Нормирование точности и технические измерения

Выбор и обоснование норм точности сопряжений. Назначение и анализ норм точности геометрических параметров деталей. Выбор методик измерительного контроля геометрических параметров. Требования к точности геометрических параметров при оформлении чертежей.

Рубрика Производство и технологии
Вид методичка
Язык русский
Дата добавления 01.12.2015
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· высота шпонки

h = 8 h11;

hmax = 8,000 мм;

hmin = 7,910 мм;

· глубина паза втулки

t2 = 3,3+0,2 мм (ГОСТ 23360);

t2max = 3,500 мм;

t2min = 3,300 мм.

Тогда

Smax = t1max + t2max - hmin = 5,200 + 3,500 - 7,910 = 0,790 мм;

Smin = t1min + t2min - hmax = 5,000 + 3,300 - 8,000 = 0,300 мм.

По длине шпонки l = 25 мм:

· длина шпонки

l1 = 25h14 (ГОСТ 23360);

l1max = 25,000 мм;

l1min = 24,480 мм (ГОСТ 25346);

· длина паза вала

L2 = 25 Н15 (ГОСТ 23360);

L2max = 25,840 мм;

L2min = 25,000 мм (ГОСТ 25346);

Smax = L2max - l1max = 25,840 - 24,480 = 1,360 мм;

Smin = L2min - l1min = 25,000 - 25,000 = 0,000 мм.

Рис. 25. Схема расположения полей допусков по длине шпоночного паза

На чертежах деталей проставляются следующие точностные требования, относящиеся к шпоночным соединениям:

· номинальный размер вала d и номинальный размер отверстия втулки D с предельными отклонениями;

· для паза вала - размер t1 (предпочтительный вариант) или d - t1 с предельными отклонениями;

· для паза втулки - размер d + t2 с предельным отклонением;

· номинальные размеры ширины паза вала и паза втулки с соответствующими отклонениями;

· допуски расположения плоскости симметрии паза относительно оси посадочной цилиндрической поверхности (Тпарал и Тсим);

· параметры шероховатости поверхности элементов шпоночного соединения, устанавливаемые в зависимости от номинального размера и допуска (см. табл.22).

Шероховатость дна шпоночного паза рекомендуется нормировать параметром Ra не более 6,3 мкм.

2.3.3 Выбор посадок для шлицевого сопряжения. Выбор допусков формы и расположения и параметров шероховатости поверхностей шлицевого сопряжения

Шлицевое соединение - вид соединения валов со втулками по поверхностям сложного профиля с продольными выступами (шлицами) и впадинами. Обычно шлицевые соединения используют для передачи крутящих моментов в соединениях вала с зубчатым колесом (блоком зубчатых колес), со шкивом, полумуфтой или другой деталью. Как правило, это подвижные соединения, в которых втулка может перемещаться в осевом направлении, а шлицевые поверхности используют как направляющие для продольного перемещения деталей. Однако возможно и применение неподвижных шлицевых соединений.

Технологически шлицевые соединения сложнее шпоночных, но обеспечивают хорошее центрирование втулки на валу и позволяют передавать значительные вращающие моменты, поскольку большое число шлиц обеспечивает меньшую концентрацию напряжений.

На уровне межгосударственных стандартов стандартизованы элементы деталей и соединений с прямобочной (ГОСТ 1139-80 «Соединения шлицевые прямобочные. Размеры и допуски») и эвольвентной (ГОСТ 6033-80 «Соединения шлицевые эвольвентные с углом профиля 300. Размеры, допуски и измеряемые величины») формой профиля зубьев. Наиболее широко распространены прямобочные шлицевые соединения с четным числом шлиц.

Выбор типа шлицевых соединений связан с конструктивными и технологическими особенностями соединений. Шлицевые валы обычно обрабатывают инструментом, имеющим форму впадины или ее части (фасонная фреза, шлифовальный круг), а шлицевые отверстия чаще всего получают с помощью обработки протяжками - специальным многолезвийным режущим инструментом, образующим полный профиль отверстия за один проход инструмента.

Шлицы с эвольвентным профилем зуба имеют повышенную прочность благодаря утолщению зуба к основанию, но сложность получения эвольвентных зубьев вала и впадин втулки выше.

Шлицевые соединения должны обеспечить соосность функционально важных поверхностей втулки и вала. В шлицевых соединениях посадки могут осуществляться по трем поверхностям: по наружной цилиндрической поверхности (размер D), внутренней цилиндрической поверхности (размер d) и по боковым поверхностям впадин втулки и шлиц вала (размер b). При одновременном сопряжении по трем поверхностям нужны очень высокие требования к точности всех элементов по размерам, форме и расположению, которые могут рассматриваться как функционально неоправданные. Поэтому для любого шлицевого соединения введены «центрирующие» и «нецентрирующие» поверхности (понятия отражают степень участия поверхностей в обеспечении взаимного расположения сопрягаемых деталей). По нецентрирующим элементам назначают грубые посадки с большими зазорами или обеспечивают зазор по номиналу, что существенно удешевляет соединение без потерь функциональной точности.

Существуют три способа центрирования сопрягаемых прямобочных шлицевых втулки и вала: по наружному диаметру D (рис.26 а); по внутреннему диаметру d (рис.26 б); по боковым сторонам зубьев b (рис.26 в).

Рис.26. Центрирование в прямобочных шлицевых соединениях

Если в изделии не требуется повышенная износостойкость шлицевой поверхности втулки (конструктора устраивает средняя твердость поверхности шлицевого отверстия), применяют центрирование по наружному диаметру D. Такое центрирование применяют для неподвижных шлицевых соединений, а также для подвижных, воспринимающих небольшие нагрузки.

В этом случае поверхность шлицевого отверстия может быть окончательно обработана высокопроизводительными и точными методами протягивания или калибрования. Шлицевой вал можно получить фрезерованием с последующей термообработкой (например, закалкой) и шлифованием по диаметру D.

Если необходима повышенная износоустойчивость шлицевой поверхности втулки, она должна иметь высокую твердость, значит, обработка чистовой протяжкой неприменима. В таком случае прибегают к центрированию по d, и отверстие во втулке шлифуют на внутришлифовальном станке.

