Актуальные вопросы теоретической механики

Элементы векторной алгебры и основные понятия статики. Определение зависимости между моментами силы относительно центра и относительно оси. Поступательное и вращательное движение твердого тела. Рассмотрение плоскопараллельного движения твердого тела.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 20.09.2017
Размер файла 3,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция 1 Введение. Основные понятия статики

Введение

Элементы векторной алгебры

Основные понятия статики

Аксиомы статики

Связи и их реакции

Введение

Развитие современной техники ставит перед инженерами самые разнообразные задачи, связанные с расчетом различных сооружений (зданий, мостов, каналов, плотин и т. п.), с проектированием, производством и эксплуатацией всевозможных машин, механизмов, двигателей и, в частности, таких объектов, как автомобили, тепловозы, морские и речные суда, самолеты, ракеты, космические корабли и т. п. Несмотря на многообразие всех этих проблем, решения их в определенной части основываются на некоторых общих принципах и имеют общую научную базу. Объясняется это тем, что в названных задачах значительное место занимают вопросы, требующие изучения законов движения или равновесия тех или иных материальных тел.

Наука об общих законах движения и равновесия материальных тел и о возникающих при этом взаимодействиях между телами называется теоретической механикой. Теоретическая механика представляет собой одну из научных основ современных технических дисциплин.

Механикой в широком смысле этого слова называется наука, посвященная решению любых задач, связанных с изучением движения или равновесия тех или иных материальных тел и происходящих при этом взаимодействий между телами. Теоретическая механика представляет собою часть механики, в которой изучаются общие законы движения и взаимодействия материальных тел, т. е. те законы, которые, например, справедливы и для движения Земли вокруг Солнца и для полета ракеты или артиллерийского снаряда и т. п.

Под движением в механике мы понимаем механическое движение, т. е. происходящее с течением времени изменение взаимного положения материальных тел в пространстве. Механическим взаимодействием между телами называется тот вид взаимодействия, в результате которого происходит изменение движения этих тел или изменение их формы (деформация). Величина, являющаяся количественной мерой механического взаимодействия тел, называется в механике силой.

Основной задачей теоретической механики является изучение общих законов движения и равновесия материальных тел под действием приложенных к ним сил.

По характеру рассматриваемых задач механику принято разделять на статику, кинематику и динамику. В статике излагается учение о силах и об условиях равновесия материальных тел под действием сил. В кинематике рассматриваются общие геометрические свойства движения тел. Наконец, в динамике изучаются законы движения материальных тел под действием сил.

Термин «механика» впервые появляется в сочинениях одного из выдающихся философов древности Аристотеля (384--322 до н. э.) и происходит от греческого слова мзчбхЮ, означающего по современным понятиям «сооружение», «машина», «изобретение»

В древние времена, когда запросы производства сводились главным образом к удовлетворению нужд строительной техники, начинает развиваться учение о так называемых простейших машинах (блок, ворот, рычаг, наклонная плоскость) и общее учение о равновесии тел (статика). Обоснование начал статики содержится уже в сочинения одного из великих ученых Архимеда (287 - 212 г. но н. э.).

В России на развитие первых исследований по механике большое влияние оказали труды гениального ученого и мыслителя М. В. Ломоносова (1711--1765). Из многочисленных отечественных ученых, внесших значительный вклад в развитие различных областей теоретической механики, прежде всего, должны быть названы: М. В. Остроградский (1801--1861), которому принадлежит ряд важных исследований по аналитическим методам решения задач механики; П. Л. Чебышев (1821--1894), создавший новое направление в исследовании движения механизмов; С. В. Ковалевская (1850--1891), решившая одну из труднейших задач динамики твердого тела; И. В. Мещерский (1859--1935), заложивший основы механики тел переменной массы; К. Э. Циолковский (1857--1935), сделавший ряд фундаментальных открытий в теории реактивного движения; А. Н. Крылов (1863--1945), разработавший теорию корабля и много внесший в развитие теории гироскопических приборов.

Выдающееся значение для развития механики имели труды «отца русской авиации» Н. Е. Жуковского (1847--1921) и его ближайшего ученика С. А. Чаплыгина (1869--1942). Характерной чертой в творчестве Н. Е. Жуковского было приложение методов механики к решению актуальных технических задач. Большое влияние идеи Н. Е. Жуковского оказали и на преподавание теоретической механики в высших технических учебных заведениях нашей страны.

Стоящая в наши дни перед отечественной наукой и техникой задача непрерывного роста и внедрения в производство новой техники требует дальнейшего повышения качества подготовки инженерных кадров, расширения теоретической базы их знаний. Известную роль в решении этой задачи должно сыграть и изучение одной из научных основ современной техники - теоретической механики.

Элементы векторной алгебры

В теоретической механике рассматриваются такие векторные величины как сила, моменты силы относительно точки и оси, момент пары сил, скорость, ускорение и другие.

1. Понятие вектора.

Для определенности рассматриваем прямоугольную декартову систему координат.

Вектор - это направленный отрезок, который характеризуется длиной и направлением.

Операции над векторами. Вектора можно складывать и умножать на число.

- сумма двух векторов есть вектор

- произведение вектора на действительное число есть вектор

- существует нулевой вектор

Рис. 1

В математике все вектора являются свободными, их можно переносить параллельно самим себе.

