство, как правильность измерений средств измерений.
Случайная погрешность - составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается какой-либо закономерности. Они неизбежны и неустранимы, всегда присутствуют в результатах измерения. При многократном и достаточно точном измерении они порождают рассеяние результатов.
Характеристиками рассеяния являются средняя арифметическая погрешность, дисперсия, размах результатов измерения. Поскольку рассеяние носит вероятностный характер, то при указании на значения случайной погрешности задают вероятность.
Методика выполнения измерений.
На обеспечение качества измерений направлено применение аттестованных методик выполнения измерений (МВИ). Статьи 9, 11 и 17 Закона РФ «Об обеспечении единства измерений» включают положения, относящиеся к МВИ. В 1997 г. начал действовать ГОСТ 8.563--96 «ГСИ. Методики выполнения измерений».
Методика выполнения измерений - совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с известной погрешностью. Как видно из определения, под МВИ понимают технологический процесс измерений. МВИ - это, как правило, документированная измерительная процедура. МВИ в зависимости от сложности и области применения излагают в следующих формах: отдельном документе (стандарте, рекомендации и т.п.); разделе стандарта: части технического документа (разделе ТУ, паспорта).
Аттестация МВИ - процедура установления и подтверждения соответствия МВИ предъявляемым к ней метрологическим требованиям.
В документах, регламентирующих МВИ, в общем случае указывают: назначение МВИ; условия измерений; требования к погрешности измерений; метод (методы) измерений; требования к средствам измерений (в том числе к стандартным образцам), вспомогательным устройствам, материалам, растворам, операции при подготовке к выполнению измерений; операции при выполнении измерений; операции обработки и вычисления результатов измерений и другие требования.
При разработке МВИ одни из основных исходных требований -- требования к точности измерений, которые должны устанавливать, в виде пределов допускаемых значений характеристик, абсолютную и относительную погрешности измерений.
Наиболее распространенным способом выражения требований к точности измерений являются границы допускаемого интервала, в котором с заданной вероятностью (Р) должна находиться погрешность измерений.
Ответственным этапом является оценивание погрешности измерений путем анализа возможных источников и составляющих погрешности измерений: методических составляющих (например, погрешности, возникающие при отборе и приготовлении проб), инструментальных составляющих (допустим, погрешности, вызываемые ограниченной разрешающей способностью средств измерений); погрешности, вносимые оператором (субъективные погрешности).
Литература
[2], с.117-135; [9].
Лекция 9 - 0,06 кредитов (2 часа). Эталоны единиц физических величин. Поверка и калибровка средств измерений. Методы передачи размера единицы физической величины
Неизменность, воспроизводимость и сличаемость эталонов единиц физических величин. Передача и хранение размера единиц. Классификация эталонов. Государственная поверочная схема. Поверка и калибровка средств измерений. Стандартные образцы.
Эталоны физических величин и система воспроизведения единиц физических величин.
Система воспроизведения единиц физических величин и передачи информации об их размерах всем без исключения СИ в стране составляет техническую базу обеспечения единства измерений.
Воспроизведение единиц физических величин. В соответствии с основным уравнением измерения измерительная процедура сводится к сравнению неизвестного размера с известным, в качестве которого выступает размер соответствующей единицы Международной системы. Воспроизведение единицы представляет собой совокупность операций по материализации единицы физической величины с наивысшей в стране точностью с помощью государственного эталона или исходного рабочего эталона. Различают воспроизведение основных и производных единиц. Размеры единиц могут воспроизводиться там же, где выполняются измерения (децентрализованный способ), либо информация о них должна передаваться с централизованного места их хранения или воспроизведения (централизованный способ). Децентрализовано воспроизводятся единицы многих производных физических величин. Основные единицы сейчас воспроизводятся только централизованно.