Центрирование по ширине b, при котором точность центрирования ниже, чем по другим элементам, целесообразно применять при передаче больших крутящих моментов в условиях переменных нагрузок, например, при частом реверсировании направления вращения или старт-стопных режимах работы. Минимальные зазоры между зубьями и впадинами служат для предотвращения больших динамических нагрузок с ударами.

В зависимости от нагруженности шлицевого соединения с прямобочным профилем выбирают его серию (легкая, средняя, тяжелая), чем определяют размеры и число зубьев (шлиц) z. При одном и том же внутреннем диаметре более тяжелая серия отличается увеличенной высотой зуба (шлица) и, соответственно, наружного диаметра. Тяжелая серия имеет большее число шлиц по сравнению со средней серией.

Выбор посадок в шлицевых соединениях зависит от требований к точности центрирования и принятого способа центрирования. Посадки в прямобочных шлицевых соединениях нормированы ГОСТ 1139, а эвольвентных - ГОСТ 6033.

Для эвольвентных шлицевых соединений предусмотрены возможности центрирования по боковым поверхностям зубьев и по наружному диаметру.

Поля допусков боковых поверхностей зубьев для эвольвентных шлицевых соединений нормируют не квалитетами, а степенями точности (7 ... 11). Обозначение полей допусков размеров ширины эвольвентной впадины втулки и толщины эвольвентного зуба вала включает число (степень точности), за которым следует буква (основное отклонение). Поля допусков по боковым поверхностям зубьев элементов эвольвентных шлицевых соединений приведены в ГОСТ 6033.

Особенностью полей допусков боковых поверхностей зубьев эвольвентных шлицевых соединений является то, что устанавливаются два вида допусков ширины впадины втулки и толщины зуба вала:

Т - суммарный допуск, включающий отклонение собственно ширины впадины (толщины зуба) и отклонение формы и расположения элементов профиля впадины (зуба), контролируемый комплексным калибром;

Te (Ts) - допуск собственно ширины впадины втулки (толщины зуба вала), контролируемый отдельно в случаях, когда не применяется комплексный калибр.

Допуски и основные отклонения для диаметров окружности впадины втулки D и окружности вершин зубьев вала d заимствованы из ГОСТ 25346.

При назначении допусков формы и расположения элементов шлицевых соединений можно руководствоваться следующими рекомендациями (рис. 27).

1) для прямобочных шлицевых соединений:

· допуски параллельности плоскости симметрии зубьев вала и пазов втулки относительно оси центрирующей поверхности не должны превышать на длине 100 мм: 0,03 мм - в соединениях повышенной точности, определяемой допусками размеров b от IТ6 до IT8; 0,05 мм - в соединениях нормальной точности при допусках размеров b от IT9 до IT10. При центрировании по боковым сторонам шлиц выбирают дополнительную базу - ось одной из нецентрирующих поверхностей шлицевого вала (обычно с более жестким допуском);

· допуски радиального биения центрирующих поверхностей шлицев относительно общей оси посадочных поверхностей под подшипники следует назначать по 7-ой степени точности ГОСТ 24643 при допусках центрирующих поверхностей 6...8 квалитетов и по 8-ой степени точности при допусках центрирующих поверхностей 9...10 квалитетов;

2) для эвольвентных шлицевых соединений предельные значения радиального биения Fr и допуска направления зуба Fв следует принимать по ГОСТ 6033.

Рис.27. Обозначения допусков параллельности и радиального биения элементов наружной шлицевой поверхности:

а - при центрировании по внутреннему диаметру;

б - при центрировании по наружному диаметру;

в - при центрировании по боковым сторонам шлиц.

База БВ - общая ось посадочных поверхностей вала (посадочных поверхностей под подшипники). База Д - ось выбранной нецентрирующей поверхности шлицевого вала при центрировании по боковым сторонам шлиц

Параметры Ra шероховатости (ГОСТ 2789) для поверхностей элементов прямобочных и эвольвентных шлицевых соединений должны быть согласованы с самыми жесткими допусками макрогеометрии и не превышать по параметру Ra значений 1,25 мкм для центрирующих поверхностей, 2,5 мкм для нецентрирующих боковых поверхностей шлиц подвижных соединений; 4,0 мкм для нецентрирующих боковых поверхностей шлиц неподвижных соединений и 10 мкм для нецентрирующих цилиндрических поверхностей шлиц.

Требования к чертежам шлицевых соединений и их элементов регламентирует ГОСТ 2.409-74 «Единая система конструкторской документации. Правила выполнения чертежей зубчатых (шлицевых) соединений».

Условные обозначения шлицевых соединений и их элементов различаются в зависимости от профиля зубьев.

Обозначения прямобочных шлицевых соединений валов и втулок содержат букву, обозначающую поверхность центрирования, число зубьев и номинальные размеры d, D и b, за которыми следуют обозначения посадок. Пример условного обозначения шлицевого соединения с числом зубьев z = 6, внутренним диаметром d = 28 мм, наружным диаметром D = 34 мм, шириной зуба b = 7 мм, с центрированием по внутреннему диаметру, с посадкой по диаметру центрирования H7/f7 и по размеру b - D9/f8

d - 6Ч28 H7/ f7Ч34 H12/a11Ч7 D9/f8.

При центрировании по наружному диаметру с посадкой по диаметру центрирования H8/h7 и по размеру b - F10/h9

D - 6Ч28Ч34 H8/h7Ч7 F10/h9.

При центрировании по боковым сторонам профиля

b - 6Ч28Ч34 H12/a11Ч7 D9/h8.

Условные обозначения требований к точности эвольвентных шлицевых соединений содержат: номинальный диаметр соединения D; обозначение посадки соединения (указывают обозначения полей допусков), помещаемое после размеров центрирующих элементов, обозначение стандарта.

Пример условного обозначения эвольвентного шлицевого соединения D = 50 мм; m = 2 мм, с центрированием по боковым поверхностям зубьев

50Ч2Ч9H/9g ГОСТ 6033-80.

То же с центрированием по наружному диаметру, с посадкой по центрирующему диаметру Н7/g6 и посадкой по нецентрирующим поверхностям зубьев 9H/9h

50ЧH7/g6Ч2 ГОСТ 6033-80.