В сумме двух векторов (рис.1,а) начало второго вектора можно поместить в конец первого вектора, тогда сумму двух векторов можно представить как вектор, имеющий начало в начале первого вектора, а конец в конце второго вектора. Применяя это правило для суммы нескольких векторов (рис.1,б) получаем, что суммой нескольких векторов является вектор замыкающий ломаную линию, состоящую из слагаемых векторов.

Операции над векторами подчиняются следующим законам (см. рис.2):

Рис. 2

2. Правые и левые системы координат.

Декартовы системы координат делятся на два вида: правую и левую.

Рассмотрим декартовы системы координат на плоскости (см. рис. 3).

При повороте оси Ox правой системы координат на 90о против часовой стрелки она совпадает с осью Oy.

Рис. 3 Рис.4

Рассмотрим декартовы системы координат в пространстве (см. рис.4).

При повороте оси Ox правой системы координат вокруг оси Oz на 900 против часовой стрелки она совпадает с осью Oy.

3. Длина, проекции и направляющие косинусы вектора.

В дальнейшем будем рассматривать правую декартову систему координат. Единичные вектора вдоль осей Ox, Oy и Oz образуют систему единичных (или базисных) векторов. Любой вектор, имеющий начало в точке O, можно представить как сумму числа (ax, ay, az) - это проекции векторана оси координат (см. рис.5).

Рис. 5

Длина (или модуль) вектора определяется формулой и обозначается или .

Проекцией вектора на ось называется скалярная величина, которая определяется отрезком, отсекаемым перпендикулярами, опущенными из начала и конца вектора на эту ось. Проекция вектора считается положительной (+), если направление ее совпадает с положительным направлением оси, и отрицательной (-), если проекция направлена в противоположную сторону (см. рис.6).

Рис. 6

Направляющими косинусами , , вектора называются косинусы углов между вектором и положительными направлениями осей Ox, Oy и Oz соответственно.

Любая точка пространства с координатами (x, y, z) может быть задана своим радиус-вектором

Координаты (x, y, z) это проекции вектора на оси координат.

4. Скалярное произведение двух векторов

Имеется два вектора и .

,

.

Рис. 7

Результатом скалярного произведения двух векторов и является скалярная величина (число).

Записывается как или . Скалярное произведение двух векторов равно

Свойства скалярного произведения:

5. Векторное произведение двух векторов

Имеется два вектора и .

,

.

Рис. 8

Результатом векторного произведения двух векторов и является вектор . Записывается как или .

Векторное произведение двух векторов это вектор , перпендикулярный к обоим этим векторам, и направленный так, чтобы с его конца поворот вектора к вектору был виден против часовой стрелки.

Длина (или модуль) векторного произведения равна .

Свойства векторного произведения:

Векторное произведение двух векторов вычисляется через их проекции следующим образом:

Основные понятия статики

Статикой называется раздел механики, в котором излагается общее учение о силах и изучается условия равновесия материальных тел, находящихся под действием сил.

Твердое тело. В статике и вообще в теоретической механике все тела считаются абсолютно твердыми. То есть предполагается, что эти тела не деформируются, не изменяют свою форму и объем, какое бы действие на них не было оказано.

Исследованием движения нетвердых тел - упругих, пластичных, жидких, газообразных, занимаются другие науки (сопротивление материалов, теория упругости, гидродинамика и т.д.).

Под равновесием будем понимать состояния покоя тела по отношению к другим материальным телам.

Основные понятия:

1. Величина, являющаяся количественной мерой механического взаимодействия материальных тел, называется в механике силой.

Сила является величиной векторной.

Ее действие на тело определяется: 1) численной величиной или модулем силы, 2) направлением силы, 3) точкой приложения силы (рис.9).

Рис. 9

Прямая DE, вдоль которой направлена сила, называется линией действия силы.

В тексте вектор силы обозначается латинскими буквами , , и др., с черточками над ними. Если черточки нет, значит у силы известна только ее численная величина - модуль.

Предполагается, что действие силы на тело не изменится, если ее перенести по линии действия в любую точку тела (конечно - твердого тела). Поэтому вектор силы называют скользящим вектором. Если силу перенести в точку, не расположенную на этой линии, действие ее на тело будет совсем другим.

2. Совокупность сил, действующих на какое-нибудь твердое тело, будем называть системой сил.

3. Тело, не скрепленное с другими телами, которому из данного положения можно сообщить любое перемещение в пространстве, называется свободным.

4. Если одну систему сил, действующих на свободное твердое тело, можно заменить другой системой, не изменяя при этом состояния покоя или движения, в котором находится тело, то такие две системы сил называются эквивалентными.

5. Система сил, под действием которой свободное твердое тело может находиться в покое, называется уравновешенной или эквивалентной нулю.

6. Если данная система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил. Таким образом, равнодействующая - это сила, которая одна заменяет действие данной системы сил на твердое тело.

7. Сила, равная равнодействующей по модулю, прямо противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

8. Силы, действующие на твердое тело, можно разделить на внешние и внутренние. Внешними называются силы, действующие на частицы данного тела со стороны других материальных тел. Внутренними называются силы, с которыми частицы данного тела действуют друг на друга.