Централизованное воспроизведение единиц осуществляется с помощью специальных технических средств, называемых эталонами. Эталон единицы величины - средство измерений, предназначенное для измерения и хранения единицы величины (или кратных или дольных значений единицы величины) с целью передачи ее размера другим средствам измерений данной величины. Эталон, обеспечивающий воспроизведение единицы с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью, называется первичным эталоном. Первичные эталоны - это уникальные средства измерений, часто представляющие собой сложнейшие измерительные комплексы, созданные с учетом новейших достижений науки и техники на данный период. Эталон, обеспечивающий воспроизведение единицы в особых условиях и служащий для этих условий, называется специальным эталоном. Официально утвержденные в качестве исходного для страны первичный или специальный эталоны называются государственными.
Эталон, получающий размер единицы путем сличения с первичным эталоном рассматриваемой единицы, называется вторичным эталоном.
Эталон должен отвечать трем основным требованиям: неизменность (способность удерживать неизменным размер воспроизводимой им единицы в течение длительного интервала времени); воспроизводимость (воспроизведение единицы с наименьшей погрешностью для данного уровня развития измерительной техники); сличаемость (способность не претерпевать изменений и не вносить каких-либо искажений при проведении сличений). Государственные эталоны представляют собой национальное достояние и поэтому должны храниться в метрологических институтах страны в специальных эталонных помещениях, где поддерживается строгий режим по влажности, температуре, вибрациям и другим параметрам. Для обеспечения единства измерений физических величин в международном масштабе большое значение имеют международные сличения национальных государственных эталонов. Эти сличения помогают выявить систематические погрешности воспроизведения единицы национальным эталонам, установить, насколько национальные эталоны соответствуют международному уровню, и наметить пути совершенствования национальных (государственных) эталонов.
Передача размера единицы представляет собой приведение размера единицы физической величины, хранимой повторяемым средством измерения, к размеру единицы, воспроизводимой или хранимой эталоном. Передача размера осуществляется при сличении этих единиц. При передаче информации о размере единиц обширному парку средств измерений приходится прибегать к многоступенчатой процедуре.
Самыми распространенными по численности парка являются вторичные эталоны различных разрядов - 1,2,3-го (иногда 4-го). От рабочих эталонов низшего разряда размер передается рабочим средствам измерения (РСИ). В качестве методов передачи информации о размере единиц используют методы непосредственного сличения (т.е. сличения меры с мерой или показаний двух приборов), а также сличение с помощью компаратора.
На каждой ступени передачи информации о размере единицы точности теряется в 3-5 раз (иногда - в 1,25-10 раз). Значит, при многоступенчатой передаче эталонная точность не доходит до потребителя. Поэтому для высокоточных средств измерений число ступеней может быть сокращено вплоть до передачи им информации непосредственно от рабочих эталонов 1-го разряда.
Поверочные схемы средств измерений представляют собой документ, который устанавливает соподчинение средств измерений, участвующих в передаче размера единицы от эталона к рабочим средствам измерений с указанием методов и погрешности при передаче. Различают государственные и локальные поверочные схемы. Государственные схемы регламентируют передачу информации о размере единицы всему парку средств измерений в стране. Во главе этой схемы находится государственный эталон.
Государственные поверочные схемы закладываются в основу государственных стандартов. Локальные поверочные схемы распространяются на средства измерений, подлежащие поверке, организуемой метрологической службы министерства (ведомства) или метрологической службой юридического лица.
Систему передачи образно представляют в виде схемы: в основании находится совокупность РСИ; вершину занимает государственный эталон; на промежуточных плоскостях -- рабочие эталоны различных разрядов. От основания к вершине уменьшается погрешность средств измерений, растет их стоимость, снижается «тираж» изготовления.
Процесс передачи размера единиц происходит при поверке и калибровке средств измерений. Поверка и калибровка представляют собой набор операций, выполняемых с целью определения и подтверждения соответствия средств измерений установленным техническим требованиям.
Принципиальное отличие поверки от калибровки состоит в том, что поверка: 1) носит обязательный характер и проводится в рамках государственного метрологического контроля; 2) проводится в отношении СИ, которые применяются в законодательно установленных (Закон РФ «Об обеспечении единства измерений») сферах, главным образом непроизводственных - здравоохранение, охрана окружающей среды, торговые операции, государственные учетные операции, обеспечение обороны государства, банковские, налоговые, таможенные операции и пр.