То же с центрированием по внутреннему диаметру, с посадкой Н7/g6 и посадкой по нецентрирующим боковым поверхностям зубьев 9H/9h

i 50Ч2ЧH7/g6 ГОСТ 6033-80.

Пример расчета прямобочного шлицевого соединения

Рассмотрим прямобочное шлицевое соединение с центрированием по наружному диаметру D - 6Ч16Ч20 Н7/п6Ч4 F8/js7 (средняя серия по ГОСТ 1139). Расчет предельных размеров элементов шлицевого соединения, зазоров (натягов) аналогичен расчету гладких сопряжений. Поля допусков выбираются по ГОСТ 25346 или ГОСТ 1139.

Расчёт предельных размеров и зазоров (натягов) по сопряжению Ш20 Н7/n6:

Dmax = D0 + ES = 20,000 + 0,021 = 20,021 мм;

Dmin = D0 + EI = 20,000 + 0,000 = 20,000 мм;

dmax = d0 + es = 20,000 + 0,028 = 20,028 мм;

dmin = d0 + ei = 20,000 + 0,015 = 20,015 мм;

Smax = Dmax - dmin = 20,021 - 20,015 = 0,006 мм;

Nmax = dmax - Dmin = 20,028 - 20,000 = 0,028 мм.

Рис.28. Схемы расположения полей допусков элементов шлицевого соединения

Расчёт предельных размеров и зазоров по ширине шлиц 4F8/js7:

Bmax = B0 + ES = 4,000 + 0,028 = 4,028 мм;

Bmin = B0 + EI = 4,000 + 0,010 = 4,010 мм;

bmax = b0 + es = 4,000 + 0,006 = 4,006 мм;

bmin = b0 + ei = 4,000 - 0,006 = 3,994 мм;

Smax = Bmax - bmin = 4,028 - 3,994 = 0,034 мм;

Smin = Bmin - bmax = 4,010 - 4,006 = 0,004 мм.

Для нецентрирующего внутреннего диаметра d = 16 мм по ГОСТ 1139 устанавливаем предельные значения:

· поле допуска отверстия втулки Ш16 Н11(+0,110), т.е.

Dmax = D0 + ES = 16,000 + 0,110 = 16,110 мм

Dmin = D0 + EI = 16,000 + 0,000 = 16,000 мм.

· диаметр вала d1 не менее 14,5 мм

Smax = Dmax - d1min = 16,110 - 14,500 = 1,610 мм;

Smin = Dmin - d1max = 16,000 - 16,000 = 0,000 мм;

Scp = (Smax + Smin)/2 = (1,610 + 0)/2 = 0,805 мм.

Рис.29. Схема расположения полей допусков шлицевого соединения по внутреннему диаметру

2.3.4 Выбор посадок для резьбового сопряжения. Выбор норм точности деталей резьбового сопряжения

Резьбовым соединением по ГОСТ 11708-82 «Основные нормы взаимозаменяемости. Резьба. Термины и определения» называется соединение двух деталей с помощью резьбы, в которой одна из деталей имеет наружную резьбу, а другая - внутреннюю.

Резьбовые соединения являются одним из самых распространенных видов соединений. В машиностроении около 80% деталей либо имеют резьбовые поверхности, либо их крепление осуществляется с помощью резьбовых изделий.

Основными достоинствами резьбовых соединений являются:

· сравнительно легкая сборка - разборка;

· высокий уровень взаимозаменяемости изделий.

К недостаткам резьбовых соединений можно отнести:

· усложнение конструкции и технологии (обработка резьбовых поверхностей требует применения специального оборудования и инструмента, усложняется контроль деталей).

В зависимости от формы профиля резьбы делятся на:

· метрические (с треугольным профилем, исходным для которого является равносторонний треугольник, с углом при вершине 600);

· дюймовые (с симметричным треугольным профилем и углом при вершине 550), применяемые обычно для труб, трубные;

· прямоугольные (с прямоугольным профилем);

· трапецеидальные (с симметричным трапецеидальным профилем);

· упорные (с несимметричным трапецеидальным профилем);

· круглые (с профилем, образованным дугами).

Кроме того, разработаны резьбы, предназначенные для деталей из определенных материалов, например, для деталей из пластмасс, для керамических деталей, специальные резьбы для конкретных видов изделий, например, окулярные резьбы и др.

По функциональному назначению следует различать резьбовые соединения делительные («отсчетные») и силовые. Первые предназначены для обеспечения высокой точности линейных и угловых перемещений в измерительных приборах и технологическом оборудовании. Так в микрометрических приборах основной измерительный преобразователь - микрометрическая пара винт-гайка, в делительных машинах также основным механизмом является пара винт-гайка.

Силовые резьбовые соединения предназначены для создания значительных сил при перемещении деталей (винтовые прессы, домкраты) или для предотвращения взаимного перемещения соединенных деталей (соединения крышка-корпус, резьбовые соединения деталей трубопроводов, крепление втулки на валу и др.). Деление резьбовых соединений на «отсчетные» и силовые условно и осуществляется исходя из основной функции механизма.

В зависимости от характера функционирования различают неподвижные (крепежные) и подвижные (кинематические) резьбовые соединения. Подвижные резьбовые соединения образуются благодаря применению посадок с зазором. В неподвижных соединениях можно использовать все виды посадок - с натягом, переходные и с зазором. Для того чтобы обеспечить неподвижность резьбового соединения при посадке с зазором, используют искусственные методы его выборки (вплоть до создания натягов в соединении), либо применяют дополнительные конструктивные элементы, предохраняющие детали от самоотвинчивания (стопорные шайбы, контргайки, проволочные замки, герметики и др.). Из этого следует, что в неподвижных резьбовых соединениях, полученных применением посадки с зазором, после окончательной сборки возможны натяги по рабочим сторонам профиля резьбы при сохранении зазоров по противоположным сторонам профиля. В тех резьбовых соединениях, где применяют переходные посадки, натяги создают с использованием специальных «элементов заклинивания» (плоский бурт или цилиндрическая цапфа на шпильке, либо заклинивание по не полностью нарезанному профилю резьбы).

В практической деятельности набольшее распространение получили метрические резьбы.