9. Сила, приложенная к телу в какой-нибудь одной его точке, называется сосредоточенной. Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными.

Понятие о сосредоточенной силе является условным, так как практически приложить силу к телу в одной точке нельзя. Силы, которые мы в механике рассматриваем как сосредоточенные, представляют собою по существу равнодействующие некоторых систем распределенных сил.

В частности, обычно рассматриваемая в механике сила тяжести, действующая на данное твердое тело, представляет собою равнодействующую сил тяжести его частиц. Линия действия этой равнодействующей проходит через точку, называемую центром тяжести тела.

Аксиомы статики

Все теоремы и уравнения статики выводятся из нескольких исходных положений, принимаемых без математических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F1 = F2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Рис. 10

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равновесии не может.

Аксиома 2. Действие данной системы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравновешенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсолютно твердое тело не изменится, если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела.

Рис. 11

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что = , = . От этого действие силы на тело не изменится. Но силы и согласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В результате на тело. Будет действовать только одна сила , равная , но приложенная в точке В.

Таким образом, вектор, изображающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах, как на сторонах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и : = + .

Рис. 12

Величина равнодействующей

Конечно, Такое равенство будет соблюдаться только при условии, что эти силы направлены по одной прямой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействующую, равную геометрической (векторной) сумме этих сил и приложенную в той же точке.

Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но противоположное по направлению противодействие.

Закон о равенстве действия и противодействия является одним из основных законов механики. Из него следует, что если тело А действует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой = (рис. 13). Однако силы и не образуют уравновешенной системы сил, так как они приложены к разным телам.

Рис. 13

Аксиома 5 (принцип отвердевания). Равновесие изменяемого (деформируемого) тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сваренными друг с другом и т. д.

Связи и их реакции

По определению, тело, которое не скреплено с другими телами и может совершать из данного положения любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным. Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе - несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости, которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь - стол. Тело несвободное. Сделаем его свободным - стол уберем, а чтобы тело осталось в равновесии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей.

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпендикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис.14,а). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям соприкасающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б), то реакция направлена по нормали к другой поверхности.

Если поверхности не гладкие, надо добавить еще одну силу - силу трения , которая направлена перпендикулярно нормальной реакции в сторону, противоположную возможному скольжению тела.

Рис. 14 Рис. 15

Рис. 16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM. Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ, прикрепленное шарниром к опоре D (рис.16,а), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпендикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпендикулярной к оси шарнира, т.е. в плоскости Аху. Для силы R в этом случае наперед не известны ни ее модуль R, ни направление (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закрепляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. Примерами таких связей служат шаровая пята, с помощью которой прикрепляется фотоаппарат к штативу (рис.16,б) и подшипник с упором (подпятник) (рис. 16,в). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R, ни углы, образуемые ею с осями х, у, z.

Рис. 17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ, закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пренебречь. Тогда на стержень будут действовать только две силы приложенные в шарнирах А и В. Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом которого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А) препятствует движению тела только в направлении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В). Реакция такой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и , то тем самым будет определена и реакция ; по модулю

Рис. 18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже неподвижной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия войдут четыре неизвестные реакции , , , .

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоскостей действует система распределенных сил реакций. Считая эти силы приведенными к центру А, мы можем их заменить одной наперед неизвестной силой , приложенной в этом центре, и парой с наперед неизвестным моментом . Силу можно в свою очередь изобразить ее составляющими и . Таким образом, для нахождения реакции неподвижной защемляющей опоры надо определить три неизвестных величины , и . Если под такую балку где-нибудь в точке В подвести еще одну опору, то балка станет статически неопределимой.

Рис. 19

При определении реакций связи других конструкций надо установить, разрешает ли она двигаться вдоль трех взаимно перпендикулярных осей и вращаться вокруг этих осей. Если препятствует какому-либо движению - показать соответствующую силу, если препятствует вращению - пару с соответствующим моментом.

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

Пример 1. На невесомую трехшарнирную арку действует горизонтальная сила (рис.20). Определить линию действия реакции (реакции связи в точке А).

Решение: Рассмотрим правую часть арки отдельно. В точках В и С приложим силы реакции связей и . Тело под действием двух сил находится в равновесии. Согласно аксиоме о равновесии двух сил, силы и равны по величине и действуют вдоль одной прямой в противоположные стороны. Таким образом, направление силы нам известно (вдоль линии ВС).

Рис. 20

Рассмотрим левую часть арки отдельно. В точках А и С приложим силы реакции связей и . Сила , действие равно противодействию. На тело действуют три силы, направления двух сил ( и .) известно. Согласно теореме о трех силах линии действия всех трех сил пресекаются в одной точке. Следовательно, сила направлена вдоль линии AD.

Пример 2. Однородный стержень закреплен шарнирно в точке А и опирается на гладкий цилиндр. Определить линию действия реакции (реакции связи в точке А).

Рис. 21

Решение: Так как стержень однородный, то равнодействующая сил тяжести (сила ), действующих на стержень, приложена в его геометрическом центре (точка С). Так как стержень опирается на гладкую поверхность, то реакция связи (сила ) в точке касания (точка D) направлена по нормали к этой поверхности. На тело действуют три силы, направления двух сил ( и .) известно. Согласно теореме о трех силах линии действия всех трех сил пресекаются в одной точке. Следовательно, сила направлена вдоль линии .