Схема передачи размера единиц от эталона рабочим средствам измерений
Размещено на http://www.allbest.ru/
Государственная система обеспечения единства измерений.
Центральная задача в организации измерительных работ -- достижение сопоставимых результатов измерений одних и тех объектов, выполненных в разное время, в разных местах, с помощью разных методов и средств. Эта задача решается путем обеспечения единства измерений. В свою очередь это единство достигается в результате деятельности метрологических служб, направленных на достижение и поддержание единства измерений в соответствии с государственными актами, правилами, требованиями, нормами, установленными стандартами и другими нормативными документами в области метрологии.
В организационном плане это единство обеспечивается субъектами метрологии - государственной метрологической службой страны, увязывающей свою деятельность с международными метрологическими организациями, метрологическими службами федеральных органов исполнительной власти России и метрологическими службами юридических лиц
Нормативной базой обеспечения единства измерений является законодательная метрология, а технической базой служит рассмотренная система воспроизведения единиц физических величин и передачи информации об их размерах всем без исключения СИ в стране.
Обеспечение единства и требуемой точности измерений
Применение узаконенных единиц величин |
СИ МВИ |
Метрологический контроль: утверждение типа, сертификация СИ; поверка, калибровка СИ; лицензирование деятельности по изготовлению, ремонту, продаже и прокату СИ |
|||
Использование государственных эталонов для воспроизведения и хранения единиц величин и передачи их размеров всем СИ |
Использование аттестованных методик выполнения измерений |
||||
Использование Стандартных образцов состава, свойств веществ и материалов |
Метрологический надзор за выпуском, состоянием и применением СИ, аттестованными МВИ, эталонами единиц величин, соблюдением метрологических правил и норм; за количеством отчуждаемых, фасованных товаров |
||||
Использование Стандартных справочных данных о физических константах и свойствах веществ и материалов |
Важнейшей формой обеспечения единства измерений со стороны государства является метрологический контроль и надзор.
Литература
[1], с. 150-169; [2], с.143-155; [24].
Лекция 10 - 0,06 кредитов (2 часа). Метрологическое обеспечение производства, испытаний и контроля качества продукции. Разработка методик выполнения измерений и их аттестация
стандартизация калибровка измерение единица
Государственный метрологический контроль и надзор. Стандарт ИСО/МЭК 17025-99 (ГОСТ Р ИСО/МЭК 17025-2000). Этапы разработки МВИ. Аттестация МВИ.
Государственный метрологический контроль и надзор.
Государственный метрологический контроль и надзор - деятельность, осуществляемая органом государственной метрологической службы в целях проверки соблюдения установленных метрологических правил и норм.
Сферы распространения.
? Здравоохранение, ветеринария, охрана окружающей среды, обеспечение безопасности труда;
? торговые операции и взаимные расчеты между покупателем и продавцом, в том числе операции с применением игровых автоматов;
? государственные учетные операции;
? обеспечение обороны государства;
? геодезические и гидрометеорологические работы;
? банковые, налоговые, таможенные и почтовые операции;
? производство продукции, поставляемой по контрактам для государственных нужд в соответствии с законодательством РФ;
? испытания и контроль качества продукции в целях определения соответствия обязательным требованиям государственных стандартов РФ;
? обязательная сертификация продукции и услуг;
? измерения, проводимые по поручению органов суда, прокуратуры, арбитражного суда, государственных органов управления РФ;
? регистрация национальных и международных спортивных рекордов.
Государственный метрологический контроль |
Государственный метрологический надзор |
|
? утверждение типа СИ; ? поверка СИ (в т.ч. эталонов); ? лицензирование деятельности юридических и физических лиц по: изготовлению, ремонту, продаже, прокату средств измерений. |
? за выпуском, состоянием и применением средств измерений, аттестованными методиками выполнения измерений, эталонами единиц величин, соблюдением метрологических правил и норм; ? за количеством товаров, отчуждаемых при совершении торговых операций; ? за количеством фасованных товаров в упаковках любого вида при их расфасовке и продаже |
Метрологические службы России.