Для метрических резьб стандартизованы:

· профиль резьбы;

· номинальные диаметры и шаги;

· нормы точности.

Профиль метрической резьбы регламентирован ГОСТ 9150-2002 (ИСО 68-1-98) «Основные нормы взаимозаменяемости. Резьба метрическая. Профиль».

В основу профиля резьбы положен исходный треугольник резьбы (рис.30) с углом профиля 60, высотой исходного треугольника Н и заданным шагом Р.

Рис.30. Номинальный профиль метрической резьбы и основные размеры его элементов

К основным размерам элементов метрической резьбы относятся:

d, D - наружный диаметр наружной резьбы (болта), наружный диаметр внутренней резьбы (гайки);

d2, D2 - средний диаметр наружной резьбы (болта), средний диаметр внутренний резьбы (гайки);

d1, D1 - внутренний диаметр наружной резьбы (болта), внутренний диаметр внутренней резьбы (гайки);

d3 - внутренний диаметр болта по дну впадины;

Р - шаг резьбы;

Н - высота исходного треугольника;

б - угол профиля резьбы;

R - номинальный радиус закругления впадины болта;

Н1 = 5/8 Н - рабочая высота профиля.

ГОСТ 8724-2002 (ИСО 261-98) «Основные нормы взаимозаменяемости. Резьба метрическая. Диаметры и шаги» устанавливает диаметры метрической резьбы от 0,25 мм до 600 мм и шаги от 0,075 мм до 6 мм.

Стандартом установлено 3 ряда диаметров резьбы (при выборе диаметра предпочтение отдается первому ряду). Для каждого номинального диаметра резьбы определены соответствующие шаги, которые могут включать крупный шаг и один или несколько мелких шагов.

Номинальные значения диаметров метрической резьбы регламентированы ГОСТ 24705-81 «Основные нормы взаимозаменяемости. Резьба метрическая. Основные размеры».

Стандартизованы резьбовые посадки с зазором, с натягом и переходные, которые определяют характер соединения по боковым сторонам резьбового профиля.

Система допусков и посадок метрической резьбы нормирована следующими стандартами:

- ГОСТ 16093-81 «Основные нормы взаимозаменяемости. Резьба метрическая. Допуски. Посадки с зазором»;

- ГОСТ 4608-81 «Основные нормы взаимозаменяемости. Резьба метрическая. Посадки с натягом»;

- ГОСТ 24834-81 «Основные нормы взаимозаменяемости. Резьба метрическая. Переходные посадки».

Для получения резьбовых посадок с зазором нормируют допуски диаметров резьбы по степеням точности от 3 до 10. Для нормирования положения полей допусков внутренней резьбы (гайки) предусмотрены четыре основных отклонения - Н, G, F, E (рис. 31), а для наружной резьбы (болта) пять основных отклонений - h, g, f, e, d (рис. 32).

а б

Рис.31. Схемы полей допусков внутренней резьбы:

а - с основными отклонениями E, F, G; б - с основным отклонением Н

Для наружной и внутренней резьбы кроме степеней точности установлены также три класса точности, условно названные точный, средний и грубый, в которые входят допуски определенных стандартом степеней точности.

Резьбы точного класса рекомендуется применять для ответственных статически нагруженных резьбовых соединений и при необходимости малых колебаний характера посадки. Средний класс точности рекомендуется для резьб общего назначения. Для резьб, нарезаемых на горячекатаных заготовках, в длинных глухих отверстиях и т.д. предпочтение отдается грубому классу точности.

а б

Рис.32. Схемы полей допусков наружной резьбы:

а - с основными отклонениями d, e, f, g, б - с основным отклонением h

ГОСТ 16093 устанавливает также три группы длин свинчивания: короткие S, нормальные N и длинные L.

При одном и том же классе точности допуск на средний диаметр резьбы при длине свинчивания L рекомендуется увеличивать, а при длине свинчивания S уменьшать на одну степень точности по сравнению с допусками, установленными для длины свинчивания N. Данные рекомендации позволяют выбирать точность резьбы в зависимости от конструктивных и технологических требований.

Соответствие полей допусков наружной и внутренней резьбы классам точности и длинам свинчивания приведены в таблице 23.

Таблица 23

Kлассы точности резьбовых поверхностей

Класс

точности

Длина свинчивания наружной резьбы

Длина свинчивания внутренней резьбы

S

N

L

S

N

L

Точный

(3h4h)

4g; 4h

(5h4h)

4Н5Н; 5Н

Средний

5g6g

(5h6h)

6d; 6e; 6f; 6g; 6h

(7е6е); 7g6g; (7h6h)

(5G); 5Н

6G;

(7G); 7Н

Грубый

8g (8h)*

(9g8g)

7G; 7Н

8G; 8Н

Примечания:

1. Выделенные подчеркиванием поля допусков предпочтительны.

2. Применение полей допусков, заключенных в скобки, следует по возможности ограничить.

3. При длинах свинчивания S и L допускаются поля допусков, установленные при длинах свинчивания N.

* Только для резьбы с шагом Р ? 0,8 мм.

Резьбовые посадки с гарантированным зазором применяют для крепежных резьб в следующих случаях:

· для соединений деталей, работающих при высокой температуре (для компенсации температурных деформаций, предохранения соединений от заедания и обеспечения возможности разборки деталей без повреждения, размещения смазки);

· при необходимости быстрой и легкой свинчиваемости деталей (даже при наличии небольшого загрязнения или повреждения резьбы);

· при нанесении на резьбовые детали антикоррозионного покрытия значительной толщины.

Обозначение поля допуска резьбы состоит из цифры, обозначающей степень точности, и буквы, обозначающей основное отклонение (например, 5Н, 6e), и следует за обозначением размера резьбы.

Для внутренней резьбы (гайки) поля допусков задаются на средний D2 и внутренний D1 диаметры; для наружной резьбы (болта) - на средний d2 и наружный d диаметры. Например, в обозначении 5Н6Н указаны поле допуска внутренней резьбы по диаметру D2 () и поле допуска внутренней резьбы по диаметру D1 ().

Если обозначения полей допусков двух диаметров совпадают, то в общем обозначении они не повторяются. Например, 6e - поля допусков наружной резьбы (болта) по диаметрам d2 и d.