Лекция 2 Равновесие системы сил. Пара сил

Проекция силы на ось и на плоскость

Геометрический способ сложения сил

Равновесие системы сходящихся сил

Момент силы относительно центра или точки

Теорема Вариньона о моменте равнодействующей

Пара сил

Момент пары

Свойства пар

Сложение пар

Теорема о параллельном переносе силы

Приведение плоской системы сил к данному центру

Условия равновесия произвольной плоской системы сил

Случай параллельных сил

Решение задач

Проекция силы на ось и на плоскость

Перейдем к рассмотрению аналитического (численного) метода решения задач статики. Этот метод основывается на понятии о проекции силы на ось. Как и для всякого другого вектора, проекцией силы на ось называется скалярная величина, равная взятой с соответствующим знаком длине отрезка, заключенного между проекциями начала и конца силы. Проекция имеет знак плюс, если перемещение от ее начала к концу происходит в положительном направлении оси, и знак минус - если в отрицательном. Из определения следует, что проекции данной силы на любые параллельные и одинаково направленные оси равны друг другу. Этим удобно пользоваться при вычислении проекции силы на ось, не лежащую в одной плоскости с силой.

Рис. 12

Обозначать проекцию силы на ось Ох будем символом . Тогда для сил, изображенных на рис. 12, получим:

, .

Но из чертежа видно, что , .

Следовательно,

, ,

т. е. проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным направлением оси. При этом проекция будет положительной, если угол между направлением силы и положительным направлением оси - острый, и отрицательной, если этот угол - тупой; если сила перпендикулярна к оси, то ее проекция на ось равна нулю.

Рис. 13

Проекцией силы на плоскость Оху называется вектор , заключенный между проекциями начала и конца силы на эту плоскость (рис. 13). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своим численным значением, но и направлением в плоскости Оху. По модулю , где -- угол между направлением силы и ее проекции .

В некоторых случаях для нахождения проекции силы на ось бывает удобнее найти сначала ее проекцию на плоскость, в которой эта ось лежит, а затем найденную проекцию на плоскость спроектировать на данную ось.

Например, в случае, изображенном на рис. 13, найдем таким способом, что

Геометрический способ сложения сил

Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем называть главным вектором этой системы сил. Понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.

Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сложением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил , , …, (рис. 14, a), откладываем от произвольной точки О (рис. 14, б) вектор Oa, изображающий в выбранном масштабе cилу F1, от точки a откладываем вектор , изображающий силу F2, от точки b откладываем вектор bc, изображающий силу F3 и т. д.; от конца m предпоследнего вектора откладываем вектор mn, изображающий силу Fn. Соединяя начало первого вектора с концом последнего, получаем вектор = , изображающий геометрическую сумму или главный вектор слагаемых сил:

или

От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное построение представляет собою результат последовательного применения правила силового треугольника.

Рис. 14

Фигура, построенная на рис. 14,б, называется силовым (в общем случае векторным) многоугольником. Таким образом, геометрическая сумма или главный вектор нескольких сил изображается замыкающей стороной силового многоугольника, построенного из этих сил (правило силового многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора - в сторону противоположную.

Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения системы сходящихся сил. Сходящимися называются силы, линии действия которых пересекаются в одной точке (см. рис. 14, а).

По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 14, а в точке А).

Последовательно применяя аксиому параллелограмма сил, приходим к выводу, что система сходящихся сил имеет равнодействующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы , , …, сходятся в точке A (рис. 14, а), то сила, равная главному вектору , найденному построением силового многоугольника, и приложенная в точке А, будет равнодействующей этой системы сил.

Равновесие системы сходящихся сил

Из законов механики следует, что твердое тело, на которое действуют взаимно уравновешенные внешние силы, может не только находиться в покое, но и совершать движение, которое мы назовем движением «по инерции». Таким движением будет, например, поступательное равномерное и прямолинейное движение тела.

Отсюда получаем два важных вывода: 1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции». 2) Уравновешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравновешенных сил.

Для равновесия приложенной к твердому телу системы сходящихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю. Условия, которым при этом должны удовлетворять сами силы, можно выразить в геометрической или аналитической форме.

1. Геометрическое условие равновесия. Так как равнодействующая сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то может обратиться в нуль тогда и только тогда, когда конец последней силы в многоугольнике совпадает с началом первой, т. е. когда многоугольник замкнется.

Следовательно, для равновесия системы, сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнут.

2. Аналитические условия равновесия. Аналитически равнодействующая системы сходящихся сил определяется формулой

.

Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно , , , т. е. когда действующие на тело силы будут удовлетворять равенствам:

Равенства выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.

Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия

Равенства выражают также необходимые условия (или уравнения) равновесия свободного твердого тела, находящегося под действием сходящихся сил.

Пример 1. На рис.15 показаны три силы. Проекции сил и на оси х, у, z очевидны:

Рис. 15

А чтобы найти проекцию силы на ось х нужно использовать правило двойного проектирования.

Проектируем силу сначала на плоскость хОу, в которой расположена ось (рис.15), получим вектор , величиной а затем его проектируем на ось х:

Аналогично действуя, найдём проекцию на ось у: .