К субъектам метрологии относятся: 1) Государственная метрологическая служба РФ (ГМС); 2) метрологические службы федеральных органов исполнительной власти и юридических лиц (МС); 3) международные метрологические организации.
Государственная метрологическая служба находится в ведении Госстандарта и включает:
государственные научные метрологические центры (ГНМЦ);
органы ГМС в субъектах РФ (на территории республик, автономных областей, автономных округов, краев, областей), а также городов Москвы и Санкт-Петербурга.
Государственные научные метрологические центры представлены такими институтами, как ВНИИ метрологической службы (ВНИИМС, г. Москва), ВНИИ метрологии им. Д.И.Менделеева (ВНИИМ, г. Санкт-Петербург); НПО «ВНИИ физико-технических и радиотехнических измерений» (ВНИИФТРИ, пос. Менделеево Московской обл.); Уральский НИИ метрологии (УНИИМ, г. Екатеринбург) и др. Указанные научные центры не только занимаются разработкой научно-методических основ совершенствования российской системы измерений, но и являются держателями государственных эталонов.
В России функционирует более 100 ЦСМ (соответственно их метрологических подразделений), которые выполняют функции региональных органов ГМС на территориях субъектов РФ, городов Москвы и Санкт-Петербурга. Госстандарт осуществляет руководство тремя государственными справочными службами: Государственной службой времени, частоты и определения параметров вращения Земли (ГСВЧ), Государственной службой стандартных образцов состава и свойств веществ и материалов (ГССО) и Государственной службой стандартных справочных данных о физических константах и свойствах веществ и материалов (ГСССД).
ГСВЧ осуществляет межрегиональную и межотраслевую координацию работ по обеспечению единства измерений времени, частоты и определения параметров вращения Земли. Об этой службе рядовой житель страны узнает 2 раза в год - при переходе на летнее и зимнее время. Потребителями измерительной информации ГСВЧ являются службы навигации и управления самолетами, судами и спутниками, Единая энергетическая система и пр.
ГССО обеспечивает создание и применение системы стандартных (эталонных) образцов состава и свойств веществ и материалов -- металлов и сплавов, нефтепродуктов, медицинских препаратов, образцов почв, образцов твердости различных материалов, образцов газов и газовых смесей и др.
ГССД обеспечивает разработку достоверных данных о физических константах, о свойствах веществ и материалов, в том числе конструкционных материалов, минерального сырья, нефти, газа и др. Потребителями информации ГССД являются организации, проектирующие изделия техники, к точности характеристик которой предъявляются особо жесткие требования. Конструкторы этой техники не могут полагаться на противоречивую информацию о показателях свойств, содержащуюся в справочной литературе.
Метрологические службы федеральных органов исполнительной власти и юридических лиц могут создаваться в министерствах (ведомствах), организациях, на предприятиях и в учреждениях, являющихся юридическими лицами для выполнения работ по обеспечению единства и требуемой точности измерений, осуществления метрологического контроля и надзора.
Метрологические службы созданы в Минздраве, Минатоме, Минприроде, Миноборонпроме и других федеральных органах исполнительной власти. МС функционируют в РАО ЕЭС России, РАО «Газпром», НК «ЛУКОЙЛ». Права и обязанности метрологических служб определяются положениями о них, утверждаемыми руководителями органов управления или юридических лиц.
Если на достаточно крупных предприятиях (в законодательно утвержденных сферах) организуются полноценные метрологические службы, то на небольших предприятиях Госстандарт рекомендует назначать лиц, ответственных за обеспечение единства измерений. Для ответственных лиц утверждается должностная инструкция, в которой устанавливаются их функции, права, обязанности и ответственность.
Международные метрологические организации действуют с конца XIX в. В 1875 г. 17 государств, в число которых входила Россия, подписали в Париже Метрическую конвенцию, которая, по существу, явилась первым международным стандартом. При этом было создано первое международное метрологическое учреждение - Международное бюро мер и весов (МБМВ), которое до сих пор активно функционирует, координируя деятельность метрологических организаций более чем 100 стран. МБМВ располагается во Франции, в г. Севр. МБМВ хранит международные прототипы метра и килограмма и некоторые другие эталоны, а также организует периодическое сличение национальных эталонов с международными. Руководство деятельностью МБМВ осуществляется Международным комитетом мер и весов (МКМВ), созданным одновременно с МБМВ.