Посадка в резьбовом соединении обозначается дробью, в числителе которой указывается обозначение поля допуска внутренней резьбы, в знаменателе - наружной резьбы. Например: М12-6Н/6g, где М - резьба метрическая; 12 мм - номинальный диаметр резьбы; шаг резьбы - крупный (Р = 1,75 мм - в обозначении не указывается); - поле допуска внутренней резьбы (гайки) по среднему и внутреннему диаметрам; 6g - поле допуска наружной резьбы (болта) по среднему и наружному диаметрам.

Обозначение левой метрической резьбы с мелким шагом и длиной свинчивания, отличающейся от нормальной, имеет следующий вид: M12Ч1LH-6H/6g - 30, где шаг резьбы - мелкий (Р = 1 мм); LH - левая резьба; длина свинчивания - 30 мм. Нормальная длина свинчивания (N) в обозначении не указывается.

При обозначении многозаходной метрической резьбы указывается буква М, номинальный диаметр резьбы, буквы Ph и значение хода резьбы, буква Р и значение шага. Например, условное обозначение двухзаходной резьбы с номинальным диаметром 16 мм, ходом 3 мм и шагом 1,5 мм: М16ЧPh3 Р1,5.

Резьбовые посадки с натягом (ГОСТ 4608) предусмотрены для метрических резьб с диаметрами от 5 мм до 45 мм и шагами от 0,8 мм до 3 мм. Эти посадки предназначены для наружных резьбовых деталей из стали, сопрягаемых с внутренними резьбами в деталях из стали, высокопрочных и титановых сплавов, чугуна, алюминиевых и магниевых сплавов.

Для получения резьбовых посадок с натягом по среднему диаметру предусмотрены следующие поля допусков (рис.33):

Рис.33. Поля допусков резьб для соединений с натягом

для внутренней резьбы (гайки) - , для наружной резьбы (болта) - 3n, 3p, 2r, для диаметров выступов внутренней резьбы - 4D, 5D, 4С, 5С, а для диаметров выступов наружной резьбы - 6e,6с.

Посадки с натягом по среднему диаметру резьбы предусмотрены только в системе основного отверстия.

Резьбовые посадки с натягом по среднему диаметру используют в тех случаях, когда необходимо обеспечить герметичность или предотвратить самоотвинчивание шпилек под действием вибраций, переменных нагрузок и изменения рабочей температуры. Примером может служить посадка резьбы шпилек в корпуса двигателей, в ступицы колёс автомобилей и т.п.

При необходимости обеспечения более однородного натяга и повышения прочности соединений резьбовые детали сортируют на группы, а затем собирают из одноименных групп (селективная сборка). Предусмотрена сортировка резьбовых деталей по среднему диаметру на две или три группы.

Для устранения заклинивания при свинчивании тугой резьбы по наружному и внутреннему диаметрам предусмотрены гарантированные зазоры.

Для резьб с натягом стандартом нормированы предельные отклонения шага и угла наклона боковой стороны профиля. Кроме того, на качество резьбовых соединений с натягом влияют отклонения формы наружной и внутренней резьбы. В данном случае отклонение формы, определяемое разностью между наибольшим и наименьшим действительными средними диаметрами, не должно превышать 25 % допуска среднего диаметра. «Обратная конусность» не допускается.

Виды посадок с натягом в зависимости от материала детали с внутренней резьбой и шага резьбы приведены в таблице 24.

Пример условного обозначения резьбовой посадки с натягом резьбы: М16-2Н4С(3)/3п(3), где М - резьба метрическая; 16 мм - номинальный диаметр резьбы; шаг резьбы - крупный (Р = 2 мм, в обозначении не указывается); - поле допуска внутренней резьбы по среднему диаметру, - поле допуска внутренней резьбы по внутреннему диаметру; 3п - поле допуска наружной резьбы по среднему диаметру; в скобках указано число сортировочных групп (3). Поля допусков наружной резьбы по наружному диаметру - (Р до 1,25 мм) или (Р св. 1,25 мм) в обозначении не указываются. Данная резьба применяется, если материал детали с внутренней резьбой - сталь, высокопрочные и титановые сплавы.

Таблица 24

Резьбовые посадки с натягом

Материал детали с внутренней резьбой

Посадка при Р, мм

Дополнительные условия сборки

до 1,25

св. 1,25

Чугун и алюминиевые сплавы

2H5D/2r

2H5C/2r

--

Чугун, алюминиевые и магниевые сплавы

2H5D(2)/3p(2)

2H5C(2)/3p(2)

Сортировка на две группы

Сталь, высокопрочные и титановые сплавы

2H4D(3)/3n(3)

2H4C(3)/3n(3)

Сортировка на три группы

Для образования переходных резьбовых посадок ГОСТ 24834 предусматривает следующие поля допусков (рис.34): для внутренней резьбы (гайки) - 3Н, 4Н, 5Н, 6Н, для наружной резьбы (болта) - 2m, 4jh, 4j, 4jk , 6g.

В переходных посадках дополнительно применяются элементы заклинивания шпилек: конический сбег резьбы, плоский бурт и цилиндрическая цапфа.

Варианты переходных резьбовых посадок в зависимости от номинального диаметра резьбы и материала детали с внутренней резьбой приведены в таблице 25.

Для деталей в переходных резьбовых посадках требования к точности шага, углов, отклонениям формы наружной и внутренней резьбы аналогичны требованиям к деталям для резьбовых соединений с натягом.

Пример условного обозначения резьбовой переходной посадки: М16-4Н6Н/4jk, где М - резьба метрическая; 16 мм - номинальный диаметр резьбы; шаг резьбы - крупный и Р = 2 мм (в обозначении не указывается); - поле допуска внутренней резьбы (гайки) по среднему диаметру, - поле допуска внутренней резьбы (гайки) по внутреннему диаметру; 4jk - поле допуска наружной резьбы (болта) по среднему диаметру. Поле допуска наружной резьбы (болта) по наружному диаметру - 6g (в обозначении не указывается).