Проекция на ось z находится проще: .

Нетрудно убедиться, что проекции сил на ось V равны:

При определении этих проекций удобно воспользоваться рис.16, видом сверху на расположение сил и осей.

Рис. 16

Вернёмся к системе сходящихся сил (рис. 17). Проведём оси координат с началом в точке пересечения линий действия сил, в точке О.

Мы уже знаем, что равнодействующая сил . Спроектируем это векторное равенство на оси. Получим проекции равнодействующей на оси x, y, z:

Они равны алгебраическим суммам проекций сил на соответствующие оси. А зная проекции равнодействующей, можно определить и величину её как диагональ прямоугольного параллелепипеда или

.

Направление вектора найдём с помощью направляющих косинусов (рис.17):

Рис. 17

Пример 2. На шар, вес которого Р, лежащий на горизонтальной плоскости и привязанный к ней нитью АВ, действует сила F (рис.18). Определим реакции связей.

Рис. 18

Следует сразу заметить, что все задачи статики решаются по одной схеме, в определённом порядке.

Продемонстрируем ее на примере решения этой задачи.

1. Надо выбрать (назначить) объект равновесия - тело, равновесие которого следует рассмотреть, чтобы найти неизвестные.

В этой задаче, конечно, объект равновесия - шар.

2. Построение расчётной схемы. Расчётная схема - это объект равновесия, изображённый отдельно, свободным телом, без связей, со всеми силами, действующими на него: реакциями и остальными силами.

Показываем реакцию нити и нормальную реакцию плоскости - (рис.18). Кроме них на шар действуют заданные силы и .

3. Надо установить какая получилась система сил и составить соответствующие уравнения равновесия.

Здесь получилась система сходящихся сил, расположенных в плоскости, для которой составляем два уравнения (оси можно проводить произвольно):

,

4. Решаем систему уравнений и находим неизвестные.

По условию задачи требовалось найти давление шара на плоскость. А мы нашли реакцию плоскости на шар. Но, по определению следует, что эти силы равны по величине, только давление на плоскость будет направлено в противоположную сторону, вниз.

Пример 3. Тело весом Р прикреплено к вертикальной плоскости тремя стержнями (рис.19). Определим усилия в стержнях.

Рис. 19

В этой задаче объект равновесия - узел С вместе с грузом. Он нарисован отдельно с реакциями, усилиями в стержнях , , , и весом . Силы образуют пространственную систему сходящихся сил. Составляем три уравнения равновесия:

Из первого уравнения следует: S2 = S3. Тогда из третьего:

а из второго:

Когда мы направляли усилие в стержне от узла, от объекта равновесия, предполагали, что стержни работают на растяжение. Усилие в стержне CD получилось отрицательным. Это значит - стержень сжат. Так что знак усилия в стержне указывает как работает стержень: на растяжение или на сжатие.

Момент силы относительно центра (или точки)

Опыт показывает, что под действием силы твердое тело может наряду с поступательным перемещением совершать вращение вокруг того или иного центра. Вращательный эффект силы характеризуется ее моментом.

Рассмотрим силу , приложенную в точке А твердого тела (рис. 20). Допустим, что сила стремится повернуть тело вокруг центра О. Перпендикуляр h, опущенный из центра O на линию действия силы , называется плечом силы относительно центра О. Так как точку приложения силы можно произвольно перемещать вдоль линии действия, то, очевидно, вращательный эффект силы будет зависеть: 1) от модуля силы F и длины плеча h; 2) от положения плоскости поворота ОАВ, проходящей через центр О и силу F; 3) от направления поворота к этой плоскости.

Рис. 20

Ограничимся пока рассмотрением систем сил, лежащих в одной плоскости. В этом случае плоскость поворота для всех сил является общей и в дополнительном задании не нуждается.

Тогда для количественного измерения вращательного эффекта можно ввести следующее понятие о моменте силы: моментом силы относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.

Момент силы относительно центра О будем обозначать символом m0(F). Следовательно,

В дальнейшем условимся считать, что момент имеет знак плюс, если сила стремится повернуть тело вокруг центра О против хода часовой стрелки, и знак минус, - если по ходу часовой стрелки. Так, для силы , изображенной на рис.20,а, момент относительно центра О имеет знак плюс, а для силы, показанной на рис.20,б, - знак минус.

Отметим следующие свойства момента силы:

1) Момент силы не изменяется при переносе точки приложения силы вдоль ее линии действия.

2) Момент силы относительно центра О равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр О (плечо равно нулю).

3) Момент силы численно выражается удвоенной площадью треугольника ОАВ (рис. 20,б)

Этот результат следует из того, что

Теорема Вариньона о моменте равнодействующей

Докажем следующую теорему Вариньона: момент равнодействующей плоской системы сходящихся сил относительно любого центра равен алгебраической сумме моментов слагаемых сил относительно того же центра.

Рис. 21

Рассмотрим систему сил , , …, , сходящихся в точке А (рис.21). Возьмем произвольный центр О и проведем через него ось Ох, перпендикулярную к прямой ОА; положительное направление оси Ох выбираем так, чтобы знак проекции любой из сил на эту ось совпадал со знаком ее момента относительно центра О.