В среднем один раз в 4 года собирается Генеральная конференция по мерам и весам, принимающая общие, наиболее важные для развития метрологии и измерительной техники решения. В 1955 г. была создана Международная организация законодательной метрологии (МОЗМ). В настоящее время в ее состав входят 83 государства. МОЗМ занимается:
- созданием систем сертификации и управления качеством, а также проведением исследований методов поверки, испытаний и контроля средств измерений;
- организацией сличений на уровне рабочих эталонов и средств измерений, разработка новых методов метрологического надзора для контроля и т.д.
Высший орган МОЗМ представлен Международной конференцией законодательной метрологии, рабочим органом, которой является Международный комитет законодательной метрологии (МКЗМ), а исполнительным органом - Международное бюро законодательной метрологии (МБЗМ). МБЗМ является Центром документации по законодательной метрологии
МОЗМ тесно связан с МБМВТ и международной организацией стандартизации (ИСО) и Международной электротехнической комиссией (МЭК). Цель этого сотрудничества - избежать дублирования, упущений и расхождений при разработке технической документации.
В 1988 г. подписана Конвенция об образовании общеевропейской метрологической организации (ЕВРОМЕТ). Основными функциями ее деятельности являются исследования и разработка эталонов единиц измерений, исследование по разработке первичных эталонов, развитие поверочных служб на высшем метрологическом уровне.
Особое положение среди международных организаций метрологического характера занимают упомянутые выше ИСО, МЭК и МКО (Международная комиссия по освещению). Официально они не являются метрологическими учреждениями, однако их деятельность связана с разработкой стандартов и рекомендаций по метрологической терминологии и методикам выполнения измерений при испытании продукции и т.д.
Россия принимает активное участие в работе большинства международных метрологических организаций.
Литература
[2], с.159-171; [20].
Лекция 11 - 0,06 кредитов (2 часа). Требования к испытательным лабораториям и их аккредитация. Аттестация испытательного оборудования. Сертификация средств измерений
Комплектация лабораторий по ИСО/МЭК 17025-99 (ГОСТ Р ИСО/МЭК 17025-2000). Действующая система качества и разработка Руководства по качеству. Аккредитация испытательных лабораторий. Порядок проведения и правила аттестации испытательного оборудования. Построение Системы сертификации. Основные цели и задачи Системы сертификации.
...Подобные документы
Применение двухмерной статистической модели в геологии. Система двух случайных величин и ее графическое изображение. Статистические характеристики системы двух случайных величин, коэффициент корреляции. Метод наименьших квадратов, эллипс рассеяния.
презентация [276,0 K], добавлен 17.07.2014Цель предварительных вычислений в полигонометрии. Вычисление рабочих координат. Уравнивание угловых и линейных величин. Вычисление весов уравненных значений координат узловой точки. Оценка точности полевых измерений и вычисления координат узловой точки.
лабораторная работа [84,2 K], добавлен 09.08.2010Геодезическая подготовка данных для восстановления утраченных межевых знаков различными способами, установление необходимой точности линейных и угловых измерений. Выбор приборов и методик измерений, практическое проектирование границ земельных участков.
курсовая работа [593,3 K], добавлен 29.06.2011Сущность угловых геодезических измерений. Обзор и применение оптико-механических и электронных технических теодолитов для выполнения геодезической съемки. Принципы измерения горизонтальных и вертикальных углов, особенности обеспечения высокой их точности.
курсовая работа [241,6 K], добавлен 18.01.2013Оценка геометрии спутников в течение определённого периода для точки полигона по ее приближенным координатам. Вычисление благоприятного периода для выполнения измерений, расположения спутников над горизонтом. Планирование сессий по файлу-альманаху.
лабораторная работа [588,9 K], добавлен 25.05.2015Абсолютная и относительная погрешность измерений, методика их определения. Проверка наличия грубых погрешностей. Исключение систематических погрешностей. Расчет коэффициента Стьюдента. Обработка результатов многократных измерений в программе MS Excel.