Рис.34. Поля допусков резьб для соединений с переходными посадками

Таблица 25

Переходные резьбовые посадки

Номинальный диаметр резьбы, мм

Материал детали с внутренней резьбой

Посадки

От 5 до 16

Сталь

4H6H/4jk;3H6H/2m

Чугун, алюминиевые и магниевые сплавы

5H6H/4jk;3H6H/2m

От 18 до 30

Сталь

4H6H/4j; 3H6H/2m

Чугун, алюминиевые и магниевые сплавы

5H6H/4j; 3H6H/2m

От 30 до 45

Сталь, чугун, алюминиевые и магниевые сплавы

5H6H/4jh

Примеры расчёта посадок резьбовых соединений

Дана резьбовая посадка с зазором М12Ч1,5 - 6Н/6g.

Определяем номинальные значения диаметров внутренней резьбы (гайки) и наружной резьбы (болта) по ГОСТ 24705:

d = D = 12,000 мм;

d2 = D2 = 11,026 мм;

d1= D1= 10,376 мм;

d3= 10,160 мм;

P = 1,5 мм.

Предельные отклонения диаметров резьбовых деталей с внутренней резьбой (гайки) и наружной резьбой (болта) выбираем по ГОСТ 16093, и результаты представляем в таблице 26.

Таблица 26

Предельные отклонения диаметров резьбовых поверхностей

Номинальный диаметр резьбы, мм

Предельные отклонения болта, мкм

Предельные отклонения гайки, мкм

еs

ei

ES

EI

D = d = 12,000

- 32

- 268

не ограничено

0

D2 = d2 = 11,026

- 32

- 172

+ 190

0

D1 = d1 = 10,376

- 32

не ограничено

+ 300

0

Определяем предельные размеры внутренней резьбы (гайки) и наружной резьбы (болта), и результаты представляем в таблице 27.

Таблица 27

Предельные размеры резьбовых поверхностей (по диаметрам)

Предельный размер, мм

Болт

Гайка

d, мм

d2, мм

d1, мм

D, мм

D2, мм

D1, мм

Наибольший

12,000 -

- 0,032 =

= 11,968

11,026 -

- 0,032 =

= 10,994

10,376 -

- 0,032 =

= 10,344

не

ограничен

11,026 +

+ 0,190 =

= 11,216

10,376 +

+ 0,300 =

= 10,676

Наименьший

12,000 -

- 0,268 =

= 11,732

11,026 -

- 0,172 =

= 10,854

не

ограничен

12,000

11,026

10,676

Строим схему расположения полей допусков резьбового соединения M12Ч1,5 - 6H/6g (см. рис. 35).

Рассчитываем предельные значения зазоров в резьбовой посадке:

· по D (d):

Smin = Dmin - dmax = 12,000 - 11,968 = 0,032 мм;

Smax - не нормируется;

Рис.35. Схема расположения полей допусков резьбового соединения M12Ч1,5-6H/6g

· по D2 (d2):

S2min = D2min - d2max = 11,026 - 10,994 = 0,032 мм;

S2max = D2max - d2min = 11,216 - 10,854 = 0,362 мм;

· по D1 (d1):

S1min = D1min - d1max = 12,000 - 11,968 = 0,032 мм;

S1max - не нормируется.

Дана резьбовая посадка с натягом М16-2Н5С/2r.

Определяем номинальные значения диаметров внутренней и наружной резьб (ГОСТ 24705):

d = D = 16,000 мм;

d2 = D2 = 14,701 мм;

d1= D1 = 13,835 мм;

d3= 13,546 мм;

P = 2 мм.

Предельные отклонения диаметров резьбовых поверхностей внутренней и наружной резьбы выбираем по ГОСТ 4608, и результаты представляем в таблице 28.

Таблица 28

Предельные отклонения диаметров резьбовых поверхностей

Номинальный диаметр резьбы, мм

Предельные отклонения болта, мкм

Предельные отклонения гайки, мкм

еs

ei

ES

EI

D = d = 16,000

- 150

- 430

не ограничено

0

D2 = d2 = 14,701

+ 173

+ 110

+ 85

0

D1 = d1 = 13,835

-

-

+ 450

+150

Определяем предельные размеры внутренней (гайки) и наружной (болта) резьбы, и результаты представляем в таблице 29.

Строим схему расположения полей допусков резьбового соединения М16 - 2Н5С/2r (рис. 36).

Таблица 29

Предельные размеры внутренней и наружной резьбы

Предельный размер, мм

Болт

Гайка

d, мм

d2, мм

D, мм

D2, мм

D1, мм

Наибольший

16,000 -

- 0,15 =

= 15,850

14,701+

+ 0,173 =

= 14, 874

не ограничен

14,701+

+ 0,085 =

= 14,786

13,835+

+ 0,450 =

= 14,285

Наименьший

16,000 -

- 0,430 =

= 15,570

14,701+

+ 0,110=

= 14,811

16,000

14,701

13,835 +

+0,150 =

= 13,985

Рис.36. Схема расположения полей допусков резьбового соединения М16-2Н5С/2r

Рассчитываем предельные значения натягов в резьбовой посадке (только по среднему диаметру):

N2 max = d2max - D2min = 14, 874 - 14, 701 = 0,173 мм;

N2 min = d2min - D2max = 14,811 - 14,786 = 0,025 мм.

2.3.5 Выбор и назначение норм точности зубчатых колес и передач

Зубчатые передачи предназначены для передачи крутящих моментов от ведущего вала ведомому при заданном соотношении угловых скоростей валов.

В приборах и технологическом оборудовании (в кинематических цепях станков, воспроизводящих сложные поверхности, например, при обработке резьбы и зубчатых колес) применяют так называемые «отсчетные передачи» (их также называют «кинематические» или «делительные»). Колеса этих передач в большинстве случаев имеют небольшой модуль и работают при малых нагрузках и небольших скоростях. Основное внимание в таких передачах уделяют согласованности углов поворота ведущего и ведомого зубчатых колес, то есть их кинематической точности. Кинематическая точность передачи определяет уровень непостоянства передаточного отношения за полный оборот зубчатого колеса. Одним из показателей кинематической точности является кинематическая погрешность передачи - разность действительного и номинального углов поворота ведомого колеса.