Для доказательства теоремы найдем соответствующие выражения моментов m0(), m0(), …. По формуле . Но, как видно из рисунка, , где F1x - проекция силы на ось Ох; следовательно

.

Аналогично вычисляются моменты всех других сил.

Обозначим равнодействующую сил , , …, , через , где . Тогда, по теореме о проекции суммы сил на ось, получим . Умножая обе части этого равенства на ОА, найдем:

или,

.

Пара сил. Момент пары

Парой сил (или просто парой) называются две силы, равные по величине, параллельные и направленные в противоположные стороны (рис.22). Очевидно, , и .

Рис. 22

Несмотря на то, что сумма сил равна нулю, эти силы не уравновешиваются. Под действием этих сил, пары сил, тело начнёт вращаться. И вращательный эффект будет определяться моментом пары:

.

Расстояние a между линиями действия сил называется плечом пары.

Если пара вращает тело против часовой стрелки, момент её считается положительным (как на рис.22), если по часовой стрелке - отрицательным.

Для того, чтобы момент пары указывал и плоскость, в которой происходит вращение, его представляют вектором.

Вектор момента пары направляется перпендикулярно плоскости, в которой расположена пара, в такую сторону, что если посмотреть оттуда, увидим вращение тела против часовой стрелки (рис. 23).

Нетрудно доказать, что вектор момента пары - есть вектор этого векторного произведения (рис. 23). И заметим, что он равен вектору момента силы относительно точки А, точки приложения второй силы:

.

О точке приложения вектора будет сказано ниже. Пока приложим его к точке А.

Рис. 23

Свойства пар

1) Проекция пары на любую ось равна нулю. Это следует из определения пары сил.

2) Найдём сумму моментов сил и составляющих пару, относительно какой-либо точки О (рис.24).

Рис. 24

Покажем радиусы-векторы точек А1 и А2 и вектор , соединяющий эти точки. Тогда момент пары сил относительно точки О

.

Но . Поэтому .

Но , а .

Значит .

Момент пары сил относительно любой точки равен моменту этой пары.

Отсюда следует, что, во-первых, где бы не находилась точка О и, во-вторых, где бы не располагалась эта пара в теле и как бы она не была повёрнута в своей плоскости, действие её на тело будет одинаково. Так как момент сил, составляющих пару, в этих случаях один и тот же, равный моменту этой пары .

Поэтому можно сформулировать ещё два свойства.

3) Пару можно перемещать в пределах тела по плоскости действия и переносить в любую другую параллельную плоскость.

4) Так как действие на тело сил, составляющих пару, определяется лишь её моментом, произведением одной из сил на плечо, то у пары можно изменять силы и плечо, но так, чтобы момент пары остался прежним. Например, при силах F1=F2=5 H и плече а = 4 см момент пары m = 20 Hсм. Можно силы сделать равными 2 Н, а плечо а = 10 см. При этом момент останется прежним 20 Нсм и действие пары на тело не изменится.

Все эти свойства можно объединить и, как следствие, сделать вывод, что пары с одинаковым вектором момента и неважно где расположенные на теле, оказывают на него равное действие. То есть такие пары эквивалентны.

Исходя из этого, на расчётных схемах пару изображают в виде дуги со стрелкой, указывающей направление вращения, и рядом пишут величину момента m. Или, если это пространственная конструкция, показывают только вектор момента этой пары. И вектор момента пары можно прикладывать к любой точке тела. Значит вектор момента пары - свободный вектор.

И ещё одно дополнительное замечание. Так как момент пары равен вектору момента одной из сил её относительно точки приложения второй силы, то момент пары сил относительно какой-либо оси z - есть проекция вектора момента пары на эту ось:

,

где - угол между вектором и осью z.

Сложение пар

Пусть даны две пары с моментами m1 и m2, расположенные в пересекающихся плоскостях (рис.25).

Сделаем у пар плечи одинаковыми, равными а = АВ. Тогда модули сил, образующих первую пару, должны быть равны: , а образующих вторую пару: .

Эти пары показаны на рис.25, где , . И расположены они в своих плоскостях так, что плечи пар совпадают с прямой АВ на линии пересечения плоскостей.

Рис. 25

Сложив силы, приложенные к точкам А и В, построением параллелограммов, получим их равнодействующие и . Так как , то эти силы и будут образовывать пару, момент которой , где - радиус-вектор точки В, совпадающий с АВ.

Так как , то момент полученной пары

.

Следовательно, в результате сложения пар, расположенных в пересекающихся плоскостях, получится пара сил. Момент её будет равен векторной сумме моментов слагаемых пар.

При сложении нескольких пар, действующих в произвольных плоскостях, получим пару с моментом

.

Конечно, эта результирующая пара будет располагаться в плоскости перпендикулярной вектору .

Равенство нулю результирующей пары будет означать, что пары, действующие на тело, уравновешиваются. Следовательно, условие равновесия пар

.

Если пары расположены в одной плоскости, векторы моментов их будут параллельны. И момент результирующей пары можно определить как алгебраическую сумму моментов пар.

Рис. 26

Например, пары, показанные на рис.26, расположены в одной плоскости и моменты их:

m1=2 Hсм, m2=5 Hсм, m3=3 Hсм. Пары уравновешиваются, потому что алгебраическая сумма их моментов равна нулю:

.