лабораторная работа [435,0 K], добавлен 08.04.2017Характеристика и применение основных видов измерительных приборов, способы измерения высот и расстояния на участке местности. Изучение геодезии как науки о производстве измерений. Роль, сущность и значение измерений на местности в различных сферах жизни.
курсовая работа [819,5 K], добавлен 30.03.2018Система множества случайных величин и ее статистические характеристики. Коэффициент множественной корреляции. Отбор информативых свойств в уравнении множественной линейной регрессии. Матрица коэффициентов корреляции. Применение метода главных компонент.
презентация [122,8 K], добавлен 17.07.2014Создание новых методов и средств контроля метрологических характеристик оптико-электронных приборов. Основные требования к техническим и метрологическим характеристикам стендов для поверки и калибровки геодезических приборов. Погрешности измерения.
автореферат [1,2 M], добавлен 08.01.2009Разработка и изготовление измерительной ячейки для проведения измерений диэлектрических свойств жидких сред и насыпных моделей пористой среды, ее калибровка. Измерение тангенса угла диэлектрических потерь и диэлектрической проницаемости образцов нефти.
курсовая работа [3,5 M], добавлен 19.09.2012Разработка методики анализа результатов наблюдений за осадками и смещениями крупных электроэнергетических объектов, расположенных в Мексике. Применение спутниковых методов измерений. Научное ее обоснование и определение путей практической реализации.
автореферат [205,2 K], добавлен 04.01.2009Определение средних многолетних величин годового стока рек при недостаточности данных гидрометрических наблюдений. Расчет статистических параметров вариационного стокового ряда и расчетных величин годового стока заданной вероятности его превышения.
контрольная работа [90,8 K], добавлен 12.03.2012Правила и главные принципы работы с основными геодезическими приборами. Овладение техникой геодезических измерений и построений. Производство теодолитных и нивелирных работ. Освоение метода угловых и линейных измерений. Математическая обработка данных.
отчет по практике [17,4 K], добавлен 04.05.2015Проведение оценки фактической точности угловых и линейных измерений в подземных опорных маркшейдерских сетях. Определение и расчет погрешности положения пункта свободного полигонометрического хода, многократно ориентированного гироскопическим способом.
контрольная работа [112,4 K], добавлен 02.02.2014Историческая геология - раздел геологических наук, где в хронологическом порядке рассматривается геологическое прошлое Земли. Формирование исторической геологии в 18 веке. Развитие геологии на современном этапе: стратиграфия, палеогеография и тектоника.
реферат [43,4 K], добавлен 03.02.2011Обработка геодезических измерений с использованием таблиц. Работа с программой. Создание таблицы, шаблонов. Построение графических документов с использованием системы автоматизированного проектирования AutoCAD 2006 с дополнительными надстройками.
отчет по практике [32,5 K], добавлен 03.03.2009Основание и руководящие документы на топографическую съемку. Определения границ участков, обеспечение единства измерений. Нормативные акты по безопасности выполнения работ. Виды и назначение крупномасштабных планов. Топографические планы разных масштабов.
дипломная работа [1,8 M], добавлен 18.10.2011Понятие и задачи исторической геологии. Палеонтологические и непалеонтологические методы восстановления геологического прошлого. Определение относительного возраста магматических пород. Периодизация истории Земли. Понятие стратиграфических единиц.
реферат [23,6 K], добавлен 24.05.2010Понятие физики почв как области почвоведения о физических свойствах почв. Представление о физических свойствах и режимах почвы в период эмпирического накопления знаний о почве (ок. 8 тыс. лет до н.э. - XV в.), в эпоху Возрождения (XVI-XVIII вв.).
реферат [42,9 K], добавлен 04.02.2015Понятие съемки как совокупности измерений, выполняемых на местности с целью создания карты или плана местности. Государственные геодезические сети. Особенности теодолитной съемки. Методы тахеометрической съемки. Камеральная обработка полевых измерений.
реферат [21,7 K], добавлен 27.08.2011