Часто встречаются в технике и «силовые» (тяжело нагруженные) зубчатые передачи, это передачи в редукторах и коробках скоростей тяжелых машин, передачи подъемно-транспортных механизмов, штамповочных и ковочных прессов и т.д. Зубчатые колеса таких передач обычно характеризуются большими модулями и имеют относительно широкие зубчатые венцы. К этим передачам обычно не предъявляют высоких требований по точности угловых перемещений при вращении. При передаче больших крутящих моментов нужен надежный контакт зубьев по боковым поверхностям и максимальное использование площади рабочих поверхностей зубьев.

Деление зубчатых передач на «отсчетные» и «силовые» достаточно условно, поскольку все они передают крутящее моменты и все должны обеспечить пропорциональность углов поворота. Например, передачи в механических или электронно-механических часах вполне могут оказаться «силовыми», если малые по абсолютному значению крутящие моменты передаются узкими зубцами с мелким модулем.

Как «отсчетные», так и «силовые» передачи могут работать при разных скоростях, на основании чего их делят на «скоростные» (высокоскоростные, быстроходные) и «тихоходные». К скоростным относят передачи, работающие при относительно высоких окружных скоростях (15 - 100) м/с и частотах вращения быстроходного вала (500 - 5000) об/мин. Примеры скоростных передач - первые ступени редукторов турбин судовых и авиационных двигателей. Такие передачи встречаются в коробках скоростей автомобилей, в редукторах станков и другого технологического оборудования при использовании в нем высокооборотных двигателей. Колеса скоростных передач обычно имеют средние модули и передают не слишком большие моменты, при этом их зубья могут подвергаться значительным динамическим воздействиям.

Для снижения динамических нагрузок в скоростных передачах предъявляют повышенные требования к плавности их работы. Плавность работы передачи зависит от колебания мгновенных передаточных отношений, то есть от изменений передаточных отношений за моменты времени, которые значительно меньше времени полного оборота зубчатого колеса в зацеплении. Эти колебания многократно воспроизводятся за один оборот колеса. Основными причинами неплавности являются такие погрешности зубчатых венцов, как неправильное взаимное расположение зубьев (погрешности шага) и неточность формы рабочих поверхностей (погрешности формы профиля зубьев). Низкий уровень плавности работы зацепления приводит к повышению уровня вибраций и шума при работе изделия.

Для характеристики плавности работы реального колеса или передачи, используют циклические погрешности, которые повторяются с некоторой определенной частотой за один оборот колеса, например, погрешности зубцовой или удвоенной зубцовой частоты. Под циклической погрешностью зубцовой частоты понимают удвоенную амплитуду гармонической составляющей кинематической погрешности передачи с частотой повторения, равной частоте входа зубьев в зацепление.

Зубчатые передачи, не имеющие явно выраженного эксплуатационного характера (передача не требует высокой точности передаточного отношения, работает при небольших скоростях и передает средние крутящие моменты), относят к передачам общего назначения. Такие передачи используют, как правило, для обеспечения вспомогательных функций механизмов машин (например, передача ручного привода в автоматизированном оборудовании) и иногда называют «вспомогательными». К таким передачам не предъявляют повышенных требований по какой-либо из норм точности.

Эвольвентное зацепление теоретически способно работать при нулевых боковых зазорах (толщина зуба, находящегося в зацеплении, равна ширине впадины ответного колеса). Однако неточности изготовления зубчатого венца приводят к искажению формы и взаимному смещению реальных профилей зубьев, что может вызвать их деформацию или поломку. Смещение реальных профилей зубьев может также быть следствием неточностей изготовления корпусных деталей и монтажа зубчатых колес. Видоизменяют профиль зубьев и его расположение также температурные и силовые деформации. Для компенсации технологических неточностей и эксплуатационных искажений назначают боковой зазор между нерабочими профилями зубьев, обеспечивающий нормальную работу передачи.

ГОСТ 1643-81 «Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические. Допуски» устанавливает 12 степеней точности цилиндрических зубчатых колес и передач - с 1 по 12 в порядке убывания точности. В настоящее время допуски и предельные отклонения параметров зубчатых колес и передач нормированы для степеней точности 3…12, а степени 1 и 2 предусмотрены как перспективные. Для каждой передачи (зубчатого колеса) стандартом установлены нормы точности трех видов, определяющие степени точности по нормам кинематической точности, плавности работы и контакта зубьев.

Независимо от степеней точности устанавливают виды сопряжений, которые определяют требования к боковому зазору. ГОСТ 1643 устанавливает для зубчатых колес и передач с модулем от 1 мм до 55 мм шесть видов сопряжений (A, B, C, D, E, H) и восемь видов допуска (a, b, c, d, h, x, y, z) гарантированного бокового зазора jn min. С увеличением в сопряжении гарантированного бокового зазора jn min обычно возрастает и ширина поля допуска бокового зазора, которая определяется видом допуска зазора (рис.37). Вид допуска в таком случае обозначают строчной буквой, одноименной виду сопряжения (кроме вида допуска e). В большинстве случаев для зубчатых колес и передач рекомендуется поддерживать определенное соответствие между видом сопряжения, допуском бокового зазора и классом отклонения межосевого расстояния (табл.30).

Диапазон реального бокового зазора в передаче зависит от вида сопряжения, вида допуска зазора и класса точности межосевого расстояния в передаче.

Рис. 37. Виды сопряжений, гарантированные боковые зазоры и допуски боковых зазоров

Таблица 30

Рекомендуемое соответствие норм точности зубчатых колес

Степень точности

Вид сопряжения

Допуск бокового зазора

Класс отклонений межосевого расстояния

3-7

3-7

3-8

3-9

3-11

3-12

H

E

D

C

B

A

h

h

d

c

b

a

II

II

III

IV

V

VI

Вид сопряжения устанавливает минимальное значение зазора, вид допуска ограничивает рассеяние зазора между минимальным (гарантированным) и максимально допустимым значениями. Класс точности нормирует рассеяние межосевого расстояния в передаче, от которого зависит сближение зубчатых венцов, а значит и боковой зазор. Для отдельно взятого зубчатого колеса боковой зазор рассматривают как зазор между нерабочими профилями зубьев в воображаемом сопряжении рассматриваемого колеса с идеальным при выдержанном номинальном межосевом расстоянии.