Теорема о параллельном переносе силы

Равнодействующая системы сходящихся сил непосредственно находится с помощью аксиомы параллелограмма сил. Для двух параллельных сил эта задача была решена путем приведения их к сходящимся силам. Очевидно, что аналогичную задачу легко будет решить и для произвольной системы сил, если найти и для них метод приведения к силам, приложенным в одной точке.

Ранее мы установили, что вектор силы можно переносить по линии действия в любую точку тела.

Попробуем силу (рис. 27) перенести в какую-нибудь точку О, не расположенную на линии действия.

Рис. 27

Приложим к этой точке две уравновешивающиеся силы и , параллельные силе и равные ей по величине:

В результате получим силу , приложенную к точке О. То есть мы как бы перенесли заданную силу из точки А в точку О, но при этом появилась пара, образованная силами и . Момент этой пары , равен моменту заданной силы относительно точки О.

Этот процесс замены силы равной ей силой и парой называется приведением силы к точке О.

Точка О называется точкой приведения; сила , приложенная к точке приведения, - приведённой силой. Появившаяся пара - присоединённой парой.

Приведение плоской системы сил к данному центру

Пусть на твердое тело действует какая-нибудь система сил , , …, , лежащих в одной плоскости. Возьмем в этой плоскости произвольную точку О, которую назовем центром приведения, и, перенесем все силы в центр О (рис. 28, а). В результате на тело будет действовать система сил приложенных в центре О, и система пар, моменты которых будут равны:

Рис. 28

Силы, приложенные в центре О, можно заменить одной силой , приложенной в том же центре; при этом или

Точно так же, по теореме о сложении пар, все пары можно заменить одной парой, лежащей в той же плоскости. Момент этой пары или

Величина , равная геометрической сумме всех сил системы, называется, как известно, главным вектором системы; величину Мо, равную сумме моментов всех сил системы относительно центра О, будем называть главным моментом системы относительно центра О. В результате мы доказали следующую теорему: всякая плоская система сил, действующих на абсолютно твердое тело, при приведении к произвольно взятому центру О заменяется одной силой R, равной главному вектору системы и приложенной в центре приведения О, и одной парой с моментом М0, равным главному моменту системы относительно центра О (рис. 28, в).

Условия равновесия произвольной плоской системы сил. Случай параллельных сил

Для равновесия любой плоской системы сил необходимо и достаточно, чтобы одновременно выполнялись условия: R = 0, M0 = 0.

Здесь О - любая точка плоскости.

Найдем вытекающие из равенств аналитические условия равновесия.

Величины R и Мо определяются равенствами:

где Но R может равняться нулю только тогда, когда одновременно Rx = 0 и Ry = 0. Следовательно, условия будут выполнены, если будет:

Равенства выражают, следующие аналитические условия равновесия: для равновесия произвольной плоской системы сил, необходимо и достаточно, чтобы суммы проекций всех сил на каждую из двух координатных осей и сумма их моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю.

Теорема о трех моментах. Для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы моментов этих сил системы относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на одной прямой, были равны нулю.

; ;

Равновесие плоской системы параллельных сил

В случае, когда все действующие на тело силы параллельны друг другу, мы можем направить ось Ох перпендикулярно к силам, а ось Оу параллельно им (рис. 29). Тогда проекция каждой из сил на Ox будет равна нулю и первое из 3-х равенств обратится в тождество вида 0 = 0. В результате для параллельных сил останется два условия равновесия:

Где ось Оу параллельна силам.

Рис. 29

Статически определимые и статически неопределимые задачи

Для любой плоской системы сил, действующих на твердое тело, имеется три независимых условия равновесия. Следовательно, для любой плоской системы сил из условий равновесия можно найти не более трех неизвестных.

В случае пространственной системы сил, действующих на твердое тело, имеется шесть независимых условия равновесия. Следовательно, для любой пространственной системы сил из условий равновесия можно найти не более шести неизвестных.

Задачи, в которых число неизвестных не больше числа независимых условий равновесия для данной системы сил, приложенных к твердому телу, называются статически определимыми.

В противном случае задачи статически неопределимы.

Решение задач

При решения задач этого раздела следует иметь в виду все те общие указания, которые были сделаны ранее.

Приступая к решению, надо, прежде всего, установить, равновесие какого именно тела следует в данной задаче рассмотреть. Затем, выделив это тело и рассматривая его как свободное, следует изобразить все действующие на тело заданные силы и реакции отброшенных связей.

...

Подобные документы

  • Определение реакций опор твердого тела, реакций опор и сил в стержнях плоской фермы. Равновесие сил с учетом сцепления. Определение положения центра тяжести тела. Определение скорости и ускорения материальной точки по заданным уравнениям ее движения.

    курсовая работа [4,0 M], добавлен 05.11.2011

  • Статика как раздел механики. Определение силы в теоретической механике. Аксиомы статики. Связи и реакции связей. Система сходящихся сил. Теория моментов. Кинематикой как раздел теоретической механики. Уравнения движения и скорость точки. Законы динамики.