...

Подобные документы

  • Контроль размеров гладкими калибрами. Расчет допусков и посадок подшипников качения на вал и корпус. Нормирование точности гладких и шпоночного соединений, метрической резьбы, цилиндрической зубчатой передачи. Выбор универсальных средств измерения.

    курсовая работа [971,3 K], добавлен 13.05.2017

  • Назначение и анализ норм точности геометрических параметров вала редуктора, выбор допусков формы и расположения поверхностей вала, шероховатости и сопряжений на валу. Расчёт посадок гладких, шпоночных, резьбовых и шлицевых соединений, расчёт калибров.

    курсовая работа [523,1 K], добавлен 14.10.2012

  • Анализ конструкции и назначения сборочной единицы. Выбор и обоснование метода достижения точности сборки узла, средств и методов контроля точности деталей. Обоснование допусков формы, расположения и шероховатости поверхностей. Автоматизация контроля.

    курсовая работа [2,9 M], добавлен 14.06.2009

  • Влияние точности геометрических параметров на взаимосвязь изделий в строительстве. Понятие шероховатости поверхности, критерии ее выбора для поверхности деталей. Санкции, налагаемые федеральными органами по стандартизации, метрологии и сертификации.

    контрольная работа [1,3 M], добавлен 02.10.2011

  • Расчет посадок гладких цилиндрических соединений. Нормирование точности формы, расположения, шероховатости поверхности деталей. Назначение и обоснование посадок шпоночного и шлицевого соединения. Расчет точности зубчатых колес и передач и их контроль.

    курсовая работа [4,1 M], добавлен 05.01.2023

  • Расчет посадок подшипников качения. Выбор степеней точности сопряжения зубчатой передачи и резьбового соединения. Определение допусков и предельных отклонений размеров, входящих в размерную цепь. Нормирование шероховатости поверхностей деталей узла.

    курсовая работа [1,1 M], добавлен 04.10.2011

  • Порядок расчета и нормирования точности червячной передачи, в том числе особенности выбора ее степеней точности и вида сопряжения. Технология нормирования точности гладких цилиндрических соединений. Методика расчета допусков размеров размерной цепи.

    курсовая работа [120,5 K], добавлен 01.09.2010

  • Влияние на эксплуатационные показатели механизмов и машин правильности выбора посадок, допусков формы и расположения деталей. Расчет и конструирование предельных калибров для контроля соединения. Сущность нормирования точности цилиндрических соединений.

    контрольная работа [3,3 M], добавлен 20.07.2012

  • Расчет и нормирование точности зубчатой передачи. Выбор степеней точности зубчатой передачи. Выбор вида сопряжения, зубьев колес передачи. Выбор показателей для контроля зубчатого колеса. Расчет и нормирование точностей гладко цилиндрических соединений.

    контрольная работа [44,5 K], добавлен 28.08.2010

  • Устройство и работа станка Ц2Д1Ф. Технические показатели обрезных станков. Определение класса точности станка. Расчет ресурса по точности. Выбор режущего инструмента. Процесс фрезерования торцово-конической фрезой. Определение угловых параметров.

    дипломная работа [1,1 M], добавлен 01.12.2015

  • Оценка погрешностей результатов прямых равноточных, неравноточных и косвенных измерений. Расчет погрешности измерительного канала. Выбор средства контроля, отвечающего требованиям к точности контроля. Назначение класса точности измерительного канала.

    курсовая работа [1002,1 K], добавлен 09.07.2015

  • Измерение конструктивных элементов и основных углов метчика. Изучение и исследование элементов резьбы комплекта машинно-ручных метчиков со шлифованным профилем, их точности и распределение нагрузки. Особенности изучения конструкции и геометрии метчиков.

    лабораторная работа [249,3 K], добавлен 12.10.2013

  • Допуски и посадки гладких цилиндрических соединений. Посадки шпоночных, шлицевых и резьбовых соединений. Выбор и обоснование метода достижения точности сборки узла. Обоснование допусков формы, расположения и шероховатости поверхностей зубчатого колеса.

    курсовая работа [2,0 M], добавлен 14.06.2009

  • Определение размерной цепи. Выбор и обоснование конструктивных параметров узла: шлицевого соединения и зубчатых венцов. Побор подшипников, втулки, упорных колец, крышек подшипника, звездочки и параметров шпоночного соединения и крепежных элементов.

    курсовая работа [38,6 K], добавлен 24.12.2014

  • Расчет и выбор посадки для гладкого, цилиндрического соединения с гарантированным натягом или зазором. Конструирование предельных калибров для контроля соединения. Порядок проведения расчета и нормирование точности и вида сопряжения зубчатой передачи.

    курсовая работа [4,5 M], добавлен 28.10.2013

  • Определение точности гладких соединений. Подбор посадки методом подобия и ее назначение расчетным методом. Допуски и посадки подшипников качения на вал и в корпус. Допуски размеров, входящих в размерные цепи. Выбор универсальных средств измерения.

    курсовая работа [317,9 K], добавлен 23.01.2022

  • Классификация отклонений геометрических параметров, принципы построения систем допусков и посадок для типовых соединений деталей машин. Ряды допусков, диапазоны и интервалы размеров для квалитетов. Отклонения расположения поверхностей и шероховатости.

    курсовая работа [906,8 K], добавлен 20.08.2010

  • Особенности расчёта и подбора посадок. Нормирование точности болтового и шпилечного соединения, точности диаметрального размера втулки и вала при нормальной температуре. Определение посадок под подшипники, шпоночных соединений. Расчёт размерной цепи.

    курсовая работа [1,4 M], добавлен 10.02.2010

  • Допуски и посадки гладких цилиндрических, шпоночных и шлицевых соединений. Расчёт исполнительных размеров гладких калибров. Нормирование точности метрической резьбы, цилиндрических зубчатых колёс и передач. Расчёт размерных цепей, сборочный чертеж узла.

    курсовая работа [1,2 M], добавлен 21.06.2013

  • Контроль точности геометрических параметров. Состояние технологического процесса. Автоматизированные координатно-измерительные машины стационарного и мобильного типов. Задачи статистического управления процессами и контрольные границы на карте.

    статья [14,4 K], добавлен 03.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.