    контрольная работа [286,1 K], добавлен 13.05.2015

  • Соответствие математических моделей твердого тела свойствам реальных машиностроительных материалов. Вывод условия равновесия для осесимметричного напряженного состояния. Распределение напряжений в зоне контакта при осадке полосы неограниченной длины.

    контрольная работа [1,7 M], добавлен 13.01.2016

  • Структурный анализ кривошипно-ползунного механизма, который преобразует возвратно-поступательное движение ползуна (поршня) во вращательное движение кривошипа. Планы скоростей и ускорений. Определение сил тяжести и инерции. Условные обозначения звеньев.

    курсовая работа [2,4 M], добавлен 27.03.2013

  • Характеристика системы сертификации Росии. История и особенности происхождения твердого мыла. Сущность порядка проведения декларирования соответствия и проведение подтверждения соответствия мыла туалетного твердого требованиям нормативных документов.

    курсовая работа [108,2 K], добавлен 25.10.2012

  • Оценка характеристик контактного взаимодействия. Влияние анизотропии поверхности твердого тела и наличие волнистости на параметры контактирования. Определение топографических параметров и фрактальной размерности эквивалентной изотропной поверхности.

    реферат [567,0 K], добавлен 23.12.2015

  • Зависимость работоспособности машин и агрегатов от свойств материалов. Прочность, твердость, триботехнические характеристики. Внедрение в материал более твердого тела – индентора. Температурные, электрические и магнитные характеристики материалов.

    реферат [56,6 K], добавлен 30.07.2009

  • Определение коэффициента устойчивости водоудерживающей стенки относительно ребра "О" при заданных переменных. Вычисление давления силы на участки стенки. Нахождение точек приложения сил, площади эпюр и силы давления. Определение опрокидывающих моментов.

    контрольная работа [337,1 K], добавлен 13.10.2014

  • Расчет винта, гайки, рукоятки с храповым механизмом и корпуса с целью проектирования конструкции самолетного домкрата по заданным параметрам. Определение коэффициента полезного действия устройства, преобразующего вращательное движение в поступательное.

    курсовая работа [121,4 K], добавлен 09.02.2012

  • Сверление как процесс образования отверстий в сплошном материале с помощью инструмента, называемого сверлом. Определение основных факторов, влияющих на точность технологического процесса, существующие движения: вращательное и поступательное направленное.

    реферат [264,9 K], добавлен 18.11.2014

  • Виды и происхождение твердых топлив. Строение, свойства и классификация каменных углей. Общая схема коксохимического производства. Улавливание и разделение летучих продуктов коксования. Основные проблемы гидрирования (гидрогенизации) твердого топлива.

    реферат [2,3 M], добавлен 19.11.2009

  • Построение эпюр для консольных балок. Величина максимального изгибающего момента. Момент сопротивления круглого поперечного сечения относительно центральной оси и прямоугольника относительно нейтральной оси. Поперечные силы и изгибающие моменты.

    курсовая работа [63,3 K], добавлен 13.03.2011

  • Закономерности деформации при повышенных температурах. Возврат и рекристаллизация. Закон постоянства объема пластически деформируемого твердого тела. Степень деформации металла при пластическом формоизменении. Расчет параметров штамповки выдавливанием.

    курсовая работа [634,1 K], добавлен 22.01.2016

  • Виды движений, их основные характеристики и передаточные механизмы. Вращательное движение в машинах. Разновидности передач, особенности устройства, специфика работы и сфера применения в технике. Достоинства и недостатки механизмов, их назначение.

    реферат [5,7 M], добавлен 10.11.2010

  • Методика определения твердости и измерения отпечатка, схемы испытания различными способами. Сопротивление материала проникновению в него более твердого тела. Расчеты определения твердости; перевод твердость по Бринелю в твердость по Раквеллу, Виккерсу.

    лабораторная работа [567,3 K], добавлен 12.01.2010

  • Расчет параметров электрохимической обработки детали. Изучение процессов на поверхности твердого тела при вакуумном ионно-плазменном напылении порошка борида циркония. Анализ показателей температурных полей при наплавке покрытия плазменно-дуговым методом.

    курсовая работа [2,5 M], добавлен 06.12.2013

  • Основные характеристики, способ действия и виды механизмов преобразования вращательного движения в поступательное или наоборот: винтовой, зубчато-реечный, кулачковый, кривошипно-шатунный, кулисный, эксцентриковый, храповой, мальтийский и планетарный.

    презентация [3,7 M], добавлен 28.12.2010

  • Деформация – изменение формы и размеров твердого тела под воздействием приложенных к нему нагрузок. Упругой деформацией называют такую, при которой тело восстанавливает свою первоначальную форму, а при пластической деформации тело не восстанавливается.

    реферат [404,2 K], добавлен 18.01.2009

  • Преобразование возвратно-поступательного движения поршней во вращательное движение коленчатого вала в двигателях внутреннего сгорания. Назначение, характеристика и элементы кривошипно-шатунного механизма; принцип осуществления рабочего процесса двигателя.

    презентация [308,4 K], добавлен 07.12.2012

  • Исследование и анализ динамического поведения механической системы с упругими связями с помощью основных теорем и принципов теоретической механики. Составление дифференциального уравнения движения механической системы и определение реакций движения.

    контрольная работа [1,0 M], добавлен 23.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.